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Hardware acceleration of DNN inference/training

Google TPU3

Huawei Kirin NPU

Apple Neural Engine

GraphCore IPU

Ampere GPU with 
Tensor Cores

Intel Deep Learning 
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova 
Cardinal SN10
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Investment in AI hardware

NVIDIA Market Cap 
2014 - 2021
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Two computer architecture reminders
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Compute specialization = energy e!ciency
▪ Rules of thumb: compared to high-quality C code on CPU... 

▪ Throughput-maximized processor architectures: e.g., GPU cores 
- Approximately 10x improvement in perf / watt 
- Assuming code maps well to wide data-parallel execution and is compute bound 

▪ Fixed-function ASIC (“application-speci"c integrated circuit”) 
- Can approach 100-1000x or greater improvement in perf/watt 
- Assuming code is compute bound and 

and is not #oating-point math

[Source: Chung et al. 2010 , Dally 08] [Figure credit Eric Chung]
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Data movement has high energy cost
▪ Rule of thumb in modern system design: always seek to reduce amount of 

data movement in a computer 

▪ “Ballpark” numbers 
- Integer op: ~ 1 pJ * 
- Floating point op: ~20 pJ * 
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ 
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ 

▪ Implications 
- Reading 10 GB/sec from memory: ~1.6 watts 
- Entire power budget for mobile GPU: ~1 watt  

(remember phone is also running CPU, display, radios, etc.) 
- iPhone 6 battery: ~7 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery) 
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
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On-chip caches locate data near processing
Processors run e!ciently when data is resident in caches 

Caches reduce memory access latency * 
Caches reduce the energy cost of data access

38 GB/sec
L3 cache 

(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N

* Caches also provide high bandwidth data transfer to CPU
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Example: 
NVIDIA A100 GPU 

Up to 80 GB HMB2 stacked memory 
2 TB/sec memory bandwidth 

Also note: A100 has 40 MB L2 cache 
(increased from 6.1 MB on V100)

Memory stacking locates memory near chip
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Improving hardware e!ciency 
for DNN operations
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Amortize overhead of instruction stream 
control using more complex instructions

▪ Fused multiply add (ax + b) 
▪ 4-component dot product x = A dot B 
▪ 4x4 matrix multiply 

- AB + C  for 4x4 matrices A, B, C 

▪ Key principle: amortize cost of instruction stream processing 
across many operations of a single complex instruction 
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E!ciency estimates *
▪ Estimated overhead of programmability (instruction stream, control, etc.) 

- Half-precision FMA (fused multiply-add) 
- Half-precision DP4 (vec4 dot product) 
- Half-precision 4x4 MMA (matrix-matrix multiply + accumulate)

2000% 
500% 
27%

NVIDIA Xavier (SoC for automotive domain) 

Features a Computer Vision Accelerator (CVA), 
a custom module for deep learning 
acceleration (large matrix multiply unit) 

~ 2x more e!cient than NVIDIA V100 MMA 
instruction despite being highly specialized 
component. (includes optimization of gating 
multipliers if either operand is zero)

* Estimates by Bill Dally using academic numbers, SysML talk, Feb 2018
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Ampere GPU SM (A100)
Each SM core has: 
64 fp32 ALUs (mul-add) 
32 int32 ALUs 
4 “tensor cores” 
Execute 8x4 x 4x8 matrix mul-add instr 
A x B + C  for matrices A,B,C 
A, B stored as fp16, accumulation with fp32 C 

There are 108 SM cores in the GA100 GPU: 
6,912 fp32 mul-add ALUs 
432 tensor cores 
1.4 GHz max clock  
= 19.5 TFLOPs fp32 
+ 312 TFLOPs (fp16/32 mixed) in tensor cores

Single instruction to 
perform 2x8x4x8 int16 + 
8x8 int32 ops
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Google TPU 
(version 1)
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Google’s TPU (v1)

 

Hence, the TPU is closer in spirit to an FPU (floating-point unit) coprocessor than it is to a GPU. 
 

 
 
Figure 1. ​TPU Block Diagram. The main computation part is the Figure 2. ​Floor Plan of TPU die. The shading follows Figure 1.  
yellow Matrix Multiply unit in the upper right hand corner. Its inputs The light (blue) data buffers are 37% of the die, the light (yellow)  
are the blue Weight FIFO and the blue Unified Buffer (UB) and its compute is 30%,  the medium (green) I/O is 10%, and the dark  
output is the blue Accumulators (Acc). The yellow Activation Unit (red) control is just 2%. Control is much larger (and much more  
performs the nonlinear functions on the Acc, which go to the UB. difficult to design) in a CPU or GPU 
 

The goal was to run whole inference models in the TPU to reduce interactions with the host CPU and to be flexible 
enough to match the NN needs of 2015 and beyond, instead of just what was required for 2013 NNs. Figure 1 shows the block 
diagram of the TPU.  

The TPU instructions are sent from the host over the PCIe Gen3 x16 bus into an instruction buffer. The internal blocks 
are typically connected together by 256-​byte​ -wide paths. Starting in the upper-right corner, the ​Matrix Multiply Unit ​ is the 
heart of the TPU. It contains 256x256 MACs that can perform 8-bit multiply-and-adds on signed or unsigned integers. The 
16-bit products are collected in the 4 MiB of 32-bit ​Accumulators​  below the matrix unit. The 4MiB represents 4096, 
256-element, 32-bit accumulators. The matrix unit produces one 256-element partial sum per clock cycle. We picked 4096 by 
first noting that the operations per byte need to reach peak performance (roofline knee in Section 4) is ~1350, so we rounded 
that up to 2048 and then duplicated it so that the compiler could use double buffering while running at peak performance. 

When using a mix of 8-bit weights and 16-bit activations (or vice versa), the Matrix Unit computes at half-speed, and it 
computes at a quarter-speed when both are 16 bits. It reads and writes 256 values per clock cycle and can perform either a 
matrix multiply or a convolution. The matrix unit holds one 64 KiB tile of weights plus one for double-buffering (to hide the 
256 cycles it takes to shift a tile in). This unit is designed for dense matrices. Sparse architectural support was omitted for 
time-to-deploy reasons. Sparsity will have high priority in future designs. 

The weights for the matrix unit are staged through an on-chip ​Weight FIFO​  that reads from an off-chip 8 GiB DRAM 
called ​Weight Memory​  (for inference, weights are read-only; 8 GiB supports many simultaneously active models). The weight 
FIFO is four tiles deep. The intermediate results are held in the 24 MiB on-chip ​Unified Buffer​ , which can serve as inputs to 
the Matrix Unit. A programmable DMA controller transfers data to or from CPU Host memory and the Unified Buffer. 

Figure 2 shows the floor plan of the TPU die. The 24 MiB Unified Buffer is almost a third of the die and the Matrix 
Multiply Unit is a quarter, so the datapath is nearly two-thirds of the die. The 24 MiB size was picked in part to match the 
pitch of the Matrix Unit on the die and, given the short development schedule, in part to simplify the compiler (see Section 7). 
Control is just 2%. Figure 3 shows the TPU on its printed circuit card, which inserts into existing servers like an SATA disk. 

As instructions are sent over the relatively slow PCIe bus, TPU instructions follow the CISC tradition, including a repeat 
field. The average clock cycles per instruction (CPI) of these CISC instructions is typically 10 to 20. It has about a dozen 
instructions overall, but these five are the key ones: 

1. Read_Host_Memory​ reads data from the CPU host memory into the Unified Buffer (UB). 
2. Read_Weights​ reads weights from Weight Memory into the Weight FIFO as input to the Matrix Unit. 
3. MatrixMultiply/Convolve​ causes the Matrix Unit to perform a matrix multiply or a convolution from the 

Unified Buffer into the Accumulators. A matrix operation takes a variable-sized B*256 input, multiplies it by a 
256x256 constant weight input, and produces a B*256 output, taking B pipelined cycles to complete. 

3 

Figure credit: Jouppi et al. 2017
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TPU area proportionality
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Arithmetic units ~ 30% of chip 
Note low area footprint of control 

Key instructions: 
read host memory 
write host memory 
read weights 
matrix_multiply / convolve 
activate
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Systolic array (matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33
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Systolic array (matrix vector multiplication example: y=Wx)

PE PE PE PE
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w30

w31

w32
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Systolic array (matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x0 * w00

x1

x0
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Systolic array (matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w10

x0 * w00 + 
x1 * w01

x1
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Systolic array (matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w00 + 
x1 * w01 + 
x2 * w02 + 

x3

x1

x0 * w10 + 
x1 * w11

x0 * w20
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Systolic array (matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0 * w10 + 
x1 * w11 + 
x2 * w12 + 

x3

x1

x0 * w20 + 
x1 * w21

x0 * w30

x0 * w00 + 
x1 * w01 + 
x2 * w02 + 
x3 * w03 
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Systolic array (matrix matrix multiplication example: Y=WX)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x02

x00 * w20 + 
x01 * w21 + 
x02 * w22 + 

x03

x01

x00 * w20 + 
x01 * w21

x00 * w30

x00 * w00 + 
x01 * w01 + 
x02 * w02 + 
x03 * w03 

x12

x13

x11

x10

x10 * w00 + 
x11 * w01 + 
x12 * w02 + 

x21

x22

x31

x20x30

x30 * w00 x20 * w10 x10 * w20

x10 * w20 + 
x11 * w21

x20 * w00 + 
x21 * w01

Notice: need multiple 4x32bit 
accumulators to hold output columns
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators



Stanford CS348K, Spring 2021

TPU Performance/Watt

 

 
Figure 8. ​Figures 5-7 combined into a single log-log graph. Stars are for the TPU, triangles are for the K80, and circles are for Haswell. All 
TPU stars are at or above the other 2 rooflines. 

 
 
Figure 9. ​Relative performance/Watt (TDP) of GPU server (blue bar) and TPU server (red bar) to CPU server, and TPU server to GPU 
server (orange bar).  TPU’ is an improved TPU (Sec. 7). The green bar shows its ratio to the CPU server and the lavender bar shows its 
relation to the GPU server. Total includes host server power, but incremental doesn’t. GM and WM are the geometric and weighted  means. 

9 

GM = geometric mean over all apps 
WM = weighted mean over all apps

total = cost of host machine + CPU  
incremental = only cost of TPU

Figure credit: Jouppi et al. 2017
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Alternative scheduling strategies

(a) Weight Stationary

(b) Output Stationary

(c) No Local Reuse

Fig. 8. Dataflows for DNNs.

PE 1 

Row 1 Row 1 

PE 2 

Row 2 Row 2 

PE 3 

Row 3 Row 3 

Row 1 

= * 

PE 4 

Row 1 Row 2 

PE 5 

Row 2 Row 3 

PE 6 

Row 3 Row 4 

Row 2 

= * 

PE 7 

Row 1 Row 3 

PE 8 

Row 2 Row 4 

PE 9 

Row 3 Row 5 

Row 3 

= * 

* * * 

* * * 

* * * 

Fig. 9. Row Stationary Dataflow [34].

that area is allocated to the global buffer to increase its
capacity (Fig. 8(c)). The trade-off is that there will be
increased traffic on the spatial array and to the global
buffer for all data types. Examples are found in [44–46].

• Row stationary (RS): In order to increase reuse of
all types of data (weights, pixels, partial sums), a row
stationary approach is proposed in [34]. A row of the filter
convolution remains stationary within a PE to exploit
1-D convolutional reuse within the PE. Multiple 1-D
rows are combined in the spatial array to exhaustively
exploit all convolutional reuse (Fig. 9), which reduces
accesses to the global buffer. Multiple 1-D rows from
different channels and filters are mapped to each PE to
reduce partial sum data movement and exploit filter reuse,
respectively. Finally, multiple passes across the spatial
array allow for additional image and filter reuse using the
global buffer. This dataflow is demonstrated in [47].

The dataflows are compared on a spatial array with the
same number of PEs (256), area cost and DNN (AlexNet).
Fig. 10 shows the energy consumption of each approach. The
row stationary approach is 1.4⇥ to 2.5⇥ more energy-efficient

0

0.5

1

1.5

2

Normalized 
Energy/MAC 

WS OSA OSB OSC NLR RS 

psums 

weights 

pixels 

(a) Across types of data

Normalized 
Energy/MAC 

ALU 

RF 

NoC 

buffer 

DRAM 

0

0.5

1

1.5

2

WS OSA OSB OSC NLR RS 

(b) Across levels of memory hierarchy

Fig. 10. Energy breakdown of dataflows [34].

than the other dataflows for the convolutional layers. This
is due to the fact that the energy of all types of data is
reduced. Furthermore, both the on-chip and off-chip energy is
considered.

VI. OPPORTUNITIES IN JOINT ALGORITHM AND
HARDWARE DESIGN

There is on-going research on modifying the machine
learning algorithms to make them more hardware-friendly while
maintaining accuracy; specifically, the focus is on reducing
computation, data movement and storage requirements.

A. Reduce Precision

The default size for programmable platforms such as
CPUs and GPUs is often 32 or 64 bits with floating-point
representation. While this remains the case for training, during
inference, it is possible to use a fixed-point representation and
substantially reduce the bitwidth for energy and area savings,
and increase in throughput. Retraining is typically required to
maintain accuracy when pushing the weights and features to
lower bitwidth.

In hand-crafted approaches, the bitwidth can be drastically
reduced to below 16-bits without impacting the accuracy. For
instance, in object detection using HOG, each 36-dimension
feature vector only requires 9-bit per dimension, and each
weight of the SVM uses only 4-bits [48]; for object detection
using deformable parts models (DPM) [49], only 11-bits are
required per feature vector and only 5-bits are required per
SVM weight [50].

Similarly for DNN inference, it is common to see accelerators
support 16-bit fixed point [45, 47]. There has been significant

TPU (v1) was “weight stationary”: 
weights kept in register at PE 

each PE gets di$erent pixel 
partial sum pushed through array (array 

has one output)

Figure credit: Sze et al. 2017

Psum = partial sum

“Output stationary”: 
each PE computes one output 

push input pixel through array 
each PE gets di$erent weight 

each PE accumulates locally into output

Takeaway: many DNN accelerators can be 
characterized by the data #ow of input 

activations, weights, and outputs through 
the machine.  (Just di$erent “schedules”!)  
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Input stationary design (dense 1D conv example)

out(0,i-1)

out(1,i-1)

out(0,i)

out(1,i) out(1,i+1)

out(0,i+1) out(0,i+2)

out(1,i+2)

in(i) in(i+1)

PE 0 PE 1

Accumulators 
(implement +=)

w(0,0)
w(0,1)
w(0,2)
w(1,0)
w(1,1)
w(1,2)

Assume: 
1D input/output 
3-wide "lters 
2 output channels (K=2)

6 
5 
4 
3 
2 
1

123

46 5

Weight
Stream 

Order

Processing 
elements 

(implement multiply)

Stream of weights 
(2 1D "lters of size 3)
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Scaling up (for training big models)
Example: GPT-3 language model

(Amount of training — note this is log scale)

Very big models + 
More training  
= 
Better accuracy

Power law e$ect: 
exponentially more compute to take 

constant step in accuracy
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TPU v3 supercomputer
TPU v3 board 
4 TPU3 chips

One TPU v3 board
TPUs connected by 

2D Torus interconnect

TPU supercomputer (1024 TPU v3 chips)
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Additional examples of “AI chips”

Key ideas: 

1. Huge numbers of compute units 

2. Huge amounts of on-chip storage to maintain 
input weights and intermediate values 
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GraphCore MK2 GC200 IPU

900 MB 
on-chip storage

(59B transistors  
 similar size to A100 GPU)

Access to o$-chip DDR4
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Cerebras Wafer-Scale Engine (WSE)
Tightly interconnected tile of chips (entire wafer) 
Many more transistors (1.2T) than largest single chips 
(Example: NVIDIA A100 GPU has 54B)

Compilation of DNN to platform involves “laying out” DNN layers in space on processing grid.
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SambaNova recon"gurable data#ow unit 
Again, notice tight integration of storage and compute
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Another example of spatial layout

Notice: inter-layer communication occurs through on-chip interconnect, not through o$-chip memory.
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Exploiting sparsity
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Architectural tricks for optimizing for sparsity
▪ Consider operation: result += x*y 
▪ If hardware determines contents of register x or register y is zero…  

- Don’t "re ALU (save energy) 
- Don’t move data from register "le to ALU (save energy) 
- But ALU is idle (computation doesn’t run faster, optimization only saves energy)

SCNN ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
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(b) GoogLeNet
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(c) VGGNet

Figure 1: Input activation and weight density and the reduction
in the amount of work achievable by exploiting sparsity.

Sparsity in CNNs. Sparsity in a CNN layer is defined as the
fraction of zeros in the layer’s weight and input activation matrices.
The primary technique for creating weight sparsity is to prune the
network during training. Han, et al. developed a pruning algorithm
that operates in two phases [17]. First, any weight with an absolute
value that is close to zero (e.g. below a defined threshold) is set
to zero. This process has the effect of removing weights from the
filters, sometimes even forcing an output activation to always be zero.
Second, the remaining network is retrained, to regain the accuracy
lost through naïve pruning. The result is a smaller network with
accuracy extremely close to the original network. The process can
be iteratively repeated to reduce network size while maintaining
accuracy.

Activation sparsity occurs dynamically during inference and is
highly dependent on the data being processed. Specifically, the rec-
tified linear unit (ReLU) function that is commonly used as the
non-linear operator in CNNs forces all negatively valued activations

Table 2: Qualitative comparison of sparse CNN accelerators.

Gate
MACC

Skip
MACC

Skip
Inner spatial

dataflow
buffer/

Architecture DRAM
access

Eyeriss [7] A – A Row Stationary
Cnvlutin [1] A A A Vector Scalar + Reduction
Cambricon-X [34] W W W Dot Product
SCNN A+W A+W A+W Cartesian Product

to be clamped to zero. After completing computation of a convolu-
tional layer, a ReLU function is applied point-wise to each element
in the output activation matrices before the data is passed to the next
layer.

To measure the weight and activation sparsity, we used the Caffe
framework [4] to prune and train the three networks listed in Ta-
ble 1, using the pruning algorithm of [17]. We then instrumented
the Caffe framework to inspect the activations between the convo-
lutional layers. Figure 1 shows the weight and activation density
(fraction of non-zeros or complement of sparsity) of the layers of the
networks, referenced to the left-hand y-axes. As GoogLeNet has 54
convolutional layers, we only show a subset of representative layers.
The data shows that weight density varies across both layers and
networks, reaching a minimum of 30% for some of the GoogLeNet
layers. Activation density also varies, with density typically being
higher in early layers. Activation density can be as low as 30% as
well. The triangles show the ideal number of multiplies that could
be achieved if all multiplies with a zero operand are eliminated. This
is calculated by by taking the product of the weight and activation
densities on a per-layer basis.

Exploiting sparsity. Since multiplication by zero just results in
a zero, it should require no work. Thus, typical layers can reduce
work by a factor of four, and can reach as high as a factor of ten. In
addition, those zero products will contribute nothing to the partial
sum it is part of, so the addition is unnecessary as well. Furthermore,
data with many zeros can be represented in a compressed form.
Together these characteristics provide a number of opportunities for
optimization:

• Compressing data: Encoding the sparse weights and/or
activations provides an architecture an opportunity to re-
duce the amount of data that must be moved throughout the
memory hierarchy. It also reduces the data footprint, which
allows larger matrices to be held in a storage structure of a
given size.

• Eliminating computation: For multiplications that have a
zero weight and/or activation operand, the operation can
be data gated, or the operands might never be sent to the
multiplier. This optimization can save energy consumption
or both time and energy consumption, respectively.

Table 2 describes how several recent CNN accelerator architecture
exploit sparsity. Eyeriss [7] exploits sparsity in activations by storing
them in compressed form in DRAM and by gating computation cy-
cles for zero-valued activations to save energy. Cnvlutin [1] is more
aggressive—the architecture moves and stages sparse activations
in compressed form and skips computation cycles for zero-valued
activations to improve both performance and energy efficiency. Both



Stanford CS348K, Spring 2021

Recall: model compression
- Step 1: sparsify weights by truncating weights with small values to zero 
- Step 2: compress surviving non-zeros 

- Cluster weights via k-means clustering 
- Compress weights by only storing index of assigned cluster (lg(k) bits)

Published as a conference paper at ICLR 2016

Figure 2: Representing the matrix sparsity with relative index. Padding filler zero to prevent overflow.
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Figure 3: Weight sharing by scalar quantization (top) and centroids fine-tuning (bottom).

We store the sparse structure that results from pruning using compressed sparse row (CSR) or
compressed sparse column (CSC) format, which requires 2a+n+1 numbers, where a is the number
of non-zero elements and n is the number of rows or columns.

To compress further, we store the index difference instead of the absolute position, and encode this
difference in 8 bits for conv layer and 5 bits for fc layer. When we need an index difference larger
than the bound, we the zero padding solution shown in Figure 2: in case when the difference exceeds
8, the largest 3-bit (as an example) unsigned number, we add a filler zero.

3 TRAINED QUANTIZATION AND WEIGHT SHARING

Network quantization and weight sharing further compresses the pruned network by reducing the
number of bits required to represent each weight. We limit the number of effective weights we need to
store by having multiple connections share the same weight, and then fine-tune those shared weights.

Weight sharing is illustrated in Figure 3. Suppose we have a layer that has 4 input neurons and 4
output neurons, the weight is a 4⇥ 4 matrix. On the top left is the 4⇥ 4 weight matrix, and on the
bottom left is the 4⇥ 4 gradient matrix. The weights are quantized to 4 bins (denoted with 4 colors),
all the weights in the same bin share the same value, thus for each weight, we then need to store only
a small index into a table of shared weights. During update, all the gradients are grouped by the color
and summed together, multiplied by the learning rate and subtracted from the shared centroids from
last iteration. For pruned AlexNet, we are able to quantize to 8-bits (256 shared weights) for each
CONV layers, and 5-bits (32 shared weights) for each FC layer without any loss of accuracy.

To calculate the compression rate, given k clusters, we only need log2(k) bits to encode the index. In
general, for a network with n connections and each connection is represented with b bits, constraining
the connections to have only k shared weights will result in a compression rate of:

r =
nb

nlog2(k) + kb
(1)

For example, Figure 3 shows the weights of a single layer neural network with four input units and
four output units. There are 4⇥4 = 16 weights originally but there are only 4 shared weights: similar
weights are grouped together to share the same value. Originally we need to store 16 weights each

3

[Han et al. ]

[Figure credit: Han ICLR16]
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Sparse, weight-sharing fully-connected layer

to dense form before operation [11]. Neither is able to
exploit weight sharing. This motivates building a special
engine that can operate on a compressed network.

III. DNN COMPRESSION AND PARALLELIZATION

A. Computation

A FC layer of a DNN performs the computation

b = f(Wa+ v) (1)

Where a is the input activation vector, b is the output
activation vector, v is the bias, W is the weight matrix, and
f is the non-linear function, typically the Rectified Linear
Unit(ReLU) [22] in CNN and some RNN. Sometimes v

will be combined with W by appending an additional one
to vector a, therefore we neglect the bias in the following
paragraphs.

For a typical FC layer like FC7 of VGG-16 or AlexNet,
the activation vectors are 4K long, and the weight matrix is
4K ⇥ 4K (16M weights). Weights are represented as single-
precision floating-point numbers so such a layer requires
64MB of storage. The output activations of Equation (1) are
computed element-wise as:

bi = ReLU

0

@
n�1X

j=0

Wijaj

1

A (2)

Deep Compression [23] describes a method to compress
DNNs without loss of accuracy through a combination of
pruning and weight sharing. Pruning makes matrix W sparse
with density D ranging from 4% to 25% for our benchmark
layers. Weight sharing replaces each weight Wij with a four-
bit index Iij into a shared table S of 16 possible weight
values.

With deep compression, the per-activation computation of
Equation (2) becomes

bi = ReLU
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S[Iij ]aj
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A (3)

Where Xi is the set of columns j for which Wij 6= 0, Y
is the set of indices j for which aj 6= 0, Iij is the index
to the shared weight that replaces Wij , and S is the table
of shared weights. Here Xi represents the static sparsity of
W and Y represents the dynamic sparsity of a. The set Xi

is fixed for a given model. The set Y varies from input to
input.

Accelerating Equation (3) is needed to accelerate a com-
pressed DNN. We perform the indexing S[Iij ] and the
multiply-add only for those columns for which both Wij

and aj are non-zero, so that both the sparsity of the matrix
and the vector are exploited. This results in a dynamically ir-
regular computation. Performing the indexing itself involves
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Figure 2. Matrix W and vectors a and b are interleaved over 4 PEs.
Elements of the same color are stored in the same PE.

Virtual	
Weight

W0,0 W8,0 W12,0 W4,1 W0,2 W12,2 W0,4 W4,4 W0,5 W12,5 W0,6 W8,7 W12,7

Relative	  
Row	Index 0 1 0 1 0 2 0 0 0 2 0 2 0
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Pointer 0 3 4 6 6 8 10 11 13

	 	 	

Figure 3. Memory layout for the relative indexed, indirect weighted and
interleaved CSC format, corresponding to PE0 in Figure 2.

bit manipulations to extract four-bit Iij and an extra load
(which is almost assured a cache hit).

B. Representation

To exploit the sparsity of activations we store our encoded
sparse weight matrix W in a variation of compressed sparse
column (CSC) format [24].

For each column Wj of matrix W we store a vector v

that contains the non-zero weights, and a second, equal-
length vector z that encodes the number of zeros before
the corresponding entry in v. Each entry of v and z is
represented by a four-bit value. If more than 15 zeros appear
before a non-zero entry we add a zero in vector v. For
example, we encode the following column

[0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 3]

as v = [1, 2,0, 3], z = [2, 0,15, 2]. v and z of all columns
are stored in one large pair of arrays with a pointer vector p
pointing to the beginning of the vector for each column. A
final entry in p points one beyond the last vector element so
that the number of non-zeros in column j (including padded
zeros) is given by pj+1 � pj .

Storing the sparse matrix by columns in CSC format
makes it easy to exploit activation sparsity. We simply
multiply each non-zero activation by all of the non-zero
elements in its corresponding column.

to dense form before operation [11]. Neither is able to
exploit weight sharing. This motivates building a special
engine that can operate on a compressed network.

III. DNN COMPRESSION AND PARALLELIZATION

A. Computation

A FC layer of a DNN performs the computation

b = f(Wa+ v) (1)

Where a is the input activation vector, b is the output
activation vector, v is the bias, W is the weight matrix, and
f is the non-linear function, typically the Rectified Linear
Unit(ReLU) [22] in CNN and some RNN. Sometimes v

will be combined with W by appending an additional one
to vector a, therefore we neglect the bias in the following
paragraphs.

For a typical FC layer like FC7 of VGG-16 or AlexNet,
the activation vectors are 4K long, and the weight matrix is
4K ⇥ 4K (16M weights). Weights are represented as single-
precision floating-point numbers so such a layer requires
64MB of storage. The output activations of Equation (1) are
computed element-wise as:

bi = ReLU
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Deep Compression [23] describes a method to compress
DNNs without loss of accuracy through a combination of
pruning and weight sharing. Pruning makes matrix W sparse
with density D ranging from 4% to 25% for our benchmark
layers. Weight sharing replaces each weight Wij with a four-
bit index Iij into a shared table S of 16 possible weight
values.

With deep compression, the per-activation computation of
Equation (2) becomes

bi = ReLU
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Where Xi is the set of columns j for which Wij 6= 0, Y
is the set of indices j for which aj 6= 0, Iij is the index
to the shared weight that replaces Wij , and S is the table
of shared weights. Here Xi represents the static sparsity of
W and Y represents the dynamic sparsity of a. The set Xi

is fixed for a given model. The set Y varies from input to
input.

Accelerating Equation (3) is needed to accelerate a com-
pressed DNN. We perform the indexing S[Iij ] and the
multiply-add only for those columns for which both Wij

and aj are non-zero, so that both the sparsity of the matrix
and the vector are exploited. This results in a dynamically ir-
regular computation. Performing the indexing itself involves
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Elements of the same color are stored in the same PE.
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Figure 3. Memory layout for the relative indexed, indirect weighted and
interleaved CSC format, corresponding to PE0 in Figure 2.

bit manipulations to extract four-bit Iij and an extra load
(which is almost assured a cache hit).

B. Representation

To exploit the sparsity of activations we store our encoded
sparse weight matrix W in a variation of compressed sparse
column (CSC) format [24].

For each column Wj of matrix W we store a vector v

that contains the non-zero weights, and a second, equal-
length vector z that encodes the number of zeros before
the corresponding entry in v. Each entry of v and z is
represented by a four-bit value. If more than 15 zeros appear
before a non-zero entry we add a zero in vector v. For
example, we encode the following column

[0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 3]

as v = [1, 2,0, 3], z = [2, 0,15, 2]. v and z of all columns
are stored in one large pair of arrays with a pointer vector p
pointing to the beginning of the vector for each column. A
final entry in p points one beyond the last vector element so
that the number of non-zeros in column j (including padded
zeros) is given by pj+1 � pj .

Storing the sparse matrix by columns in CSC format
makes it easy to exploit activation sparsity. We simply
multiply each non-zero activation by all of the non-zero
elements in its corresponding column.

Fully-connected layer: 
Matrix-vector multiplication of activation 
vector a against weight matrix W

Sparse, weight-sharing representation: 
Iij = index for weight Wij 

S[] = table of shared weight values 
Xi = list of non-zero indices in row i 
Y = list of non-zero indices in vector a 

Note: activations can be 
sparse due to ReLU
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Sparse-matrix, vector multiplication
Represent weight matrix in compressed sparse column (CSC) format to 
exploit sparsity in activation vector: 

for each nonzero a_j in a: 
    for each nonzero M_ij in column M_j:  
      b_i += M_ij * a_j

int16* a_values;    // dense 
PTR*   M_j_start;   // column j 
int4*  M_j_values;  
int4*  M_j_indices; 
int16* lookup; // lookup table for 
               // cluster values (from 
               // deep compression paper)

More detailed version (assumes CSC matrix):
 for j=0 to length(a): 
    if (a[j] == 0) continue;   // scan to next nonzero 
    col_values = M_j_values[M_j_start[j]]; // j-th col 
    col_indices = M_j_indices[M_j_start[j]]; // row idx in col 
    col_nonzeros = M_j_start[j+1] - M_j_start[j]; 
    for i=0, i_count=0 to col_nonzeros: 
       i    += col_indices[i_count]; 
       b[i] += lookup[col_values[i_count]] * a_values[j];

* Recall from deep compression paper: there is a unique lookup table for each chunk of matrix values
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Parallelization of sparse-matrix-vector product
Stride rows of matrix across processing elements 
Output activations strided across processing elements

to dense form before operation [11]. Neither is able to
exploit weight sharing. This motivates building a special
engine that can operate on a compressed network.

III. DNN COMPRESSION AND PARALLELIZATION

A. Computation

A FC layer of a DNN performs the computation

b = f(Wa+ v) (1)

Where a is the input activation vector, b is the output
activation vector, v is the bias, W is the weight matrix, and
f is the non-linear function, typically the Rectified Linear
Unit(ReLU) [22] in CNN and some RNN. Sometimes v

will be combined with W by appending an additional one
to vector a, therefore we neglect the bias in the following
paragraphs.

For a typical FC layer like FC7 of VGG-16 or AlexNet,
the activation vectors are 4K long, and the weight matrix is
4K ⇥ 4K (16M weights). Weights are represented as single-
precision floating-point numbers so such a layer requires
64MB of storage. The output activations of Equation (1) are
computed element-wise as:

bi = ReLU
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Deep Compression [23] describes a method to compress
DNNs without loss of accuracy through a combination of
pruning and weight sharing. Pruning makes matrix W sparse
with density D ranging from 4% to 25% for our benchmark
layers. Weight sharing replaces each weight Wij with a four-
bit index Iij into a shared table S of 16 possible weight
values.

With deep compression, the per-activation computation of
Equation (2) becomes
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Where Xi is the set of columns j for which Wij 6= 0, Y
is the set of indices j for which aj 6= 0, Iij is the index
to the shared weight that replaces Wij , and S is the table
of shared weights. Here Xi represents the static sparsity of
W and Y represents the dynamic sparsity of a. The set Xi

is fixed for a given model. The set Y varies from input to
input.

Accelerating Equation (3) is needed to accelerate a com-
pressed DNN. We perform the indexing S[Iij ] and the
multiply-add only for those columns for which both Wij

and aj are non-zero, so that both the sparsity of the matrix
and the vector are exploited. This results in a dynamically ir-
regular computation. Performing the indexing itself involves
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Figure 2. Matrix W and vectors a and b are interleaved over 4 PEs.
Elements of the same color are stored in the same PE.

Virtual	
Weight

W0,0 W8,0 W12,0 W4,1 W0,2 W12,2 W0,4 W4,4 W0,5 W12,5 W0,6 W8,7 W12,7

Relative	  
Row	Index 0 1 0 1 0 2 0 0 0 2 0 2 0

Column	
Pointer 0 3 4 6 6 8 10 11 13

	 	 	

Figure 3. Memory layout for the relative indexed, indirect weighted and
interleaved CSC format, corresponding to PE0 in Figure 2.

bit manipulations to extract four-bit Iij and an extra load
(which is almost assured a cache hit).

B. Representation

To exploit the sparsity of activations we store our encoded
sparse weight matrix W in a variation of compressed sparse
column (CSC) format [24].

For each column Wj of matrix W we store a vector v

that contains the non-zero weights, and a second, equal-
length vector z that encodes the number of zeros before
the corresponding entry in v. Each entry of v and z is
represented by a four-bit value. If more than 15 zeros appear
before a non-zero entry we add a zero in vector v. For
example, we encode the following column

[0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,0, 0, 0, 3]

as v = [1, 2,0, 3], z = [2, 0,15, 2]. v and z of all columns
are stored in one large pair of arrays with a pointer vector p
pointing to the beginning of the vector for each column. A
final entry in p points one beyond the last vector element so
that the number of non-zeros in column j (including padded
zeros) is given by pj+1 � pj .

Storing the sparse matrix by columns in CSC format
makes it easy to exploit activation sparsity. We simply
multiply each non-zero activation by all of the non-zero
elements in its corresponding column.

Weights stored local to PEs.  Must broadcast non-zero a_j’s to all PEs 
Accumulation of each output b_i is local to PE    

0     0     a2     0    a4    a5     0    a7   
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Figure 4. (a) The architecture of Leading Non-zero Detection Node. (b) The architecture of Processing Element.

C. Parallelizing Compressed DNN

We distribute the matrix and parallelize our matrix-vector
computation by interleaving the rows of the matrix W over
multiple processing elements (PEs). With N PEs, PEk holds
all rows Wi, output activations bi, and input activations ai

for which i (mod N) = k. The portion of column Wj in
PEk is stored in the CSC format described in Section III-B
but with the zero counts referring only to zeros in the subset
of the column in this PE. Each PE has its own v, x, and p

arrays that encode its fraction of the sparse matrix.
Figure 2 shows an example multiplying an input activation

vector a (of length 8) by a 16⇥8 weight matrix W yielding
an output activation vector b (of length 16) on N = 4 PEs.
The elements of a, b, and W are color coded with their PE
assignments. Each PE owns 4 rows of W , 2 elements of a,
and 4 elements of b.

We perform the sparse matrix ⇥ sparse vector operation
by scanning vector a to find its next non-zero value aj

and broadcasting aj along with its index j to all PEs.
Each PE then multiplies aj by the non-zero elements in
its portion of column Wj — accumulating the partial sums
in accumulators for each element of the output activation
vector b. In the CSC representation these non-zeros weights
are stored contiguously so each PE simply walks through its
v array from location pj to pj+1 � 1 to load the weights.
To address the output accumulators, the row number i

corresponding to each weight Wij is generated by keeping
a running sum of the entries of the x array.

In the example of Figure 2, the first non-zero is a2 on
PE2. The value a2 and its column index 2 is broadcast
to all PEs. Each PE then multiplies a2 by every non-
zero in its portion of column 2. PE0 multiplies a2 by
W0,2 and W12,2; PE1 has all zeros in column 2 and so
performs no multiplications; PE2 multiplies a2 by W2,2

and W14,2, and so on. The result of each product is summed
into the corresponding row accumulator. For example PE0

computes b0 = b0 + W0,2a2 and b12 = b12 + W12,2a2.
The accumulators are initialized to zero before each layer
computation.

The interleaved CSC representation facilitates exploitation
of both the dynamic sparsity of activation vector a and
the static sparsity of the weight matrix W . We exploit

activation sparsity by broadcasting only non-zero elements
of input activation a. Columns corresponding to zeros in a

are completely skipped. The interleaved CSC representation
allows each PE to quickly find the non-zeros in each column
to be multiplied by aj . This organization also keeps all of the
computation except for the broadcast of the input activations
local to a PE. The interleaved CSC representation of matrix
in Figure 2 is shown in Figure 3.

This process may suffer load imbalance because each PE
may have a different number of non-zeros in a particular
column. We will see in Section IV how this load imbalance
can be reduced by queuing.

IV. HARDWARE IMPLEMENTATION

Figure 4 shows the architecture of EIE. A Central Control
Unit (CCU) controls an array of PEs that each computes one
slice of the compressed network. The CCU also receives
non-zero input activations from a distributed leading non-
zero detection network and broadcasts these to the PEs.

Almost all computation in EIE is local to the PEs except
for the collection of non-zero input activations that are
broadcast to all PEs. However, the timing of the activation
collection and broadcast is non-critical as most PEs take
many cycles to consume each input activation.

Activation Queue and Load Balancing. Non-zero ele-
ments of the input activation vector aj and their correspond-
ing index j are broadcast by the CCU to an activation queue
in each PE. The broadcast is disabled if any PE has a full
queue. At any point in time each PE processes the activation
at the head of its queue.

The activation queue allows each PE to build up a backlog
of work to even out load imbalance that may arise because
the number of non zeros in a given column j may vary
from PE to PE. In Section VI we measure the sensitivity of
performance to the depth of the activation queue.

Pointer Read Unit. The index j of the entry at the head
of the activation queue is used to look up the start and end
pointers pj and pj+1 for the v and x arrays for column j.
To allow both pointers to be read in one cycle using single-
ported SRAM arrays, we store pointers in two SRAM banks
and use the LSB of the address to select between banks. pj
and pj+1 will always be in different banks. EIE pointers are
16-bits in length.

Tuple representing non-zero activation (aj, j) arrives and is enqueued
Custom hardware for decoding compressed-sparse representation
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Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.
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Figure 7. Energy efficiency of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.

energy numbers. We annotated the toggle rate from the RTL
simulation to the gate-level netlist, which was dumped to
switching activity interchange format (SAIF), and estimated
the power using Prime-Time PX.

Comparison Baseline. We compare EIE with three dif-
ferent off-the-shelf computing units: CPU, GPU and mobile
GPU.

1) CPU. We use Intel Core i-7 5930k CPU, a Haswell-E
class processor, that has been used in NVIDIA Digits Deep
Learning Dev Box as a CPU baseline. To run the benchmark
on CPU, we used MKL CBLAS GEMV to implement the
original dense model and MKL SPBLAS CSRMV for the
compressed sparse model. CPU socket and DRAM power
are as reported by the pcm-power utility provided by Intel.

2) GPU. We use NVIDIA GeForce GTX Titan X GPU,
a state-of-the-art GPU for deep learning as our baseline
using nvidia-smi utility to report the power. To run
the benchmark, we used cuBLAS GEMV to implement
the original dense layer. For the compressed sparse layer,
we stored the sparse matrix in in CSR format, and used
cuSPARSE CSRMV kernel, which is optimized for sparse
matrix-vector multiplication on GPUs.

3) Mobile GPU. We use NVIDIA Tegra K1 that has
192 CUDA cores as our mobile GPU baseline. We used
cuBLAS GEMV for the original dense model and cuS-
PARSE CSRMV for the compressed sparse model. Tegra K1
doesn’t have software interface to report power consumption,
so we measured the total power consumption with a power-
meter, then assumed 15% AC to DC conversion loss, 85%
regulator efficiency and 15% power consumed by peripheral
components [26], [27] to report the AP+DRAM power for
Tegra K1.

Benchmarks. We compare the performance on two sets
of models: uncompressed DNN model and the compressed
DNN model. The uncompressed DNN model is obtained
from Caffe model zoo [28] and NeuralTalk model zoo [7];
The compressed DNN model is produced as described

Table III
BENCHMARK FROM STATE-OF-THE-ART DNN MODELS

Layer Size Weight% Act% FLOP% Description

Alex-6 9216, 9% 35.1% 3% Compressed4096
AlexNet [1] forAlex-7 4096, 9% 35.3% 3% large scale image4096
classificationAlex-8 4096, 25% 37.5% 10%1000

VGG-6 25088, 4% 18.3% 1% Compressed4096 VGG-16 [3] for
VGG-7 4096, 4% 37.5% 2% large scale image4096 classification and
VGG-8 4096, 23% 41.1% 9% object detection1000

NT-We 4096, 10% 100% 10% Compressed
600 NeuralTalk [7]

NT-Wd 600, 11% 100% 11% with RNN and
8791 LSTM for

NTLSTM 1201, 10% 100% 11% automatic
2400 image captioning

in [16], [23]. The benchmark networks have 9 layers in total
obtained from AlexNet, VGGNet, and NeuralTalk. We use
the Image-Net dataset [29] and the Caffe [28] deep learning
framework as golden model to verify the correctness of the
hardware design.

VI. EXPERIMENTAL RESULTS

Figure 5 shows the layout (after place-and-route) of
an EIE processing element. The power/area breakdown is
shown in Table II. We brought the critical path delay down
to 1.15ns by introducing 4 pipeline stages to update one
activation: codebook lookup and address accumulation (in
parallel), output activation read and input activation multiply
(in parallel), shift and add, and output activation write. Ac-
tivation read and write access a local register and activation
bypassing is employed to avoid a pipeline hazard. Using
64 PEs running at 800MHz yields a performance of 102
GOP/s. Considering 10⇥ weight sparsity and 3⇥ activation
sparsity, this requires a dense DNN accelerator 3TOP/s to
have equivalent application throughput.

CPU: Core i7 5930k (6 cores) 
GPU: GTX Titan X 
mGPU: Tegra K1 

Sources of energy savings: 
- Compression allows all weights to be stored in SRAM (reduce DRAM loads) 
- Low-precision 16-bit "xed-point math (5x more e!cient than 32-bit "xed math) 
- Skip math on input activations that are zero (65% less math)

Warning: these are not end-to-end numbers: 
just fully connected layers!
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Reminder: input stationary design (dense 1D)
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Input stationary design (sparse example)
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SCNN: accelerating sparse conv layers

SCNN ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
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Figure 6: SCNN PE employing the PT-IS-CP-sparse dataflow.

connected layers are similar in nature to the convolution layers, they
do require much larger weight matrices. However, recent work has
demonstrated effective DNNs without fully connected layers [24].
Section 4.3 describes further how FC layers can be processed by
SCNN.

4.1 Tiled Architecture
A full SCNN accelerator employing the PT-IS-CP-sparse dataflow
of Section 3 consists of multiple SCNN processing elements (PEs)
connected via simple interconnections. Figure 5 shows an array of
PEs, with each PE including channels for receiving weights and
input activations, and channels delivering output activations. The
PEs are connected to their nearest neighbors to exchange halo values
during the processing of each CNN layer. The PE array is driven
by a layer sequencer that orchestrates the movement of weights
and activations and is connected to a DRAM controller that can
broadcast weights to the PEs and stream activations to/from the PEs.
SCNN can use an arbitrated bus as the global network to facilitate
the weight broadcasts, the point-to-point delivery of input activations
(IA) from DRAM, and the return of output activations (OA) back to
DRAM. The figure omits these links for simplicity.

4.2 Processing Element (PE) Architecture
Figure 6 shows the microarchitecture of an SCNN PE, includ-
ing a weight buffer, input/output activation RAMs (IARAM and
OARAM), a multiplier array, a scatter crossbar, a bank of accumu-
lator buffers, and a post-processing unit (PPU). To process the first
CNN layer, the layer sequencer streams a portion of the input image
into the IARAM of each PE and broadcasts the compressed-sparse
weights into the weight buffer of each PE. Upon completion of the
layer, the sparse-compressed output activation is distributed across
the OARAMs of the PEs. When possible, the activations are held in
the IARAMs/OARAMs and are never swapped out to DRAM. If the
output activation volume of a layer can serve as the input activation
volume for the next layer, the IARAMs and OARAMs are logically
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Figure 7: Weight compression.

swapped between the two layers’ computation sequences. Each layer
of the CNN has a set of parameters that configure the controllers in
the layer sequencer, the weight FIFO, the IARAMs/OARAMs, and
the PPU to execute the required computations.

Input weights and activations. Each PE’s state machine oper-
ates on the weight and input activations in the order defined by
the PT-IS-CP-sparse dataflow to produce a output-channel group of
Kc ⇥Wt ⇥Ht partial sums inside the accumulation buffers. First, a
vector F of compressed weights and a vector I of compressed input
activations are fetched from their respective buffers. These vectors
are distributed into the F⇥I multiplier array which computes a form
of the Cartesian product of the vectors, i.e, every input activation is
multiplied by every weight to form a partial sum. At the same time,
the indices from the sparse-compressed weights and activations are
processed to compute the output coordinates in the dense output
activation space.

Accumulation. The F⇥I products are delivered to an array of A
accumulator banks, indexed by the output coordinates. To reduce
contention among products that hash to the same accumulator bank,
A is set to be larger than F⇥I. Our results show that A = 2⇥F⇥I
sufficiently reduces accumulator bank contention. Each accumulator
bank includes adders and small set of entries for the output channels
associated with the output-channel group being processed. The ac-
cumulation buffers are double-buffered so that one set of banks can
be updated by incoming partial sums while the second set of banks
are drained out by the PPU.

Post-processing. When the output-channel group is complete, the
PPU performs the following tasks: (1) exchange partial sums with
neighbor PEs for the halo regions at the boundary of the PE’s output
activations, (2) apply the non-linear activation (e.g. ReLU), pooling,
and dropout functions, and (3) compress the output activations into
the compressed-sparse form and write them into the OARAM. Aside
from the neighbor halo exchange, these operations are confined to
the data values produced locally by the PE.

Compression. To compress the weights and activations, we use
variants of previously proposed compressed sparse matrix represen-
tations [15, 33]. Figure 7 shows an example of SCNN’s compressed-
sparse encoding for R = S = 3 and K = 2 with 6 non-zero elements.
The encoding includes a data vector consisting of the non-zero values

▪ Like EIE: assume both activations and conv weights are sparse 
▪ Weight stationary design: 

- Each PE receives: 
- A set of I input activations from an input channel: a list of I (value, (x,y)) pairs 
- A list of F non-zero weights

- Each PE computes: the cross-product 
of these values: P x I values 

- Then scatters P x I results to correct 
accumulator bu$er cell 

- Then repeat for new set of F weights 
(reuse I inputs)

▪ Then, after convolution: 
▪ ReLU sparsi"es output 
▪ Compress outputs into 

sparse representation for 
use as input to next layer

[Parashar et al. ISCA17]
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 SCNN results (on GoogLeNet)

SCNN ISCA ’17, June 24-28, 2017, Toronto, ON, Canada
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Figure 9: SCNN performance comparison.

The performance gap between SCNN versus SCNN(oracle) widens
in later layers of the network, i.e., the rightmost layers on the x-axis
of Figure 9. SCNN suffers from two forms of inefficiency that cause
this gap. First, the working set allocated to each PE tends to be
smaller in the later layers (e.g., IC_5b) than in the earlier layers
(e.g., IC_3a). As a result, assigning enough non-zero activations and
weights in the later layers to fully utilize a PE’s multiplier array
becomes difficult. In other words, SCNN can suffer from intra-PE
fragmentation when layers do not have enough useful work to fully
populate the vectorized arithmetic units.

The second source of inefficiency stems from the way the PT-IS-
CP-sparse dataflow partitions work across the array of PEs, which
could lead to load imbalance among the PEs. Load imbalance results
in under-utilization because the work corresponding to the next
output-channel group Kc+1 can only start after the PEs complete the
current output-channel group Kc. The PEs effectively perform an
inter-PE synchronization barrier at the boundaries of output-channel
groups which can cause early-finishing PEs to idle while waiting for
laggards.

Figure 10 quantitatively demonstrates the intra-PE fragmentation
in the multiplier arrays. Fragmentation is severe in the last two
inception modules of GoogLeNet, with average multiplier utilization
at less than 20%. In this layer, three out of the six convolutional sub-
layers within the inception module have a filter size of 1⇥1, resulting

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

conv1 conv2 conv3 conv4 conv5

Av
g.

 P
E 

id
le

 c
yc

le
s 

Av
g.

 m
ul

tip
lie

r u
til

. 

Multiplier util.
PE idle cycles

(a) AlexNet

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

IC_3a IC_3b IC_4a IC_4b IC_4c IC_4d IC_4e IC_5a IC_5b

Av
g.

 P
E 

id
le

 c
yc

le
s 

Av
g.

 m
ul

tip
lie

r u
til

. 

mul_util
idle_cycles

(b) GoogLeNet

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Av
g.

 P
E 

id
le

 c
yc

le
s 

Av
g.

 m
ul

tip
lie

r u
til

. 

mul_util
idle_cycles
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Figure 10: Average multiplier array utilization (left-axis) and
the average fraction of time PEs are stalled on a global barrier
(right-axis), set at the boundaries of output channel groups.

in a maximum of 8 non-zero weights within an output-channel group
with a Kc value of 8. Nonetheless, later layers generally account for
a small portion of the overall execution time as the input activation
volume (i.e., H⇥W⇥C) gradually diminishes across the layers.

The right y-axis of Figure 10 demonstrates the effect of load
imbalance across the PEs by showing the fraction of cycles spent
waiting at an inter-PE barrier. Although the inter-PE global barriers
and intra-PE fragmentation prevents SCNN from reaching similar
speedups offered by SCNN(oracle), it still provides an average
2.7⇥ network-wide performance boost over DCNN across the three
CNNs we examined.

Energy-efficiency. Figure 11 compares the energy of the three
accelerator architectures across the layers of the three networks. On
average, DCNN-opt improves energy-efficiency by 2.0⇥ over DCNN,
while SCNN improves efficiency by 2.3⇥ . SCNN’s effectiveness varies
widely across layers depending on the layer density, ranging from
0.89⇥ to 4.7⇥ improvement over DCNN and 0.76⇥ to 1.9⇥ improve-
ment over DCNN-opt. Input layers such as VGGNet_conv1_1 and
AlexNet_conv1 usually present a challenge for sparse architectures
because of their 100% input activation density. In such cases, the
overheads of SCNN’s structures such as the crossbar and distributed

ISCA ’17, June 24-28, 2017, Toronto, ON, Canada A. Parashar et al.
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Figure 11: SCNN energy-efficiency comparison.

accumulation RAMs overshadow any benefits from fewer arithmetic
operations and data movement.

These results reveal that although the straightforward DCNN-opt
architecture is unable to improve performance, it is remarkably ef-
fective at achieving good energy-efficiency on moderately sparse
network layers. Nonetheless, SCNN is on average even more energy-
efficient across our benchmark networks while providing a tremen-
dous performance advantage over both DCNN and DCNN-opt.

6.3 PE Granularity
As outlined in Section 6.2, both cross-PE global barriers and intra-
PE multiplier array fragmentation can contribute to degradation in
the performance of SCNN. We quantify the effects of both of these
factors on system performance by conducting the following sensi-
tivity study. Assuming a fixed 1,024 multipliers for the accelerator,
we sweep the total number of PEs on-chip from 64 (8⇥8 PEs, 16
multipliers per PE) down to 4 (2⇥2 PEs, 256 multipliers per PE).

Table 6: Characteristics of evaluated accelerators.

Gate
MACC

Skip
MACC

Skip Skip
Inner Spatial

Dataflow
Architecture Buffer DRAM

Access Access
DCNN – – – – Dot Product
DCNN-opt A+W – – A+W Dot Product
SCNN-SparseA A A A A Cartesian Product
SCNN-SparseW W W W W Cartesian Product
SCNN A+W A+W A+W A+W Cartesian Product

Clearly, an SCNN with 4 PEs can better sustain the effects of the
global barriers than an SCNN with 64 PEs. However, the 4 PE con-
figuration is also more likely to suffer from intra-PE fragmentation
because each PE must now process a larger working set to fully
utilize the math units. When evaluated on GoogLeNet, SCNN with
64 PEs achieves an 11% speedup over the one with 4 PEs as it
does a better job utilizing the math arrays (average 59% math uti-
lization versus 35%). We observed similar trends for AlexNet and
VGGNet, concluding that addressing intra-PE fragmentation is more
critical than inter-PE barriers for system-wide performance with the
PT-IS-CP-sparse dataflow.

6.4 Effects of Weight and Activation Sparsity
While Figure 1 shows that sparseness is abundant in both activations
and pruned weights, isolating the effect of sparsity provides insight
into different accelerator architecture trade-offs. We run the density-
sweep experiments from Section 6.1 on two architectures derived
from the SCNN design. The SCNN-SparseA architecture only takes
advantage of sparsity in activations and is similar in spirit to Cn-
vlutin [1]. The SCNN-SparseW architecture only takes advantage of
sparsity in weights and is similar in spirit to Cambricon-X [34].

Table 6 tabulates the characteristics of these new architectures
alongside our baseline SCNN, DCNN, and DCNN-opt architectures.
These five architectures together cover a broad design space of
sparse architectures, and also encompass the types of sparsity ex-
plored in prior research, as described in Table 2. However, because
of significant differences in dataflow, buffer sizing/ organization, and
implementation choices (such as the use of eDRAM), our evaluated
architectures cannot precisely represent those prior proposals.

Figure 12 demonstrates that SCNN is consistently superior to the
SCNN-SparseA and SCNN-SparseW configurations in both perfor-
mance and energy across the entire density range. The only exception
is that at very high density levels (weight/activation density greater
than 0.9/0.9), SCNN-SparseA is slightly more energy-efficient be-
cause of the removal of overheads to manage sparse weights. The
input-stationary temporal loop around the Cartesian product makes
these architectures extremely effective at filtering IARAM accesses,
resulting in the IARAM consuming less than 1% of the total energy.
The weight FIFO is accessed more frequently in SCNN, resulting in
the weight FIFO consuming around 6.7% of total energy. Therefore,
removing the weight encoding overheads in SCNN-SparseA shows a
far greater benefit than removing the activation encoding overheads
in SCNN-SparseW. However, as density is reduced, the filtering ad-
vantage of the input-stationary loop starts diminishing relative to
the weight FIFO. At a density of 0.8/0.8, SCNN-SparseW surpasses
the energy-efficiency of SCNN-SparseA, ultimately reaching a 2.5⇥

Performance (Wall clock speedup)

Energy Consumption

DCNN = dense CNN evaluation 
DCNN-opt = includes ALU gating, and compression/decompression of activations

Overall 2.2x

[Parashar et al. ISCA17]
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Summary of hardware accelerators for 
e!cient inference
▪ Specialized instructions for dense linear algebra computations 

- Reduce overhead of control (compared to CPUs/GPUs) 

▪ Reduced precision operations (cheaper computation + reduce bandwidth 
requirements) 

▪ Systolic / data#ow architectures for e!cient on-chip communication 
- Di$erent scheduling strategies: weight-stationary, input/output stationary, etc. 

▪ Huge amounts of on-chip memory to avoid o$-chip communication 

▪ Exploit sparsity in activations and weights 
- Skip computation involving zeros 
- Hardware to accelerates decompression of sparse representations like compressed 

sparse row/column


