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Hello from the course sta!

Your instructor (me) Your CA

Prof. Kayvon David Durst
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Visual computing applications 
have always demanded some of the world’s 
most advanced parallel computing systems
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Ivan Sutherland’s Sketchpad on MIT TX-2 (1962)
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The frame bu!er 16 2K shift registers (640 x 486 x 8 bits)
Shoup’s SuperPaint (PARC 1972-73)
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The frame bu!er
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)
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Xerox Alto (1973)

TI 74181 ALUBravo (WYSIWYG)
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UNC Pixel Planes (1981), computation-enhanced frame bu!er
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Jim Clark’s Geometry Engine 
(1982) 

ASIC for geometric transforms 
used in real-time graphics
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NVIDIA Titan V Volta GPU (2017)

~ 12 TFLOPs fp32
Similar to ASCI Q (top US supercomputer circa 2002)
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Screenshot: Red Dead Redemption

Real-time rendering
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Image Credit: Detectron2

Image analysis via deep learning
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Digital photography: major driver of 
compute capability of modern smartphones

High dynamic range (HDR) photography

Portrait mode 
(simulate e!ects of large aperture DSLR lens)
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Modern smartphones utilize multiple processing 
units to quickly generate high-quality images

Image Credit: Anandtech / TechInsights Inc.

Apple A13 Bionic
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Datacenter-scale applications

Google TPU pods

Image Credit: TechInsights Inc.
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Youtube Transcode, stream, analyze…
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On every vehicle: analyzing images for transportation
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Unique visual experiences

Intel “FreeD”: 38 cameras in stadium used to reconstruct 3D, 
system renders new view from quarterback’s eyes
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What is this course about? 

Accelerator hardware architecture? 

Graphics/vision/digital photography algorithms? 

Programming systems?
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What we will be learning about

Visual Computing Workloads 
Algorithms for image/video processing, 
DNN evaluation, data compression, etc.

Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [15] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [15] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

NYUDv2 [33] is an RGB-D dataset collected using the
Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [14]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [15], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,9 show state-of-the-art performance on
both tasks.

9Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation. (An earlier version of this pa-
per reported a lower mean IU, which included all categories either present
or predicted in the evaluation.)

Table 5. Results on SIFT Flow9 with class segmentation
(center) and geometric segmentation (right). Tighe [36] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [25] 76.7 - - - -
Tighe et al. [36] - - - - 90.8

Tighe et al. [37] 1 75.6 41.1 - - -
Tighe et al. [37] 2 78.6 39.2 - - -
Farabet et al. [9] 1 72.3 50.8 - - -
Farabet et al. [9] 2 78.5 29.6 - - -
Pinheiro et al. [31] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [17] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [17]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

6. Conclusion

Fully convolutional networks are a rich class of mod-
els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification
nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.

Acknowledgements This work was supported in part

If you don’t understand key 
workload characteristics, 

how can you design a “good” system?
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What we will be learning about

If you don’t understand key 
constraints of modern hardware, 

how can you design algorithms 
that are well suited to run on it 

e"ciently?

Modern Hardware 
Organization

High-throughput hardware designs 
(parallel, heterogeneous, and specialized) 

fundamental constraints like area and power
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What we will be learning about

Good programming abstractions enable 
productive development of applications, 

while also providing system implementors 
#exibility to explore highly e"cient 

implementations

Programming Model 
Design

Choice of programming abstractions, 
level of abstraction issues, 

domain-speci$c vs. general purpose, etc.

Halide
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This course is about architecting e"cient 
and scalable systems…
It is about the process of understanding the fundamental 
structure of problems in the visual computing domain, and 
then leveraging that understanding to… 

To design more e"cient and more robust algorithms 

To build the most e"cient hardware to run these algorithms 

To design programming systems to make developing new 
applications simpler, more productive, and highly performant
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Course topics
The digital camera photo processing pipeline in modern smartphones 

Basic algorithms (the workload)
Programming abstractions for writing image processing apps
Mapping these algorithms to parallel hardware

Systems for creating fast and accurate deep learning models
Designing e"cient DNN topologies, pruning, model search and AutoML 
Hardware for accelerating deep learning (why GPUs are not e"cient enough!)

System support for automating data labeling 

Recent advances in real-time (hardware accelerated) ray tracing
Ray tracing workload 
Recent API and hardware support for real-time ray tracing 
How deep learning, combined with RT hardware, is making real time ray tracing possible

Processing and Transmitting Video
E"cient DNN inference on video 
Trends in video compression (particularly relevant these days) 
How video conferencing systems work

Algorithms for parallel training (async and sync)
Raising level of abstraction when designing models
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Course Logistics
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Logistics of a all-virtual class
▪ Course web site: 

- http://cs348k.stanford.edu 
- My goal is to post lecture slides the night before class 

▪ All announcements will go out via Piazza (not via Canvas)
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Expectations of you
▪ 40% participation 

- There will be ~1 assigned paper reading per class 
- You will submit a response to each reading by noon on class days  
- We will start the class with a discussion of the reading 

▪ 20% two programming assignments ($rst 1/2 of course) 
- Implement and optimize a simple HDR photography processing pipeline 
- Understanding why “blocking” a conv layer in a DNN matters 

▪ 40% self-selected term project 
- I suggest you start thinking about projects now
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Review (or crash course): 

key principles of modern 
throughput computing hardware
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Let’s crack open a modern smartphone

Multi-core GPU 
(3D graphics, 

OpenCL data-parallel compute)

Display engine 
(compresses pixels for 

transfer to high-res screen)

Image Signal Processor 
ASIC for processing camera 

sensor pixels

Multi-core ARM CPU 
4 “big cores” + 4 “little cores”

Video encode/decode ASIC

“Hexagon” 
Programmable DSP 
data-parallel multi-media 

processing

Google Pixel 2 Phone: 
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core 
Programmable image 

processor and DNN accelerator
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Three things to know
1. What are these three hardware design strategies, and what 

problem/goals do they address? 
- Muti-core processing 
- SIMD processing 
- Hardware multi-threading 

2. What is the motivation for specialization via…  
- Multiple types of processors (e.g., CPUs, GPUs) 
- Custom hardware units (ASIC) 

3. Why is memory bandwidth a major constraint (often the most 
important constraint) when mapping applications to modern 
computer systems? 
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Multi-core processing
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Review: what does a processor do?
It runs programs! 

Processor executes instruction 
referenced by the program counter 
(PC) 
(executing the instruction will modify machine 
state: contents of registers, memory, CPU 
state, etc.) 

Move to next instruction … 

Then execute it… 

And so on…

PC

_main: 
100000f10: pushq %rbp 
100000f11: movq %rsp, %rbp 
100000f14: subq $32, %rsp 
100000f18: movl $0, -4(%rbp) 
100000f1f: movl %edi, -8(%rbp) 
100000f22: movq %rsi, -16(%rbp) 
100000f26: movl $1, -20(%rbp) 
100000f2d: movl $0, -24(%rbp) 
100000f34: cmpl $10, -24(%rbp) 
100000f38: jge 23 <_main+0x45> 
100000f3e: movl -20(%rbp), %eax 
100000f41: addl -20(%rbp), %eax 
100000f44: movl %eax, -20(%rbp) 
100000f47: movl -24(%rbp), %eax 
100000f4a: addl $1, %eax 
100000f4d: movl %eax, -24(%rbp) 
100000f50: jmp -33 <_main+0x24> 
100000f55: leaq 58(%rip), %rdi 
100000f5c: movl -20(%rbp), %esi 
100000f5f: movb $0, %al 
100000f61: callq 14 
100000f66: xorl %esi, %esi 
100000f68: movl %eax, -28(%rbp) 
100000f6b: movl %esi, %eax 
100000f6d: addq $32, %rsp 
100000f71: popq %rbp 
100000f72: retq
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Executing an instruction stream

x[i]

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 
... 
st   addr[r2], r0

result[i]
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Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

PC

My very simple processor: executes one instruction per clock

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 
... 
st   addr[r2], r0

Executing an instruction stream

result[i]

x[i]
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Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

PC

My very simple processor: executes one instruction per clock

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 
... 
st   addr[r2], r0

result[i]

Executing an instruction stream

x[i]
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Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

PC

My very simple processor: executes one instruction per clock

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 
... 
st   addr[r2], r0

result[i]

Executing an instruction stream

x[i]
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Quick aside: 
Instruction-level parallelism and 

superscalar execution
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Instruction level parallelism (ILP) example
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z 

mul r0, r0, r0 
mul r1, r1, r1 
mul r2, r2, r2 
add r0, r0, r1 
add r3, r0, r2 

// now r3 stores value of program variable ‘a’

Consider the following program:

This program has $ve instructions, so it will take $ve clocks to execute, correct? 
Can we do better?
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ILP example
a = x*x + y*y + z*z

x

+

a

+

ILP = 3

ILP = 1

ILP = 1

x

*

y y

*

z z

*
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Superscalar execution
a = x*x + y*y + z*z

// assume r0=x, r1=y, r2=z 

mul r0, r0, r0 
mul r1, r1, r1 
mul r2, r2, r2 
add r0, r0, r1 
add r3, r0, r2 

// r3 stores value of variable ‘a’

Superscalar execution: processor automatically $nds independent instructions in an 
instruction sequence and executes them in parallel on multiple execution units! 

1. 
2.  
3. 
4.  
5.

In this example: instructions 1, 2, and 3 can be executed in parallel 
(on a superscalar processor that determines that the lack of dependencies exists) 
But instruction 4 must come after instructions 1 and 2 
And instruction 5 must come after instruction 4
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Superscalar execution

void sinx(int N, int terms, float x) 
{ 
    float value = x; 
    float numer = x * x * x; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x * x; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      return value; 
}

Program: computes sin of input x via Taylor expansion

Execution 
Context

My single core, superscalar processor: 
executes up to two instructions per clock 

from a single instruction stream.

Fetch/ 
Decode

Exec 
1

Fetch/ 
Decode

Exec 
2

Independent operations in 
instruction stream 

(They are detected by the processor 
at run-time and may be executed in 
parallel on execution units 1 and 2)
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Now consider a program that computes 
the sine of many numbers…
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Example program

void sinx(int N, int terms, float* x, float* result) 
{ 
   for (int i=0; i<N; i++) 
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

Compute sin(x) using Taylor expansion:   sin(x) = x - x3/3! + x5/5! - x7/7! + ... 
for each element of an array of N #oating-point numbers
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Multi-core: process multiple instruction streams in parallel 

Sixteen cores, sixteen simultaneous instruction streams
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Core 1

Multi-core examples

Intel “Skylake” Core i7 quad-core CPU 
(2015)

NVIDIA GP104 (GTX 1080) GPU 
20 replicated (“SM”) cores 

(2016)

Core 4

Shared L3 cache

Core 2

Core 3
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More multi-core examples

Intel Xeon Phi “Knights Landing “ 76-core CPU 
(2015)

Apple A11 Bionic CPU 
Two “big” cores 

Four “small cores” 
(2017)

A9 image credit: Chipworks  (obtained via Anandtech) 
http://www.anandtech.com/show/9686/the-apple-iphone-6s-and-iphone-6s-plus-review/3

Core 1 Core 2
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SIMD processing
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Add ALUs to increase compute capability

Idea #2: 
Amortize cost/complexity of managing an 
instruction stream across many ALUs

SIMD processing 
Single instruction, multiple data 

Same instruction broadcast to all ALUs 
Executed in parallel on all ALUs

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Execution Context



 Stanford CS348K, Spring 2021

Scalar program

ld   r0, addr[r1] 
mul  r1, r0, r0 
mul  r1, r1, r0 
... 
... 
... 
... 
... 
... 
st   addr[r2], r0

void sinx(int N, int terms, float* x, float* result) 
{ 
   for (int i=0; i<N; i++) 
   { 

    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom; 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

Original compiled program: 

Processes one array element using scalar 
instructions on scalar registers (e.g., 32-bit #oats)
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Vector program (using AVX intrinsics)
#include <immintrin.h> 
void sinx(int N, int terms, float* x, float* sinx) 
{ 
   float three_fact = 6;  // 3!  
   for (int i=0; i<N; i+=8) 
   { 
       __m256 origx = _mm256_load_ps(&x[i]); 

    __m256 value = origx; 
    __m256 numer = _mm256_mul_ps(origx, _mm256_mul_ps(origx, origx)); 
    __m256 denom = _mm256_broadcast_ss(&three_fact); 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       // value += sign * numer / denom 
       __m256 tmp = 
           _mm256_div_ps(_mm256_mul_ps(_mm256_broadcast_ss(sign),numer),denom); 
       value = _mm256_add_ps(value, tmp); 

       numer = _mm256_mul_ps(numer, _mm256_mul_ps(origx, origx)); 
       denom = _mm256_mul_ps(denom, _mm256_broadcast_ss((2*j+2) * (2*j+3))); 
       sign *= -1; 

      } 
      _mm256_store_ps(&sinx[i], value); 
   } 
}

vloadps  xmm0, addr[r1] 
vmulps   xmm1, xmm0, xmm0 
vmulps   xmm1, xmm1, xmm0 
... 
... 
... 
... 
... 
... 
vstoreps  addr[xmm2], xmm0

Compiled program: 

Processes eight array elements 
simultaneously using vector 
instructions on 256-bit vector registers 
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16 SIMD cores: 128 elements in parallel

16 cores, 128 ALUs, 16 simultaneous instruction streams

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016
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Data-parallel expression of program
void sinx(int N, int terms, float* x, float* result) 
{ 
   // declare independent loop iterations 
   forall (int i from 0 to N-1) 
   { 
    float value = x[i]; 
    float numer = x[i] * x[i] * x[i]; 
    int denom = 6;  // 3! 
    int sign = -1; 

    for (int j=1; j<=terms; j++) 
    {  
       value += sign * numer / denom 
       numer *= x[i] * x[i]; 
       denom *= (2*j+2) * (2*j+3); 
       sign *= -1; 

      } 

      result[i] = value; 
   } 
}

Semantics: loop iterations are 
“independent” 

Q. Why did I say independent and not 
parallel? 

Q. How does this abstraction facilitate 
automatic generation of both multi-
core parallel code, and vector 
instructions to make use of SIMD 
processing capabilities within a core?

(in Kayvon’s $ctitious data-parallel language)
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What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for 
each element in input array ‘A’, producing 
output into the array ‘result’)
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What about conditional execution?

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

T T T F FF F F if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for 
each element in input array ‘A’, producing 
output into the array ‘result’)
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Mask (discard) output of ALU 

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional 
code>

T T T F FF F F

Not all ALUs do useful work!

Worst case: 1/8 peak performance

float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for 
each element in input array ‘A’, producing 
output into the array ‘result’)
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After branch: continue at full performance 

ALU 1 ALU 2 . . . ALU 8. . . 
Time (clocks) 2 . . . 1 . . . 8

if (x > 0) {

} else {

}

<unconditional code>

<resume unconditional code>

T T T F FF F F
float tmp = exp(x,5.f); 

tmp *= kMyConst1; 

x = tmp + kMyConst2;  

float tmp = kMyConst1;  

x = 2.f * tmp;

float x = A[i];

result[i] = x;

(assume logic below is to be executed for 
each element in input array ‘A’, producing 
output into the array ‘result’)
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Example: eight-core Intel Xeon E5-1660 v4

8 cores 
8 SIMD ALUs per core 
(AVX2 instructions)

490 GFLOPs (@3.2 GHz) 
(140 Watts)

* Showing only AVX math units, and fetch/decode unit for AVX (additional capability for integer math)
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Example: NVIDIA GTX 1080 GPU

20 cores (“SMs”) 
128 SIMD ALUs per core (@1.6 GHz) = 8.1 TFLOPs  (180 Watts)
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Part 2: 
accessing memory

Memory
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Hardware multi-threading
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Terminology
▪ Memory latency 

- The amount of time for a memory request (e.g., load, store) from a 
processor to be serviced by the memory system 

- Example: 100 cycles, 100 nsec 

▪ Memory bandwidth 
- The rate at which the memory system can provide data to a processor 
- Example: 20 GB/s
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Stalls
▪ A processor “stalls”  when it cannot run the next instruction in 

an instruction stream because of a dependency on a previous 
instruction. 

▪ Accessing memory is a major source of stalls 
ld r0 mem[r2] 
ld r1 mem[r3] 
add r0, r0, r1 

▪ Memory access times ~ 100’s of cycles 
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data at mem[r2] and 
mem[r3] have been loaded from memory 
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38 GB/sec
L3 cache 

(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N

Review: why do modern processors have caches?
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Caches reduce length of stalls (reduce latency)
Processors run e"ciently when data is resident in caches 

Caches reduce memory access latency *

38 GB/sec
L3 cache 

(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N

* Caches also provide high bandwidth data transfer to CPU
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Prefetching reduces stalls (hides latency)
▪ All modern CPUs have logic for prefetching data into caches 

- Dynamically analyze program’s access patterns, predict what it will access soon 

▪ Reduces stalls since data is resident in cache when accessed 

predict value of r2, initiate load 
predict value of r3, initiate load 
... 
...  
... 
... 
... 
... 
ld r0 mem[r2] 
ld r1 mem[r3] 
add r0, r0, r1

data arrives in cache

data arrives in cache

Note: Prefetching can also reduce 
performance if the guess is wrong 
(hogs bandwidth, pollutes caches) 

(more detail later in course)

These loads are cache hits



 Stanford CS348K, Spring 2021

Multi-threading reduces stalls
▪ Idea: interleave processing of multiple threads on the same 

core to hide stalls 

▪ Like prefetching, multi-threading is a latency hiding, not a 
latency reducing technique
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Hiding stalls with multi-threading
Time

Thread 1 
Elements 0 … 7

 

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx
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Hiding stalls with multi-threading
Time

 

Thread 2 
Elements 8 … 15

 

Thread 3 
Elements 16 … 23

 

Thread 4 
Elements 24 … 31

 

1 2 3 4

Thread 1 
Elements 0 … 7

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)
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Hiding stalls with multi-threading
Time

    

1 2 3 4

Stall

Runnable

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Hiding stalls with multi-threading
Time

    

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable
Done!

Fetch/ 
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Throughput computing trade-o!
Time

    

Stall

Runnable

Done!

Key idea of throughput-oriented systems: 
Potentially increase time to complete work by any 
one any one thread, in order to increase overall 
system throughput when running multiple threads.

During this time, this thread is runnable, but it is not being executed 
by the processor. (The core is running some other thread.)

Thread 2 
Elements 8 … 15

Thread 3 
Elements 16 … 23

Thread 4 
Elements 24 … 31

Thread 1 
Elements 0 … 7
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Kayvon’s $ctitious multi-core chip
16 cores 

8 SIMD ALUs per core 
(128 total) 

4 threads per core 

16 simultaneous instruction 
streams 

64 total concurrent instruction 
streams 

512 independent pieces of work 
are needed to run chip with 
maximal latency hiding ability

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016

 CMU 15-418/618, Spring 2016  CMU 15-418/618, Spring 2016
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Thought experiment
▪ You write a C application that spawns two pthreads 
▪ The application runs on the processor shown below 

- Two cores, two-execution contexts per core, up to instructions per clock, one 
instruction is an 8-wide SIMD instruction.

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

Execution 
Context

Execution 
Context

Fetch/ 
Decode

Fetch/ 
Decode

SIMD Exec 2

Exec 1

▪ Question: “who” is responsible for mapping your pthreads to the 
processor’s thread execution contexts? 
Answer: the operating system

▪ Question: If you were the OS, how would to assign the two threads to 
the four available execution contexts? 

▪ Another question: How would you 
assign threads to execution contexts 
if your C program spawned $ve 
pthreads?
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Another thought experiment
Task: element-wise multiplication of two vectors A and B 
Assume vectors contain millions of elements 

- Load input A[i] 
- Load input B[i] 
- Compute A[i] × B[i] 
- Store result into C[i]

=

A

B

C

×

<1% GPU e"ciency… but 4.2x faster than eight-core CPU! 
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus will exhibit ~3% 
e"ciency on this computation)

Three memory operations (12 bytes) for every MUL 
NVIDIA GTX 1080 GPU can do 2560 MULs per clock (@ 1.6 GHz) 
Need ~50 TB/sec of bandwidth to keep functional units busy (only have 320 GB/sec)
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Bandwidth limited!

Bandwidth limited!
If processors request data at too high a rate, the memory system cannot keep up.

No amount of latency hiding helps this.

Bandwidth is a critical resource 

Overcoming bandwidth limits are a common challenge for 
application developers on throughput-optimized systems.
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Which program performs better?
void add(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] + B[i];     
} 

void mul(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] * B[i];     
} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 
add(n, A, B, tmp1); 
mul(n, tmp1, C, tmp2); 
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { 
    for (int i=0; i<n; i++) 
       E[i] = D[i] + (A[i] + B[i]) * C[i];     
} 

// compute E = D + (A + B) * C 
fused(n, A, B, C, D, E);

Program 1

Program 2

(Note: an answer probably needs 
to state its assumptions.)

Which code structuring style 
would you rather write? 
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How it all $ts together: 
superscalar, 

SIMD, 
multi-threading, 

and multi-core
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Running code on a simple processor

void sinx(int N, int terms, float* x, float* result) 

{ 

   for (int i=0; i<N; i++) 

   { 

    float value = x[i]; 

    float numer = x[i] * x[i] * x[i]; 

    int denom = 6;  // 3! 

    int sign = -1; 

    for (int j=1; j<=terms; j++) 

    {  

       value += sign * numer / denom; 

       numer *= x[i] * x[i]; 

       denom *= (2*j+2) * (2*j+3); 

       sign *= -1; 

      } 

      result[i] = value; 

   } 

}

C program: 
compute sin(x) using Taylor expansion

ld   r0, addr[r1] 

mul  r1, r0, r0 

add  r2, r0, r0 

mul  r3, r1, r2 

... 

... 

... 

... 

... 

st   addr[r2], r0

Compiled instruction stream 
(scalar instructions)
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Running code on a simple processor

Fetch/ 
Decode

Execution 
Context 

(HW thread)

ALU 
(Execution unit)

Data 
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

PC ld   r0, addr[r1] 

mul  r1, r0, r0 

add  r2, r0, r0 

mul  r3, r1, r2 

... 

... 

... 

... 

... 

st   addr[r2], r0

Instruction stream

Single core processor, single-threaded core. 
Can run one scalar instruction per clock
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Superscalar core

Fetch/ 
Decode

Execution 
Context 

(HW thread)

ALU

Data 
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

PC

Instruction stream

ld   r0, addr[r1] 

mul  r1, r0, r0 

add  r2, r0, r0 

mul  r3, r1, r2 

... 

... 

... 

... 

... 

st   addr[r2], r0

Fetch/ 
Decode

ALU

Single core processor, single-threaded core. 
Two-way superscalar core: 

can run up to two independent scalar instructions 
per clock from one instruction stream (one hardware thread)

instruction selection
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SIMD execution capability

Execution 
Context 

(HW thread)

Data 
Cache

Memory

V0
V1
V2
V3

V4
V5
V6
V7

PC

PC

Instruction stream 
(now with vector instructions)

vector_ld   v0, vector_addr[r1] 

vector_mul  v1, v0, v0 

vector_add  v2, v0, v0 

vector_mul  v3, v1, v2 

... 

... 

... 

... 

... 

vector_st   addr[r2], v0

Single core processor, single-threaded core. 
can run one 8-wide SIMD vector instruction from 

one instruction stream

Fetch/ 
Decode

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)
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Heterogeneous superscalar (scalar + SIMD)

Execution 
Context 

(HW thread)

Data 
Cache

Memory

R0
R1
R2
R3

V0
V1
V2
V3

PC

PC

Instruction stream

Single core processor, single-threaded core. 
Two-way superscalar core: 

can run up to two independent instructions 
per clock from one instruction stream, 

provided one is scalar and the other is vector

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

vector_ld   v0, vector_addr[r1] 

vector_mul  v1, v0, v0 

add         r2, r1, r0                 

vector_add  v2, v0, v0 

vector_mul  v3, v1, v2... 

... 

... 

... 

...  

vector_st   addr[r2], v0

(scalar ALU)
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Multi-threaded core

Fetch/ 
Decode

Execution 
Context 0 
(HW thread)

ALU 
(Execution unit)

Data 
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

PC

Instruction stream 0

Single core processor, multi-threaded core (2 threads). 
Can run one scalar instruction per clock from 

one of the instruction streams (hardware threads)

Execution 
Context 1 
(HW thread)

R0
R1
R2
R3

R4
R5
R6
R7

PC

Instruction stream 1

ld   r0, addr[r1] 
sub  r1, r0, r0 
add  r2, r1, r0 
mul  r5, r1, r0 
... 
... 
... 
... 
... 
st   addr[r2], r0

PC

ld   r0, addr[r1] 
mul  r1, r0, r0 
add  r2, r0, r0 
mul  r3, r1, r2 
... 
... 
... 
... 
... 
st   addr[r2], r0

Note: threads can be running completely 
di!erent instruction streams (and be at 

di!erent points in these streams) 

Execution of hardware threads is 
interleaved in time.
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Multi-threaded, superscalar core

Execution 
Context 0 
(HW thread)

Data 
Cache

Memory

R0
R1
R2
R3

V0
V1
V2
V3

PC

PC

Instruction stream 0

Single core processor, multi-threaded core (2 threads). 
Two-way superscalar core:  in this example I de$ned my core 

as being capable of running up to two independent instructions 
per clock from a single instruction stream*, provided one is scalar 

and the other is vector

Execution 
Context 1 
(HW thread)

R0
R1
R2
R3

V0
V1
V2
V3

PC

Instruction stream 1

vector_ld   v0, addr[r1] 
sub         r1, r0, r0 
vector_add  v2, v0, v0 
mul         r5, r1, r0 
... 
... 
... 
... 
... 
rect        addr[r2], v0

PC

Note: threads can be running completely 
di!erent instruction streams (and be at 

di!erent points in these streams) 

Execution of hardware threads is 
interleaved in time.

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

(scalar ALU)

vector_ld   v0, addr[r1] 
vector_mul  v1, v0, v0 
vector_add  v2, v1, v1 
mul         r2, r1, r1 
... 
... 
... 
... 
... 
vector_st   addr[r2], v0

* This detail was an arbitrary decision on this slide: 
a di!erent implementation of “instruction selection” might run two 
instructions  where one is drawn from each thread, see next slide.
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Multi-threaded, superscalar core

Execution 
Context 0

Data 
Cache

Memory

PC

Instruction stream 0

Single core processor, multi-threaded core (4 threads). 
Two-way superscalar core:  

can run up to two independent instructions 
per clock from any of the threads, 

provided one is scalar and the other is vector

Instruction stream 1
vector_ld   v0, addr[r1] 
sub         r1, r0, r0 
vector_add  v2, v0, v0 
mul         r5, r1, r0 
... 
... 
... 
... 
... 
rect        addr[r2], v0

PC

Execution of hardware threads may or may 
not be interleaved in time 

(instructions from di!erent threads may be 
running simultaneously)

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

(scalar ALU)

vector_ld   v0, addr[r1] 
vector_mul  v1, v0, v0 
vector_add  v2, v1, v1 
mul         r2, r1, r1 
... 
... 
... 
... 
... 
vector_st   addr[r2], v0

(that combines interleaved and simultaneous execution 
of multiple hardware threads)

Instruction stream 3

PC

Instruction stream 2
vector_ld   v0, addr[r1] 
vector_mul  v2, v0, v0 
mul         r3, r0, r0 
sub         r1, r0, r3 ... 
... 
... 
... 
... 
rect        addr[r2], v0

PC
Execution 
Context 1

Execution 
Context 2

Execution 
Context 3

vector_ld   v0, addr[r1] 
sub         r1, r0, r0 
vector_add  v1, v0, v0 
vector_add  v2, v0, v1 
mul         r2, r1, r1 
... 
... 
... 
... 
rect        addr[r2], v0
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Multi-core, with multi-threaded, superscalar cores
Memory

Dual-core processor, multi-threaded cores (4 threads). 
Two-way superscalar cores:  each core can run up to two independent instructions 

per clock from any of its threads, provided one is scalar and the other is vector

Shared Data Cache

Core 0 Core 1

Instruction stream 0 Instruction stream 1 Instruction stream 2 Instruction stream 3 Instruction stream 4 Instruction stream 5 Instruction stream 6 Instruction stream 7
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Intel Skylake/Kaby Lake core

Two-way multi-threaded cores (2 threads). 
Each core can run up to four independent scalar instructions 

and up to three 8-wide vector instructions 
(up to 2 vector mul or 3 vector add)  

Core 0

Execution 
Context 0

L1 Data 
Cache

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
MUL/ADD

Fetch/ 
Decode

Fetch/ 
Decode

instruction selection

ALU

scalar ALU 
FP ADD/MUL

Execution 
Context 1

ALU

scalar ALU 
FP ADD/MUL

ALU

(scalar ALU)

ALU

(scalar ALU)

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
MUL/ADD

ALU ALU ALU ALU
ALU ALU ALU ALU

8-wide vector ALU 
ADD

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

Fetch/ 
Decode

L2 Data 
Cache

Not shown on this diagram: units for LD/ST operations 
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GPU “SIMT”  (single instruction multiple thread)

Many modern GPUs execute hardware threads 
that run instruction streams with only scalar instructions. 

GPU cores detect when di!erent hardware threads are 
executing the same instruction, and implement simultaneous 

execution of up to SIMD-width threads using SIMD ALUs. 

Here ALU 6 would be “masked o!” since thread 6 is not executing 
the same instruction as the other hardware threads. 

Instruction stream 0 Instruction stream 1 Instruction stream 2 Instruction stream 3

Instruction stream 4 Instruction stream 5 Instruction stream 6 Instruction stream 7

Execution 
Context 1

Data 
Cache

Memory

ALU ALU ALU ALU
ALU ALU ALU ALU

(8-wide vector ALU)

Fetch/Decode

instruction selection

Execution 
Context 0

Execution 
Context 3

Execution 
Context 2

Execution 
Context 5

Execution 
Context 4

Execution 
Context 7

Execution 
Context 6

divergent execution
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NVIDIA V100 SM “sub-core” Warp Selector

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0

= SIMD fp32 functional unit, 
     control shared across 16 units 
     (16 x MUL-ADD per clock *)

= SIMD int functional unit, 
     control shared across 16 units 
     (16 x MUL/ADD per clock *)

= SIMD fp64 functional unit, 
     control shared across 8 units 
     (8 x MUL/ADD per clock **)

= Load/store unit

= Tensor core unit

* one 32-wide SIMD operation every two clocks

** one 32-wide SIMD operation every four clocks

Fetch/ 
Decode
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Warp Selector

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0

Fetch/ 
Decode

NVIDIA V100 SM “sub-core”

Scalar registers for one CUDA thread: R0, R1, etc… 

Scalar registers for another CUDA thread: R0, R1, etc… 
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Warp Selector

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0

Fetch/ 
Decode

NVIDIA V100 SM “sub-core”

Scalar registers for 32 threads in the same “warp” 

A group of 32 threads in thread block is called a warp. 
- In a thread block, threads 0-31 fall into the same 

warp (so do threads 32-63, etc.) 
- Therefore, a thread block with 256 CUDA threads is 

mapped to 8 warps. 
- Each sub-core in the V100 is capable of scheduling 

and interleaving execution of up to 16 warps



 Stanford CS348K, Spring 2021

Warp Selector

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0

Fetch/ 
Decode

NVIDIA V100 SM “sub-core”
Scalar registers for 32 threads in the same “warp” 

Threads in a warp are executed in a SIMD manner 
if they share the same instruction  

- If the 32 CUDA threads do not share the same 
instruction, performance can su!er due to 
divergent execution. 

- This mapping is similar to how ISPC runs program 
instances in a gang * 

A warp is not part of CUDA, but is an important CUDA 
implementation detail on modern NVIDIA GPUs

* But GPU hardware is dynamically checking whether 32 independent CUDA threads share an instruction, and if this is true, it 
executes all 32 threads in a SIMD manner.  The CUDA program is not compiled to SIMD instructions like ISPC gangs.  
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Warp Selector

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0

Fetch/ 
Decode

Instruction execution

00  fp32  mul r0 r1 r2 
01  int32 add r3 r4 r5 
02  fp32  mul r6 r7 r8 
...

Instruction stream CUDA threads in a warp… 
(note in this example all instructions are independent)

Fetch fp32 fp32

Fetch int32 int32

Fetch fp32 fp32

00

01

02

Time (clocks)

Remember, entire warp of CUDA threads is running this instruction stream. 
So each instruction is run by all 32 CUDA threads in the warp. 
Since there are 16 ALUs, running the instruction for the entire warp takes 
two clocks.
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NVIDIA V100 GPU SM

“Shared” memory + L1 cache storage (128 KB)

This is one NVIDIA V100 streaming multi-processor (SM) unit

= SIMD fp32 functional unit, 
     control shared across 16 units 
     (16 x MUL-ADD per clock *)

= SIMD int functional unit, 
     control shared across 16 units 
     (16 x MUL/ADD per clock *)

= SIMD fp64 functional unit, 
     control shared across 8 units 
     (8 x MUL/ADD per clock **)

= Load/store unit

= Tensor core unit

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode

Warp Selector
Fetch/ 

Decode

64 KB registers 
per sub-core 

256 KB registers 
in total per SM 

Registers divided among 
(up to) 64 “warps” per SM

* one 32-wide SIMD operation every 2 clocks ** one 32-wide SIMD operation every 4 clocks

0R0 31
R1

1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 4

Warp 60

Warp 0
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 5

Warp 61

Warp 1
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 6

Warp 62

Warp 2
0R0 31

R1
1

R2

2

…

30

R0
R1
R2
…

…

R0
R1
R2
…

…

Warp 7

Warp 63

Warp 3



 Stanford CS348K, Spring 2021

L2 Cache (6 MB)

GPU memory (HBM) 
(16 GB)

900 GB/sec 
(4096 bit interface)

NVIDIA V100 GPU (80 SMs)
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Hardware specialization
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Limits on chip power consumption
▪ General mobile processing rule: the longer a task runs the less power it can use 

- Processor’s power consumption is limited by heat generated (e"ciency is 
required for more than just maximizing battery life)

Po
we

r

Time

Electrical limit:  max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp 
(chip can run at high power for short period of time until chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold 
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power 
consumption to sustain long battery life for given task

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote 

iPhone 6 battery: 7 watt-hours 
9.7in iPad Pro battery: 28 watt-hours 
15in Macbook Pro: 99 watt-hours
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Mobile: bene$ts of increasing e"ciency
▪ Run faster for a $xed period of time 

- Run at higher clock, use more cores (reduce latency of critical task) 
- Do more at once 

▪ Run at a $xed level of performance for longer 
- e.g., video playback, health apps 
- Achieve “always-on” functionality that was previously impossible

Amazon Echo / Google Home 
Always listening

iPhone: 
Siri activated by button press or holding 
phone up to ear

Google Glass: ~40 min 
recording per charge 
(nowhere near “always on”)
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Modern computing: e"ciency often matters 
more than in the past, not less

Steve Jobs’ “Thoughts on Flash”, 2010
http://www.apple.com/hotnews/thoughts-on-#ash/
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E"ciency bene$ts of compute specialization
▪ Rules of thumb: compared to high-quality C code on CPU... 

▪ Throughput-maximized processor architectures: e.g., GPU cores 
- Approximately 10x improvement in perf / watt 
- Assuming code maps well to wide data-parallel execution and is compute bound 

▪ Fixed-function ASIC (“application-speci$c integrated circuit”) 
- Can approach 100-1000x or greater improvement in perf/watt 
- Assuming code is compute bound and 

and is not #oating-point math

[Source: Chung et al. 2010 , Dally 08] [Figure credit Eric Chung]
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Hardware specialization increases e"ciency

[Chung et al. MICRO 2010]
lg2(N)  (data set size)

FPGA

GPUs

FPGA

GPUs

lg2(N)  (data set size)

ASIC delivers same performance 
as one CPU core with ~ 1/1000th 
the chip area. 
  
GPU cores: ~ 5-7 times more area 
e"cient than CPU cores. 

ASIC delivers same performance 
as one CPU core with only ~ 
1/100th the power.
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Modern systems use specialized HW for…
▪ Image/video encode/decode  (e.g., H.264, JPG) 
▪ Audio recording/playback  
▪ Voice “wake up” (e.g., Ok Google) 
▪ Camera “RAW” processing: processing data acquired by image 

sensor into images that are pleasing to humans 
▪ Many 3D graphics tasks (rasterization, texture mapping, 

occlusion using the Z-bu!er) 
▪ Deep network evaluation (Google’s Tensor Processing Unit, 

Apple Neural engine, etc.)
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Choosing the right tool for the job

Energy-optimized CPU
Throughput-oriented 

processor (GPU)

~10X more e"cient

Credit Pat Hanrahan for this taxonomy

ASIC

~100-1000X 
more e"cient

Video encode/decode, 
Audio playback, simple camera 

RAW, neural computations

Programmable DSP

7
Qualcomm Technologies, Inc. All Rights Reserved

Instruction Unit

VLIW: Area & power efficient multi-issue

Data Unit 
(Load/ 
Store/ 
ALU)

Data Unit 
(Load/ 
Store/ 
ALU)

Execution 
Unit 

(64-bit 
Vector)

Execution 
Unit 

(64-bit 
Vector)

Data Cache

L2 
Cache 
/ TCM

Instruction 
Cache

• Dual 64-bit 
load/store 
units

• Also 32-bit 
ALU

Variable sized 
instruction packets 
(1 to 4 instructions 
per Packet)

• Dual 64-bit execution units
• Standard 8/16/32/64bit data 

types
• SIMD vectorized MPY / ALU 

/ SHIFT, Permute, BitOps
• Up to 8 16b MAC/cycle
• 2 SP FMA/cycle

Register File
Register File

Register File/Thread

• Unified 32x32bit 
General Register 
File is best for 
compiler. 

• No separate Address 
or Accum Regs

• Per-Thread

Device
DDR

Memory

FPGA/Future 
recon$gurable HW

~100X??? 
(jury still out)

Easiest to program Di"cult to program 
(making it easier is 

active area of research)

Not programmable + 
costs 10-100’s millions 
of dollars to design / 

verify / create

Google’s Pixel 
Visual Core
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Data movement has high energy cost
▪ Rule of thumb in mobile system design: always seek to reduce amount of 

data transferred from memory 
- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).  

Now, we wish to reduce communication to reduce energy consumption 

▪ “Ballpark” numbers 
- Integer op: ~ 1 pJ * 
- Floating point op: ~20 pJ * 
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ 
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ 

▪ Implications 
- Reading 10 GB/sec from memory: ~1.6 watts 
- Entire power budget for mobile GPU: ~1 watt  

(remember phone is also running CPU, display, radios, etc.) 
- iPhone 6 battery: ~7 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery) 
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values, 
rather than storing and reloading 
them, is a better answer when 
optimizing code for energy e"ciency!
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Welcome to CS348K!
▪ Make sure you are signed up on Piazza so you get 

announcements 

▪ See website for tonight’s reading


