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Note
▪ Most of this class involved in-class discussion of the Ludwig 

and Overton papers 

▪ I am posting these slides as some were used during parts of 
the discussion
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Services provided by ML “frameworks”
▪ Functionality: 

- Implementations of wide range of useful operators 
- Conv, dilated conv, relu, softmax, pooling, separable conv, etc. 
- Implementations of various optimizers:  

- Basic SGD, with momentum, Adagrad, etc. 
- Ability to compose operators into large graphs to create models 
- Carry out back-propagation 

▪ Performance: 
- High performance implementation of operators (layer types)  
- Scheduling onto multiple GPUs, parallel CPUs (and sometimes multiple 

machines) 
- Automatic sparsi!cation and pruning 

▪ Meta-optimization: 
- Hyper-parameter search 
- More recently: neural architecture search
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TensorFlow/MX.Net 
data-"ow graphs

▪ Key abstraction: a program is a 
DAG of (large granularity) 
operations that consume and 
product N-D tensors
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Modular network designs

Stem

Input (299x299x3) 299x299x3

4 x Inception-A

Output: 35x35x384

Output: 35x35x384

Reduction-A Output: 17x17x1024

7 x Inception-B

3 x Inception-C

Reduction-B

Avarage Pooling

Dropout (keep 0.8)

Output: 17x17x1024

Output: 8x8x1536

Output: 8x8x1536

Output: 1536

Softmax

Output: 1536

Output: 1000

Figure 9. The overall schema of the Inception-v4 network. For the
detailed modules, please refer to Figures 3, 4, 5, 6, 7 and 8 for the
detailed structure of the various components.

Figure 10. The schema for 35 ⇥ 35 grid (Inception-ResNet-A)
module of Inception-ResNet-v1 network.

Figure 11. The schema for 17 ⇥ 17 grid (Inception-ResNet-B)
module of Inception-ResNet-v1 network.

Figure 12. “Reduction-B” 17⇥17 to 8⇥8 grid-reduction module.
This module used by the smaller Inception-ResNet-v1 network in
Figure 15.
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Figure 4. The schema for 35 ⇥ 35 grid modules of the pure
Inception-v4 network. This is the Inception-A block of Figure 9.

Figure 5. The schema for 17 ⇥ 17 grid modules of the pure
Inception-v4 network. This is the Inception-B block of Figure 9.

Figure 6. The schema for 8⇥8 grid modules of the pure Inception-
v4 network. This is the Inception-C block of Figure 9.

Figure 7. The schema for 35 ⇥ 35 to 17 ⇥ 17 reduction module.
Different variants of this blocks (with various number of filters)
are used in Figure 9, and 15 in each of the new Inception(-v4, -
ResNet-v1, -ResNet-v2) variants presented in this paper. The k, l,
m, n numbers represent filter bank sizes which can be looked up
in Table 1.

Figure 8. The schema for 17 ⇥ 17 to 8 ⇥ 8 grid-reduction mod-
ule. This is the reduction module used by the pure Inception-v4
network in Figure 9.

Figure 4. The schema for 35 ⇥ 35 grid modules of the pure
Inception-v4 network. This is the Inception-A block of Figure 9.
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Figure 5. The schema for 17 ⇥ 17 grid modules of the pure
Inception-v4 network. This is the Inception-B block of Figure 9.

Figure 6. The schema for 8⇥8 grid modules of the pure Inception-
v4 network. This is the Inception-C block of Figure 9.

Figure 7. The schema for 35 ⇥ 35 to 17 ⇥ 17 reduction module.
Different variants of this blocks (with various number of filters)
are used in Figure 9, and 15 in each of the new Inception(-v4, -
ResNet-v1, -ResNet-v2) variants presented in this paper. The k, l,
m, n numbers represent filter bank sizes which can be looked up
in Table 1.

Figure 8. The schema for 17 ⇥ 17 to 8 ⇥ 8 grid-reduction mod-
ule. This is the reduction module used by the pure Inception-v4
network in Figure 9.
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A block

B block
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Inception stem

tation to reduce the number of such tensors. Historically, we
have been relatively conservative about changing the archi-
tectural choices and restricted our experiments to varying
isolated network components while keeping the rest of the
network stable. Not simplifying earlier choices resulted in
networks that looked more complicated that they needed to
be. In our newer experiments, for Inception-v4 we decided
to shed this unnecessary baggage and made uniform choices
for the Inception blocks for each grid size. Plase refer to
Figure 9 for the large scale structure of the Inception-v4 net-
work and Figures 3, 4, 5, 6, 7 and 8 for the detailed struc-
ture of its components. All the convolutions not marked
with “V” in the figures are same-padded meaning that their
output grid matches the size of their input. Convolutions
marked with “V” are valid padded, meaning that input patch
of each unit is fully contained in the previous layer and the
grid size of the output activation map is reduced accord-
ingly.

3.2. Residual Inception Blocks
For the residual versions of the Inception networks, we

use cheaper Inception blocks than the original Inception.
Each Inception block is followed by filter-expansion layer
(1 ⇥ 1 convolution without activation) which is used for
scaling up the dimensionality of the filter bank before the
addition to match the depth of the input. This is needed to
compensate for the dimensionality reduction induced by the
Inception block.

We tried several versions of the residual version of In-
ception. Only two of them are detailed here. The first
one “Inception-ResNet-v1” roughly the computational cost
of Inception-v3, while “Inception-ResNet-v2” matches the
raw cost of the newly introduced Inception-v4 network. See
Figure 15 for the large scale structure of both varianets.
(However, the step time of Inception-v4 proved to be signif-
icantly slower in practice, probably due to the larger number
of layers.)

Another small technical difference between our resid-
ual and non-residual Inception variants is that in the case
of Inception-ResNet, we used batch-normalization only on
top of the traditional layers, but not on top of the summa-
tions. It is reasonable to expect that a thorough use of batch-
normalization should be advantageous, but we wanted to
keep each model replica trainable on a single GPU. It turned
out that the memory footprint of layers with large activa-
tion size was consuming disproportionate amount of GPU-
memory. By omitting the batch-normalization on top of
those layers, we were able to increase the overall number
of Inception blocks substantially. We hope that with bet-
ter utilization of computing resources, making this trade-off
will become unecessary.
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Figure 3. The schema for stem of the pure Inception-v4 and
Inception-ResNet-v2 networks. This is the input part of those net-
works. Cf. Figures 9 and 15
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Figure 3. Example network architectures for ImageNet. Left: the
VGG-19 model [41] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).
Right: a residual network with 34 parameter layers (3.6 billion
FLOPs). The dotted shortcuts increase dimensions. Table 1 shows
more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1⇥1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 41]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [41].
A 224⇥224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [13] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60⇥ 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [14], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [41, 13], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [36] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4

Figure 9. The overall schema of the Inception-v4 network. For the
detailed modules, please refer to Figures 3, 4, 5, 6, 7 and 8 for the
detailed structure of the various components.
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Figure 10. The schema for 35 ⇥ 35 grid (Inception-ResNet-A)
module of Inception-ResNet-v1 network.

Figure 11. The schema for 17 ⇥ 17 grid (Inception-ResNet-B)
module of Inception-ResNet-v1 network.

Figure 12. “Reduction-B” 17⇥17 to 8⇥8 grid-reduction module.
This module used by the smaller Inception-ResNet-v1 network in
Figure 15.
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How to improve 
system support 
for ML?

List of papers at 
MLSys 2020 Conference

Hardware/software for… 
faster inference? 
faster training?

Compilers for fusing layers, 
performing code optimizations?
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But as a user wanting to create a model, 
where does most of my time really go? 
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ML model development is an iterative process

Task Spec Data Training Points Training Labels Model Outputs

New Architectures,
Augmentations,

Training Procedure

New Supervision Sources

(Sec 6.1) (Sec 6.1) (Sec 5) (Sec 4) (Sec 6.1, 6.2) (Sec 5)

(Sec 5)

(Sec 6.1)

(Sec 4)

(Sec 6.1)

Thrust 1: Converting SME Knowledge Into Large-Scale Supervision
Thrust 2: Rapid Model Improvement Through Discovery of Critical Data

Task Inputs
Data

Selection
Generate

Supervision
Train

Model
Validate
Model

Identify
Important Data

Increase
Supervision

Change
Training Process

Figure 2: Illustration of key actions performed during model development. Boxes are actions, and arrows
between the boxes are outputs between di↵erent steps. Our three thrusts support various parts of the
development pipeline, highlighted with section labels and box colors.

Throughout all aspects of the project, we seek to define new abstractions and interfaces for
key ML development tasks. These abstractions should be su�ciently high to enable advanced
optimizations and provide opportunities to automate key actions, but we wish to keep the
SME in control of the overall model design process so as to leverage the SME’s unique problem
domain intuition and insight as necessary.

3 System Support for Iterative Model Development

An example workflow. To illustrate the complexity of a modern ML model development process
and highlight opportunities for scaling, consider the example of a health care scientist (the SME)
seeking to create a model for detecting a rare pathology in medical imaging data. The scientist
starts with an initial definition of the problem, has access to a large collection of image data (e.g.,
CT scans from a large population), and has taken to the time to manually identify a small number
of examples of the pathology in this collection.

Typically, an ML engineer would then work with the SME to translate the problem description
into an ML task (e.g., classification), select an appropriate model architecture for the task, and
train the model using the SME’s labeled examples. In the future platforms we envision, the actions
of choosing the right model architecture, data augmentations, and training hyperparameters can be
carried out by an automated model search process which removes the need to interface with an ML
engineer, but incurs the high computational cost of exploring many possibilities. While “autoML”
platforms provide similar functionality today [1, 11], in practice this is only a first step toward how
additional large-scale computation can accelerate the model design process.

For example, the model may perform poorly due to insu�cient training data. In a traditional
workflow, the SME might be tasked to manually browse through large databases of images to find
additional instances of the rare pathology. The systems we envision (Thrust 2) will help the SME
“mine” for these valuable examples by querying the image dataset for examples with similar (but not
too similar) appearance to images known to feature the pathology. These systems could also help
the SME identify modes in the dataset to obtain good sample diversity, and help the SME identify
subsets of the data that are particularly critical for the model to have good accuracy (e.g., specific
forms of the pathology that are treatable if caught early). These systems will run continuously
on large datasets throughout the development process, continuously identifying potentially useful
examples in these collections, saving the SME time previously used for manual data exploration.

4
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Example: does TensorFlow help with data curation?
“We cannot stress strongly enough the importance of good training data for this 
segmentation task: choosing a wide enough variety of poses, discarding poor 
training images, cleaning up inaccurate [ground truth] polygon masks, etc. With 
each improvement we made over a 9-month period in our training data, we 
observed the quality of our defocused portraits to improve commensurately.”
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Thought experiment: I ask you to train a car or 
person detector for a speci!c intersection
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Fig. 1: Images from three video streams captured by stationary cameras over a span of
several days (each row is one stream). There is significant intra-stream variance due to
time of day, changing weather conditions, and dynamic objects.

the context of fixed-viewpoint video streams, is challenging due to distribution
shift in the images observed over time. Busy urban scenes, such as those shown
in Fig. 1, constantly evolve with time of day, changing weather conditions, and
as di↵erent subjects move through the scene. Therefore, an accurate camera-
specialized model must still learn to capture a range of visual events. We make
two salient observations: each camera sees a tiny fraction of this general set of
images, and this set can be made even smaller by limiting the temporal win-
dow considered. This allows one to learn dramatically smaller and more e�cient
models, but at the cost of modeling the non-stationary distribution of imagery
observed by each camera. Fortunately, in real-world settings, scene evolution oc-
curs at a su�ciently slow rate (seconds to minutes) to provide opportunity for
online adaptation.

Our fundamental approach is based on widely-used techniques for model
distillation, whereby a lightweight “student” model is trained to output the pre-
dictions of a larger, high-capacity “teacher” model. However, we demonstrate
that naive approaches for distillation do not work well for camera specializa-
tion because of the underlying non-stationarity of the data stream. We propose
a simple, but surprisingly e↵ective, strategy of online distillation. Rather than
learning a student model on o✏ine data that has been labeled with teacher
predictions, train the student in an online fashion on the live data stream, in-
termittently running the teacher to provide a target for learning. This requires
a judicious schedule for running the teacher as well as an online adaption algo-
rithm that can process correlated streaming data. We demonstrate that existing
o✏ine solvers when carefully tuned and used in the online setting are as accurate
as the best o✏ine model trained in hindsight (e.g., with low regret [3]). Our final
approach learns compact students that perform comparably to high capacity
models trained o✏ine but o↵ers predictably low-latency inference (sub 20 ms)
and an overall 7.8⇥ reduction in computation time.
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▪ A good system provides valuable services to the user. 
▪ So in the Ludwig/Overton papers, who is the “user” (what is 

their goal, what is their skillset?) and what are the painful, 
hard, or tedious things that the systems are designed to do 
for the user?
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▪ Let’s speci!cally contrast the abstractions of Ludwig with that 
of a lower-level ML system like TensorFlow. TensorFlow/
MX.Net/PyTorch largely abstract ML model de!nition as a DAG 
of N-Tensor operations. How is Ludwig di#erent? 

▪ Then let’s compare those abstractions to Overton.
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▪ Comparison to Google’s AutoML?


