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Video processing applications
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Estimate: 82% of internet tra!c will be video
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Basically, we’re watching TV and movies…
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Thought experiment
Imagine we wanted to detect people/cars/bikes in a video stream
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Interest in processing video e!ciently
▪ Bene"ts to datacenter applications: 

- Lower cost/frame enables processing of more streams (e.g., thousands 
of webcams) 

▪ Bene"ts to edge devices: 
- Cheaper per frame costs, real-time performance on cheaper/lower 

energy computing hardware 
- Lower latency per frame 

- Example: automated breaking systems target ~40ms sense to brake 
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Trick 0: video stream subsampling
▪ Reduce costs by… 

▪ Spatial downsampling: 
- Run detector on low-resolution image 

▪ Temporal subsampling: 
- Run detector at low frame rate
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Trick 1: exploit temporal coherence
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Temporal di#erencing
▪ Idea: for a new image, use labels from “empty frame” image if new 

image is similar to background image 

▪ Idea: use same result as previous frame if two frames are 
su!ciently similar 
- How to de"ne su!ciently similar? (thresholds?) 
- Di#erences in feature space more robust than over pixels

we are generally only interested in identifying a small number of
objects—as opposed to the thousands of classes a generic NN can
classify—and, in video inference, such objects may only appear from
a small number of angles or configurations.

NOSCOPE performs model specialization by applying a larger, ref-
erence model to a target video and using the output of the larger model
to train a smaller, specialized model. Given sufficient training data
from the reference model for a specific video, the specialized model
can be trained to mimic the reference model on the video while requir-
ing fewer computational resources (e.g., NN layers) compared to the
reference model. However, unlike the reference model, the special-
ized model learns from examples from the target video and is unlikely
to generalize to other videos or queries. Thus, by sacrificing general-
ization and performing both training and inference on a restricted task
and input data distribution, we can substantially reduce inference cost.

Critically, in contrast with related approaches to model compres-
sion [8, 41, 45], the goal of model specialization is not to provide a
model that is indistinguishable from the reference model on all tasks;
rather, the goal of model specialization is to provide a model that is in-
distinguishable (to a given accuracy target) for a restricted set of tasks.
This strategy allows efficient inference at the expense of generality.

NOSCOPE uses shallow NNs as its specialized models. Shal-
low NNs have been shown to be effective in other compression
routines [45], are efficient at inference time, and naturally output
a confidence in their classification. NOSCOPE uses this confidence
to defer to the reference model when the specialized model is not
confident (e.g., when no loss in accuracy can be tolerated).

NOSCOPE implements specialized NNs based on the AlexNet
architecture [56] (filter doubling, dropout), using ReLU units for all
the hidden layers and a softmax unit at the end to return a confidence
for the class we are querying. However, to reduce inference time,
NOSCOPE’s networks are significantly shallower than AlexNet. As
we discuss in Section 6, NOSCOPE performs automated model search
by varying several parameters of the specialized models, including
the number of convolutional layers (2 or 4), number of convolution
units in the base layer (32 or 64), and number of neurons in the dense
layer (32, 64, 128 or 256). As these models provide different tradeoffs
between speed and accuracy, NOSCOPE’s optimizer automatically
searches for the best model for each video stream and query.

Beyond configuring and learning a specialized model, NOSCOPE
also selects two thresholds on the specialized model’s confidence
c: clow is the threshold at below which NOSCOPE outputs no object
in frame, and chigh is the threshold above which NOSCOPE out-
puts object detected. For output values of c between clow and chigh,
NOSCOPE calls the full reference NN on the frame.

The choice of threshold and the choice of model both determine
speed and accuracy. For example, a specialized NN with many layers
and convolution units might be much more accurate (resulting in a
smaller [clow,chigh]) but more expensive to compute per frame. In
some cases, we should choose the less accurate NN that passes more
frames to our full model but is faster to evaluate on most input frames;
NOSCOPE’s optimizer automates this decision.

To train specialized NNs, NOSCOPE uses standard NN training
practices. NOSCOPE uses a continuous section of video for training
and cross-validation and learns NNs using RMSprop [46] for 1-5
epochs, with early stopping if the training loss increases. In addition,
during model search, NOSCOPE uses a separate evaluation set that
is not part of the training and cross-validation sets for each model.

As we illustrate in Section 9, specialized models trained using a
large model such as YOLOv2 deliver substantial speedups on many
datasets. By appropriately setting clow and chigh, NOSCOPE can reg-
ularly eliminate 90% of frames (and sometimes all frames) without
calling the full reference model while still preserving its accuracy

(a) empty frame (b) frame with a car (c) subtracted frames

Figure 2: Example of difference detection. The subtracted frame highlights
the car that entered the scene.

to a desired target. We also show that training these small models
on scene-specific data (frames from the same video) leads to better
performance than training them on generic object detection datasets.

While we have evaluated model specialization in the context of
binary classification on video streams, ongoing work suggests this
technique is applicable to other tasks (e.g., bounding box regression)
and settings (e.g., generic image classification).

5. DIFFERENCE DETECTION
The second key technique in NOSCOPE is the use of difference

detectors: extremely efficient models that detect changes in labels.
Given a labeled video frame (e.g. this frame does not have a car—a
“false” in our binary classification setting) and an unlabeled frame, a
difference detector determines whether the unlabeled frame has the
same or different label compared to the labeled frame. Using these
difference detectors, NOSCOPE can quickly determine when video
contents have changed. In videos where the frame rate is much higher
than the label change rate (e.g., a 30 frame per second video capturing
people walking across a 36 foot crosswalk), difference detectors can
provide up to 90⇥ speedups at inference time.

In general, the problem of determining label changes is as difficult
as the binary classification task. However, as we have hinted above,
videos contain a high degree of temporal locality, making the task
of detecting redundant frames much easier. Figure 2 demonstrates
this: subtracting a frame containing an empty scene from a frame
containing a car distinctly highlights the car. In addition, since NO-
SCOPE uses efficient difference detectors (i.e., much more efficient
than even specialized models), only a small fraction of frames need to
be filtered for difference detectors to be worth the cost of evaluation.

NOSCOPE leverages two forms of difference detectors:

1. Difference detection against a fixed reference image for the
video stream, that contains no objects. For example, for a
video of a sidewalk, the reference image might be a frame of an
empty sidewalk. NOSCOPE computes the reference image by
averaging frames where the reference model returns no labels.

2. Difference detection against an earlier frame a pre-configured
time tdi↵ seconds into the past. In this case, if there are no
significant differences, NOSCOPE returns the same labels that
it output for the previous frame. NOSCOPE’s optimizer learns
tdi↵ based on the input data.

The optimal choice of method is video-dependent, so NOSCOPE’s
optimizer performs selection automatically. For example, a video of
a mostly empty sidewalk might have a natural empty reference image
that one can cheaply and confidently compare with to skip many
empty frames. In contrast, a video of a city park might always contain
mobile objects (e.g., people lying down in the grass), but the objects
might move slowly enough that comparing with frames 1 second ago
can still eliminate many calls to the expensive reference model.

Given the two frames to compare, NOSCOPE’s difference detector
computes the Mean Square Error (MSE) between them as a measure
of distance. NOSCOPE either performs a comparison on the whole
image, or a blocked comparison where it subdivides each image into
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Tracking
Evaluate expensive person detector sparsely in time (e.g., every 1/2 second), then use a 
more e!cient tracking algorithm to update annotations over sequence of frames
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Tracking
Evaluate expensive detector sparsely in time (e.g., every 1/2 second), then use more e!cient 
tracking algorithm to update annotations over sequence of frames
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Leveraging motion in the network

Given features (or segmentation result 
from prior frame) use $ow between prior 
frame and current frame to “advect” 
features (or segmentation) to new 
frame. 

In other words: it’s easier to produce the 
result for the current frame if you have 
the result from the prior frame

[Zhu CVPR 2017]
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Leveraging motion in the network

In practice: despite “intellectual” appeal of advecting features, paper results show advecting 
segmentation is as good as advecting features.

[Zhu CVPR 2017]
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Trick 3: specialize to content
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Model specialization
▪ Common principle in DNN design/training is to learn most general model 

(via large datasets, regularization, etc.) to perform well across all instances 
of a task 

▪ But many cameras see a very speci"c distribution of images 
- Only certain types of object classes 
- Always from the same/similar viewpoint 
- Objects appear in same regions of screen 

▪ Specialization has been a major theme in this class w.r.t. hardware design.  
Now we wish to specialize models to the contents of a video stream 
- “A model can be much simpler if it only needs to work for a single camera”
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▪ Accurate, but expensive, model: trained on full training set 
- “The teacher” 

▪ Smaller model (cheaper) , trained to mimic the output of the teacher 
- “The student”

Model distillation [Hinton 15]
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Noscope
▪ Apply model distillation, but constrain training set to a speci"c video feed: Given 

an expensive network that performs a speci"ed detection* task accurately on a 
wide range of videos, distill to low-cost model specialized to this video stream 

▪ Example: binary classi"cation (car/no car) for a single tra!c camera video stream

* Noscope actually performs a simpler classi"cation task on a pre-cropped region of the viewport 
(not detection, which involves object location)

we are generally only interested in identifying a small number of
objects—as opposed to the thousands of classes a generic NN can
classify—and, in video inference, such objects may only appear from
a small number of angles or configurations.

NOSCOPE performs model specialization by applying a larger, ref-
erence model to a target video and using the output of the larger model
to train a smaller, specialized model. Given sufficient training data
from the reference model for a specific video, the specialized model
can be trained to mimic the reference model on the video while requir-
ing fewer computational resources (e.g., NN layers) compared to the
reference model. However, unlike the reference model, the special-
ized model learns from examples from the target video and is unlikely
to generalize to other videos or queries. Thus, by sacrificing general-
ization and performing both training and inference on a restricted task
and input data distribution, we can substantially reduce inference cost.

Critically, in contrast with related approaches to model compres-
sion [8, 41, 45], the goal of model specialization is not to provide a
model that is indistinguishable from the reference model on all tasks;
rather, the goal of model specialization is to provide a model that is in-
distinguishable (to a given accuracy target) for a restricted set of tasks.
This strategy allows efficient inference at the expense of generality.

NOSCOPE uses shallow NNs as its specialized models. Shal-
low NNs have been shown to be effective in other compression
routines [45], are efficient at inference time, and naturally output
a confidence in their classification. NOSCOPE uses this confidence
to defer to the reference model when the specialized model is not
confident (e.g., when no loss in accuracy can be tolerated).

NOSCOPE implements specialized NNs based on the AlexNet
architecture [56] (filter doubling, dropout), using ReLU units for all
the hidden layers and a softmax unit at the end to return a confidence
for the class we are querying. However, to reduce inference time,
NOSCOPE’s networks are significantly shallower than AlexNet. As
we discuss in Section 6, NOSCOPE performs automated model search
by varying several parameters of the specialized models, including
the number of convolutional layers (2 or 4), number of convolution
units in the base layer (32 or 64), and number of neurons in the dense
layer (32, 64, 128 or 256). As these models provide different tradeoffs
between speed and accuracy, NOSCOPE’s optimizer automatically
searches for the best model for each video stream and query.

Beyond configuring and learning a specialized model, NOSCOPE
also selects two thresholds on the specialized model’s confidence
c: clow is the threshold at below which NOSCOPE outputs no object
in frame, and chigh is the threshold above which NOSCOPE out-
puts object detected. For output values of c between clow and chigh,
NOSCOPE calls the full reference NN on the frame.

The choice of threshold and the choice of model both determine
speed and accuracy. For example, a specialized NN with many layers
and convolution units might be much more accurate (resulting in a
smaller [clow,chigh]) but more expensive to compute per frame. In
some cases, we should choose the less accurate NN that passes more
frames to our full model but is faster to evaluate on most input frames;
NOSCOPE’s optimizer automates this decision.

To train specialized NNs, NOSCOPE uses standard NN training
practices. NOSCOPE uses a continuous section of video for training
and cross-validation and learns NNs using RMSprop [46] for 1-5
epochs, with early stopping if the training loss increases. In addition,
during model search, NOSCOPE uses a separate evaluation set that
is not part of the training and cross-validation sets for each model.

As we illustrate in Section 9, specialized models trained using a
large model such as YOLOv2 deliver substantial speedups on many
datasets. By appropriately setting clow and chigh, NOSCOPE can reg-
ularly eliminate 90% of frames (and sometimes all frames) without
calling the full reference model while still preserving its accuracy

(a) empty frame (b) frame with a car (c) subtracted frames

Figure 2: Example of difference detection. The subtracted frame highlights
the car that entered the scene.

to a desired target. We also show that training these small models
on scene-specific data (frames from the same video) leads to better
performance than training them on generic object detection datasets.

While we have evaluated model specialization in the context of
binary classification on video streams, ongoing work suggests this
technique is applicable to other tasks (e.g., bounding box regression)
and settings (e.g., generic image classification).

5. DIFFERENCE DETECTION
The second key technique in NOSCOPE is the use of difference

detectors: extremely efficient models that detect changes in labels.
Given a labeled video frame (e.g. this frame does not have a car—a
“false” in our binary classification setting) and an unlabeled frame, a
difference detector determines whether the unlabeled frame has the
same or different label compared to the labeled frame. Using these
difference detectors, NOSCOPE can quickly determine when video
contents have changed. In videos where the frame rate is much higher
than the label change rate (e.g., a 30 frame per second video capturing
people walking across a 36 foot crosswalk), difference detectors can
provide up to 90⇥ speedups at inference time.

In general, the problem of determining label changes is as difficult
as the binary classification task. However, as we have hinted above,
videos contain a high degree of temporal locality, making the task
of detecting redundant frames much easier. Figure 2 demonstrates
this: subtracting a frame containing an empty scene from a frame
containing a car distinctly highlights the car. In addition, since NO-
SCOPE uses efficient difference detectors (i.e., much more efficient
than even specialized models), only a small fraction of frames need to
be filtered for difference detectors to be worth the cost of evaluation.

NOSCOPE leverages two forms of difference detectors:

1. Difference detection against a fixed reference image for the
video stream, that contains no objects. For example, for a
video of a sidewalk, the reference image might be a frame of an
empty sidewalk. NOSCOPE computes the reference image by
averaging frames where the reference model returns no labels.

2. Difference detection against an earlier frame a pre-configured
time tdi↵ seconds into the past. In this case, if there are no
significant differences, NOSCOPE returns the same labels that
it output for the previous frame. NOSCOPE’s optimizer learns
tdi↵ based on the input data.

The optimal choice of method is video-dependent, so NOSCOPE’s
optimizer performs selection automatically. For example, a video of
a mostly empty sidewalk might have a natural empty reference image
that one can cheaply and confidently compare with to skip many
empty frames. In contrast, a video of a city park might always contain
mobile objects (e.g., people lying down in the grass), but the objects
might move slowly enough that comparing with frames 1 second ago
can still eliminate many calls to the expensive reference model.

Given the two frames to compare, NOSCOPE’s difference detector
computes the Mean Square Error (MSE) between them as a measure
of distance. NOSCOPE either performs a comparison on the whole
image, or a blocked comparison where it subdivides each image into

and are therefore far less computationally expensive. That is, instead
of simply running the reference NN over the target video, NOSCOPE
searches for, learns, and executes a query-specific pipeline of cheaper
models that approximates the reference model to a specified target ac-
curacy. NOSCOPE’s query-specific pipelines forego the generality of
the reference NN—that is, NOSCOPE’s cascades are only accurate in
detecting the target object in the target video—but in turn execute up
to three orders of magnitude faster (i.e., 265-15,500⇥ real-time) with
1-5% loss in accuracy for binary detection tasks over real-world fixed-
angle webcam and surveillance video. To do so, NOSCOPE leverages
both new types of models and a new optimizer for model search:

First, NOSCOPE’s specialized models forego the full generality of
the reference NN but faithfully mimic its behavior for the target query.
In the context of our example query of detecting buses, consider the
following buses that appeared in a public webcam in Taipei:

In this video stream, buses only appear from a small set of perspec-
tives. In contrast, NNs are often trained to recognize thousands of
objects, from sheep to apples, and from different angles; this leads
to unnecessary computational overhead. Thus, NOSCOPE instead
performs model specialization, using the full NN to generate labeled
training data (i.e., examples) and subsequently training smaller NNs
that are tailored to a given video stream and to a smaller class of
objects. NOSCOPE then executes these specialized models, which
are up to 340⇥ faster than the full NN, and consults the full NN only
when the specialized models are uncertain (i.e., produce results with
confidence below an automatically learned threshold).

Second, NOSCOPE’s difference detectors highlight temporal differ-
ences across frames. Consider the following frames, which appeared
sequentially in our Taipei webcam:

These frames are nearly identical, and all contain the same bus. There-
fore, instead of running the full NN (or a specialized NN) on each
frame, NOSCOPE learns a low-cost difference detector (based on
differences of frame content) that determines whether the contents
have changed across frames. NOSCOPE’s difference detectors are
fast and accurate—up to 100k frames per second on the CPU.

A key challenge in combining the above insights and models is that
the optimal choice of cascade is data-dependent. Individual model
performance varies across videos, with distinct trade-offs between
speed, selectivity, and accuracy. For example, a difference detector
based on subtraction from the previous frame might work well on
mostly static scenes but may add overhead in a video overseeing a
busy highway. Likewise, the complexity (e.g., number of layers) of
specialized NNs required to recognize different object classes varies
widely based on both the target object and video. Even setting the
thresholds in the cascade represents trade-off: should we make a dif-
ference detector’s threshold less aggressive to reduce its false negative
rate, or should we make it more aggressive to eliminate more frames
early in the pipeline and avoid calling a more expensive model?

To solve this problem, NOSCOPE performs inference-optimized
model search using a cost-based optimizer that automatically finds
a fast model cascade for a given query and accuracy target. The op-
timizer applies candidate models to training data, then computes the
optimal thresholds for each combination of models using an efficient
linear parameter sweep through the space of feasible thresholds. The
entire search requires time comparable to labeling the sample data
using the reference NN (an unavoidable step in obtaining such data).

We evaluate a NOSCOPE prototype on binary classification tasks
on cameras that are in a fixed location and at a fixed angle; this in-
cludes pedestrian and automotive detection as found in monitoring
and surveillance applications. NOSCOPE demonstrates up to three
order of magnitude speedups over general-purpose state-of-the-art
NNs while retaining high—and configurable—accuracy (within 1-
5%) across a range of videos, indicating a promising new strategy for
efficient inference and analysis of video data. In summary, we make
the following contributions in this work:

1. NOSCOPE, a system for accelerating neural network queries
over video via inference-optimized model search.

2. New techniques for a) neural network model specialization
based on a given video and query; b) fast difference detection
across frames; and c) cost-based optimization to automatically
identify the fastest cascade for a given accuracy target.

3. An evaluation of NOSCOPE on fixed-angle binary classifica-
tion demonstrating up to three orders of magnitude speedups
on real-world data.

The remainder of this paper proceeds as follows. Section 2 pro-
vides additional background on NNs and our target environment.
Section 3 describes the NOSCOPE architecture. Section 4 describes
NOSCOPE’s use of model specialization, Section 5 describes NO-
SCOPE’s difference detectors, and Section 6 describes NOSCOPE’s
inference-optimized model search via cost-based optimization. Sec-
tion 7 describes the NOSCOPE prototype implementation and Sec-
tion 8 describes limitations of the current system. Section 9 exper-
imentally evaluates NOSCOPE, Section 10 discusses related work,
and Section 11 concludes.

2. BACKGROUND
Given an input image or video, a host of computer vision methods

can extract valuable semantic information about objects and their
occurrences. In this section, we provide background on these meth-
ods, focusing on object detection tasks: given an image, what objects
does it contain? Readers familiar with computer vision may wish to
proceed to the next section.

Object Detection History and Goals. Automated object detection,
or the task of extracting object occurrences and their locations from
image data, dates to at least the 1960s [74]. Classic techniques [64,
86, 99] combine machine learning methods such as classification
and clustering with image-specific featurization techniques such as
SIFT [63]. More recent and advanced methods such as HOG [100],
deformable parts model [34] and selective search [88] are among the
most sophisticated of these classic approaches.

Following these early successes, artificial neural networks have im-
proved in accuracy to near-human or better-than-human levels in the
past five years. Now, these “deep” models (with millions to billions
of parameters) have become not only feasible but also the preferred
method for computer vision tasks spanning image classification [82],
pedestrian detection [98], and automatic captioning [29]. To under-
stand why, consider the PASCAL VOC 2012 [32] leaderboard, in
which classical methods were employed: the top three methods (in ac-
curacy) were NNs, and the winning entry, YOLOv2, runs at 80 fps. In
comparison, the top three classical methods take several seconds per
image to run and are 20% less accurate. NNs power image processing
tasks at online services including Google, Facebook, Instagram, and
Amazon as well as real-world tasks including autonomous driving.

NN Architecture. A neural network [40] consists of a series of con-
nected layers that can process a high-dimensional input image and
output a simpler representation. Each layer of a convolutional NN cor-

[Kang 17]
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Three Noscope optimizations
▪ Statically specialize model to video feed 

- Teacher network: Yolo object detection network 
- Student network: compact specialized network  (2-4 conv layers) 
- Low cost student “learns” to mimic the teacher  

▪ Dynamic: utilize frame-to-frame di#erence detectors with learned thresholds 
- “Same as background” and “same as previous frame” 
- Learn thresholds for how often to check for di#erences (in frames), and 

what the magnitude of a meaningful di#erence is 

▪ Dynamic: cascades 
- Run cheap specialized model (student) on frame "rst, then run teacher 

model if student does not make a con"dent prediction 



Stanford CS348K, Spring 2021

Noscope results *

(a) taipei (b) coral

(c) amsterdam (d) night-street

(e) store (f) elevator

(g) roundabout

Figure 4: Accuracy vs. speedup achieved by NOSCOPE on each dataset.
Accuracy is the percent of correctly labeled time windows, and speedup is
over YOLOv2. Note the y-axis starts at 80%.

Table 2: Filter types and thresholds chosen by NOSCOPE’s CBO for each
video at 1% target false positive and false negative rates. Both the filter types
(e.g., global or blocked MSE) and their thresholds (e.g., the difference in MSE
that is considered significant, or the upper and lower detection thresholds for
the specialized models) vary significantly across videos. For the specialized
models (denoted SM), L denotes the number of layers, C the number of
convolutional units, and D the dimension of the dense layers.

Video
Name DD �di↵

SM
(L)

SM
(C)

SM
(D) clow chigh

taipei global 37.5 2 64 32 0.114 0.994
coral blocked 147.3 2 16 128 0.0061 0.998
amsterdam global 0.0019 2 64 256 0.128 0.998
night-street global 0.441 2 16 128 2.2e-7 0.176
store blocked 336.7 2 32 128 0.010 0.998
elevator global 0.0383 2 32 256 0.004 0.517
roundabout global 0.115 4 32 32 0.0741 0.855

9.3 Impact of the CBO
To better understand the source of speedups, we explored the im-

pact of NOSCOPE’s CBO on performance. We begin by showing that
the filter types and thresholds chosen by the CBO differ significantly
across videos based on the characteristics of their contents. We also
show that choosing other settings for these parameters would greatly
decrease speed or accuracy in many cases, so parameters cannot be
transferred across videos.

Configurations Chosen Across Datasets. Table 2 shows the differ-
ence detectors, specialized models, and detection thresholds chosen
by the CBO across our sample datasets for a 1% target false posi-
tive and false negative rate. We observe that these are substantially
different across videos, even when the CBO selects the same filter

Figure 5: Normalized performance of NOSCOPE with two different spe-
cialized NN models on the night-street and taipei videos. We see that
choosing a different NN architecture for each video, even though this archi-
tecture performed well on another dataset, reduces throughput. NOSCOPE
automatically selects the best-performing NN.

class (e.g., difference detection based on global MSE). We make a
few observations about these results:

First, the best type of MSE chosen depend on the video. For exam-
ple, coral and store are scenes with a dynamic background (e.g.,
coral shows an aquarium with colorful fish swimming in the back-
ground, and NOSCOPE is asked to detect people in the scene). In
these scenes, computing MSE against several frames past instead of
against a single “empty” reference frame is more effective.

Second, the chosen thresholds also differ significantly. For exam-
ple, taipei has a high difference detection threshold due to high
levels of small-scale activity in the background, but the target objects,
buses, are generally large and change more of the frame. The upper
and lower thresholds for NNs also vary even across the same target
object class, partly due to varying difficulty in detecting the objects in
different scenes. For example, in some videos, the clow threshold for
declaring that there is no object in a frame is extremely low because
increasing it would lead to too many false negatives.

Third, the best specialized model architectures also varied by video
and query. In particular, we found that in many videos, the larger
NNs (with 4 layers or with more convolutional units and dense layer
neurons) would overfit given the fairly small training set we used
(150,000 frames out of the 250,000 frames set aside for both train-
ing and evaluation). However, the best combination of the model
architecture parameters varied across videos, and NOSCOPE’s train-
ing routine that selects models based on an unseen evaluation set
automatically chose an accurate model that did not overfit.

Non-Transferability Across Datasets. As the best filter configu-
rations varied significantly across datasets, transferring parameters
from one dataset to another leads to poor performance:

Specialized Model Architectures. We used the specialized model
architecture from night-street (a NN with parameters L=2, C=16,
D=128) on the taipei dataset (whose optimal NN had L=2, C=64,
D=32), and vice-versa. We transferred only the architecture, not
the learned model from each dataset and trained a new model with
each architecture for the new dataset to evaluate its performance
there. Although these architectures have similar properties (e.g., two
layers), they required significantly different parameters to achieve
our 1% target false positive and false negative rates on each dataset.
This resulted in a 1.25⇥ to 3⇥ reduction in throughput for the overall
NOSCOPE pipeline, as depicted in Figure 5.

Detection Thresholds. We plotted the range of feasible thresholds
for the difference detector (�di↵ ), as well as the actual threshold
chosen, in Figure 6. Feasible thresholds here are the ones where the
system can stay within the 1% false positive and false negative rates
we had requested for the CBO. Beyond a certain upper limit, the
difference detector alone will introduce too many incorrect labels (on

Figure 6: Firing thresholds �di↵ chosen by the CBO for each video (blue
dots), along with the range of thresholds that can achieve 1% false positive
and false negative rate for that video (black lines).

Figure 7: Breakdown of training and optimization time on taipei dataset.
Passing all the training frames through YOLOv2 to obtain their true labels
dominates the cost, followed by training all variants of our specialized models
and then the rest of the steps in the CBO.

the validation set). As we see in the plot, the range of values for each
video is different and the best-performing threshold is often near the
top of this range, but not always. For example, coral is near the top,
but amsterdam is lower, this is due to the downstream performance of
the specialized models. Thus, attempting to use a common threshold
between videos would either result in failing to achieve the accuracy
target (if the threshold is too high) or lower performance than the
threshold NOSCOPE chose (if the threshold is too low).

9.3.1 Running Time of the CBO

We measured the time it takes to run our CBO across several
datasets, showing the most time-consuming one in Figure 7. In all
cases, initializing NOSCOPE requires labeling all the frames in the
training data with YOLOv2, followed by training all supported spe-
cialized models and difference detectors on this data, then selecting
a combination of them using the algorithm in Section 6. The CBO
is efficient in the number of samples required: only 250k samples are
required to train the individual filters and set the thresholds. For the
longer videos, we randomly sample from the training set and for the
shorter videos we use the first 250k frames. As shown in the figure,
YOLOv2 application takes longer than all the other steps combined,
meaning that NOSCOPE’s CBO could run in real time on a second
GPU while the system is first observing a new stream. Training of
the specialized NNs takes the next longest amount of time; in this
case, we trained 24 different model architectures. We have not yet
optimized this step or tried to reduce the search space of models, so
it may be possible to improve it.

9.4 Impact of Individual Models
To analyze the impact of each of our model types on NOSCOPE’s

performance, we ran a factor analysis and lesion study on two videos,
with results shown in Figures 8a and 8b.

(a) Factor analysis (b) Lesion study

Figure 8: Factor analysis and lesion study of NOSCOPE’s filters. The factor
analysis shows the impact of adding different filters for two videos; from
left to right, we add each of the filters in turn over YOLOv2. The lesion
study shows the impact of removing filters; the leftmost bars show normalized
performance with all of NOSCOPE’s features enabled, and the remaining bars
to the right show the effect of removing each filter from NOSCOPE. (Note the
logarithmic scale on the y-axes of both plots.)

Figure 9: Throughput, Generic NN vs. NOSCOPE. Substituting the special-
ized NN model in NOSCOPE with an equivalent model trained on MS-COCO
(a general-purpose training set of images used by YOLOv2) results in a
decrease in the end-to-end throughput of the system across all videos.

In the factor analysis, we started by running all frames through
YOLOv2 and gradually added: difference detection’s frame skip-
ping, difference detection on the skipped frames, and specialized
model evaluation. Each filter adds a nontrivial speedup: skipping
contributes up to 30⇥, content-based difference detection contributes
up to 3⇥, and specialized models contribute up to 340⇥.

In the lesion study, we remove one element at a time from the com-
plete NOSCOPE cascade. As shown in Figure 8b, each element con-
tributes to the overall throughput of the pipeline, showing that each
component of NOSCOPE’s cascades are important to its performance.

9.5 Impact of Model Specialization
Finally, we evaluate the benefit of video-specific model specializa-

tion compared to training on general computer vision datasets. Our
hypothesis in designing NOSCOPE was that we can achieve much
higher accuracy by training models on past frames from the same

video to leverage the characteristics of that particular scene (e.g., fixed
perspective on the target object, fixed background, etc.). To evaluate
this hypothesis, we trained three deep NNs for binary classification
on the classes of objects we evaluate NOSCOPE on: people, buses,
and cars using the more general MS-COCO dataset [62], a recent
high-quality object detection dataset. For each class, we selected
the best model from the same model family as NOSCOPE’s CBO.
Figure 9 shows the resulting throughput across our videos. In all
cases, the specialized models trained by NOSCOPE outperform the
generic model of the same size trained on MS-COCO (up to 20⇥),
showing that scene-specific specialization has a significant impact
on designing models for efficient inference.

9.6 Comparison Against Baselines
We also compared to classic methods in computer vision, including

a deformable parts model (which performed favorably in the Ima-

Factor Analysis

Figure 6: Firing thresholds �di↵ chosen by the CBO for each video (blue
dots), along with the range of thresholds that can achieve 1% false positive
and false negative rate for that video (black lines).

Figure 7: Breakdown of training and optimization time on taipei dataset.
Passing all the training frames through YOLOv2 to obtain their true labels
dominates the cost, followed by training all variants of our specialized models
and then the rest of the steps in the CBO.

the validation set). As we see in the plot, the range of values for each
video is different and the best-performing threshold is often near the
top of this range, but not always. For example, coral is near the top,
but amsterdam is lower, this is due to the downstream performance of
the specialized models. Thus, attempting to use a common threshold
between videos would either result in failing to achieve the accuracy
target (if the threshold is too high) or lower performance than the
threshold NOSCOPE chose (if the threshold is too low).

9.3.1 Running Time of the CBO

We measured the time it takes to run our CBO across several
datasets, showing the most time-consuming one in Figure 7. In all
cases, initializing NOSCOPE requires labeling all the frames in the
training data with YOLOv2, followed by training all supported spe-
cialized models and difference detectors on this data, then selecting
a combination of them using the algorithm in Section 6. The CBO
is efficient in the number of samples required: only 250k samples are
required to train the individual filters and set the thresholds. For the
longer videos, we randomly sample from the training set and for the
shorter videos we use the first 250k frames. As shown in the figure,
YOLOv2 application takes longer than all the other steps combined,
meaning that NOSCOPE’s CBO could run in real time on a second
GPU while the system is first observing a new stream. Training of
the specialized NNs takes the next longest amount of time; in this
case, we trained 24 different model architectures. We have not yet
optimized this step or tried to reduce the search space of models, so
it may be possible to improve it.

9.4 Impact of Individual Models
To analyze the impact of each of our model types on NOSCOPE’s

performance, we ran a factor analysis and lesion study on two videos,
with results shown in Figures 8a and 8b.

(a) Factor analysis (b) Lesion study

Figure 8: Factor analysis and lesion study of NOSCOPE’s filters. The factor
analysis shows the impact of adding different filters for two videos; from
left to right, we add each of the filters in turn over YOLOv2. The lesion
study shows the impact of removing filters; the leftmost bars show normalized
performance with all of NOSCOPE’s features enabled, and the remaining bars
to the right show the effect of removing each filter from NOSCOPE. (Note the
logarithmic scale on the y-axes of both plots.)

Figure 9: Throughput, Generic NN vs. NOSCOPE. Substituting the special-
ized NN model in NOSCOPE with an equivalent model trained on MS-COCO
(a general-purpose training set of images used by YOLOv2) results in a
decrease in the end-to-end throughput of the system across all videos.

In the factor analysis, we started by running all frames through
YOLOv2 and gradually added: difference detection’s frame skip-
ping, difference detection on the skipped frames, and specialized
model evaluation. Each filter adds a nontrivial speedup: skipping
contributes up to 30⇥, content-based difference detection contributes
up to 3⇥, and specialized models contribute up to 340⇥.

In the lesion study, we remove one element at a time from the com-
plete NOSCOPE cascade. As shown in Figure 8b, each element con-
tributes to the overall throughput of the pipeline, showing that each
component of NOSCOPE’s cascades are important to its performance.

9.5 Impact of Model Specialization
Finally, we evaluate the benefit of video-specific model specializa-

tion compared to training on general computer vision datasets. Our
hypothesis in designing NOSCOPE was that we can achieve much
higher accuracy by training models on past frames from the same

video to leverage the characteristics of that particular scene (e.g., fixed
perspective on the target object, fixed background, etc.). To evaluate
this hypothesis, we trained three deep NNs for binary classification
on the classes of objects we evaluate NOSCOPE on: people, buses,
and cars using the more general MS-COCO dataset [62], a recent
high-quality object detection dataset. For each class, we selected
the best model from the same model family as NOSCOPE’s CBO.
Figure 9 shows the resulting throughput across our videos. In all
cases, the specialized models trained by NOSCOPE outperform the
generic model of the same size trained on MS-COCO (up to 20⇥),
showing that scene-specific specialization has a significant impact
on designing models for efficient inference.

9.6 Comparison Against Baselines
We also compared to classic methods in computer vision, including

a deformable parts model (which performed favorably in the Ima-

* Noscope actually performs a simpler classi"cation task on a pre-cropped region of the viewport 
(not detection, which involves object location)
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Example video
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Problem: distribution shift
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Fig. 1: Images from three video streams captured by stationary cameras over a span of
several days (each row is one stream). There is significant intra-stream variance due to
time of day, changing weather conditions, and dynamic objects.

the context of fixed-viewpoint video streams, is challenging due to distribution
shift in the images observed over time. Busy urban scenes, such as those shown
in Fig. 1, constantly evolve with time of day, changing weather conditions, and
as di↵erent subjects move through the scene. Therefore, an accurate camera-
specialized model must still learn to capture a range of visual events. We make
two salient observations: each camera sees a tiny fraction of this general set of
images, and this set can be made even smaller by limiting the temporal win-
dow considered. This allows one to learn dramatically smaller and more e�cient
models, but at the cost of modeling the non-stationary distribution of imagery
observed by each camera. Fortunately, in real-world settings, scene evolution oc-
curs at a su�ciently slow rate (seconds to minutes) to provide opportunity for
online adaptation.

Our fundamental approach is based on widely-used techniques for model
distillation, whereby a lightweight “student” model is trained to output the pre-
dictions of a larger, high-capacity “teacher” model. However, we demonstrate
that naive approaches for distillation do not work well for camera specializa-
tion because of the underlying non-stationarity of the data stream. We propose
a simple, but surprisingly e↵ective, strategy of online distillation. Rather than
learning a student model on o✏ine data that has been labeled with teacher
predictions, train the student in an online fashion on the live data stream, in-
termittently running the teacher to provide a target for learning. This requires
a judicious schedule for running the teacher as well as an online adaption algo-
rithm that can process correlated streaming data. We demonstrate that existing
o✏ine solvers when carefully tuned and used in the online setting are as accurate
as the best o✏ine model trained in hindsight (e.g., with low regret [3]). Our final
approach learns compact students that perform comparably to high capacity
models trained o✏ine but o↵ers predictably low-latency inference (sub 20 ms)
and an overall 7.8⇥ reduction in computation time.

Weather, time-of-day, types of vehicles in view, etc…
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Stanford CS348K, Spring 2021

Challenge: distribution shift



Stanford CS348K, Spring 2021

Challenge: distribution shift



Stanford CS348K, Spring 2021

Last example: 
Specialize “up front”

Another example: 
Periodically chose from a number of 

pre-specialized models”
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Chameleon
▪ Specialization strategy: choose among set of pre-trained models 

to "nd cheapest (su!ciently accurate) model for the job 
- “Knobs” to con"gure: 

- Input image resolution 
- Input image frame rate 
- DNN to use (Resnet101, Resnet50, Inception, MobileNet, etc.) 
- Thresholds on frame-to-frame di#erence detectors, etc. 

[Jiang 18]
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Simple example
Appropriate frame-rate sampling 
depends on whether or not cars 
are moving
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Challenge of distribution shift
▪ If distribution in video stream is non-stationary, cheap model determined via 

up-front pro"ling looses accuracy as contents of video change 
- Implication: choice of specialized model needs to be periodically changed

Results from object detection 
task on tra!c camera video 

Periodic update = every 4 seconds

Challenge: cost of pro"ling to 
adaptively determine which 
model to run eliminates 
potential bene"ts of model 
specialization

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary J. Jiang et al.
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(b) Image size
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(c) Detection model
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(d) Min bounding box size
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(e) Classi�er

Figure 3: Impact of each con�guration knob on resource-
accuracy tradeo�s. The accuracy threshold � = 0.8.
To compute the accuracy of a frame that was not sampled by
c , we use the location of objects from the previous sampled
frame. For a video segment, which consists of many frames,
we compute accuracy as the fraction of frames with F1 score
� � .1 The above metric for accuracy nicely lends itself to
composing application-level metrics. For instance, in a tra�c
analytics deployment [25], measuring the fraction of frames
with F1 score � 0.7 was a good indicator of the error in the
application-level tra�c counts. Note that our techniques can
also directly work with other accuracy metrics.
Cost (resource consumption): We use average GPU pro-
cessing time (with 100% utilization) per frame as the met-
ric of resource consumption, because GPU is the dominant
resource for the majority of video processing workloads.
Further, the performance of NN-based inference is more
dependent on GPU cycles than typical data analytics tasks.
Performance impact: Figure 3 shows how the con�gura-
tion knobs a�ect the performance of object detection, mea-
sured by accuracy and resource consumption. We use a
dataset of 120 clips of tra�c videos (30fps frame rate and
960p resolution, see §6.1 for details). Di�erent points rep-
resent the resource-accuracy tradeo�s of setting each knob
to di�erent values while �xing other knobs to their most
expensive values. We see that one can reduce resource con-
sumption by tuning the values of these con�gurations, an
observation that has informed other work [32].
At the same time, however, we notice that reducing re-

source consumption leads to substantial accuracy degrada-
tion. This is because a �xed con�guration is used for the
entirety of each video (several minutes), during which the
content changes signi�cantly. In the next section, we show
that the relationship between con�guration and accuracy

1Calculating an overall accuracy based on per-frame accuracy of consecutive
frames could be biased due to correlations in the frames’ content, but we
mitigate this by using long videos sampled across di�erent hours (§6.1).
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Figure 4: Potential bene�t of updating the NN con�guration
periodically (every T = 4 seconds). Ignoring pro�ling, both ac-
curacy and cost signi�cantly improve (red), but when pro�ling
is factored in, the cost is worse (yellow) than one-time pro�ling.

has great temporal variability, so dynamically adapting the
con�guration can lead to better resource-accuracy tradeo�s.

3 POTENTIAL OF ADAPTATION
The basic premise of Chameleon is that videos and the char-
acteristics of video analytics pipelines exhibit substantial dy-
namics over time. As a result, to achieve the “best” resource-
accuracy tradeo�, we need to continuously adapt the con�g-
urations of the video pipelines.

3.1 Quantifying potential
We �rst show the value of continuous adaptation by com-
paring two simple policies for selecting NN con�gurations.
1. One-time update: This is a one-time o�ine policy that ex-

haustively pro�les all con�gurations on the �rst x seconds
of the video, picks the cheapest con�guration that has at
least � accuracy, and sticks with it for the whole duration
of the video (e.g., [32]). We use x = 10.

2. Periodic update: This policy divides the video intoT -second
intervals, and pro�les all con�gurations in each interval
for the �rst t seconds of that interval. It then sticks with
the cheapest con�guration whose accuracy is greater than
� for the rest of the interval, i.e., forT � t seconds. We use
T = 4 and t = 1 for our experiments. We examine how
sensitive the results are to T in §6.3.
Figure 4 shows the resource-accuracy tradeo�s of running

the two policies on 30 tra�c videos (there are 30 dots per
color). We set the target accuracy threshold � to 0.7 and 0.8,
respectively (we observe similar results with other thresh-
olds). The �gures show that the periodic policy (red) reduces
per-frame resource consumption by over 10⇥ and improves
the accuracy by up to 2⇥ over the one-time policy (blue).
Intuition: The intuition behind these improvements is that
the accuracy of a given con�guration can depend heavily
on the video content. If the video content becomes more
challenging (e.g., tra�c moves faster, or there is less light-
ing), using the same con�guration will negatively impact the
accuracy. Instead, we need to move to another con�guration
that will increase the accuracy, likely at the expense of us-
ing more resources. Similarly, if the video content becomes
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Reducing the cost of pro"ling
▪ The cost of pro"ling is running the candidate models at points 

in search space (pro"ling di#erent values for all knobs)  

▪ Idea 1: the set of most-likely-to-be-good models changes 
slowly over time 

▪ Idea 2: visually similar streams are likely to have similar set of 
most-likely-to-be-good candidate models 
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Employing idea 1
▪ Assume model can change every video “segment”  (e.g., 4 seconds) 
▪ Pro"le all C model con"gurations for time segment 1 

- Retain top-K con"gurations 
▪ Pro"le only top-K con"gurations in future segments  
▪ Reset after N segments

Let S be number of segments before reset (~4) 
Let K be size of candidate set (K << C) 
pro"ling cost = C + (N-1) x K <<  C x N Assumption: bad model 

con"gurations tend to remain 
bad for longer periods of time



Stanford CS348K, Spring 2021

Employing idea 2
▪ Say there are many video cameras throughout a city 
▪ Cluster video streams by visual similarity  
▪ Only one camera per cluster needs to perform full pro"ling of 

the C con"gurations to identify top-K candidate set 
- Other cameras just perform top-K pro"ling
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Intelligent pro"ling makes adaptive 
specialization pro"table

Across dataset of multiple street light cameras, 
when keeping accuracy similar, adaptive pro"ling over the 150 second 
test video yields 2-3X speedup compared to pro"ling once up front

But really the problem with pro"ling once is that accuracy is highly 
variable (see accuracy variance of blue crosses)
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Specialize “up front”

Periodically chose from a number of 
pre-specialized models”

Re-specialize the model on the $y.
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Problem: distribution shift

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV
#2250

ECCV
#2250

2 ECCV-18 submission ID 2250

Fig. 1: Images from three video streams captured by stationary cameras over a span of
several days (each row is one stream). There is significant intra-stream variance due to
time of day, changing weather conditions, and dynamic objects.

the context of fixed-viewpoint video streams, is challenging due to distribution
shift in the images observed over time. Busy urban scenes, such as those shown
in Fig. 1, constantly evolve with time of day, changing weather conditions, and
as di↵erent subjects move through the scene. Therefore, an accurate camera-
specialized model must still learn to capture a range of visual events. We make
two salient observations: each camera sees a tiny fraction of this general set of
images, and this set can be made even smaller by limiting the temporal win-
dow considered. This allows one to learn dramatically smaller and more e�cient
models, but at the cost of modeling the non-stationary distribution of imagery
observed by each camera. Fortunately, in real-world settings, scene evolution oc-
curs at a su�ciently slow rate (seconds to minutes) to provide opportunity for
online adaptation.

Our fundamental approach is based on widely-used techniques for model
distillation, whereby a lightweight “student” model is trained to output the pre-
dictions of a larger, high-capacity “teacher” model. However, we demonstrate
that naive approaches for distillation do not work well for camera specializa-
tion because of the underlying non-stationarity of the data stream. We propose
a simple, but surprisingly e↵ective, strategy of online distillation. Rather than
learning a student model on o✏ine data that has been labeled with teacher
predictions, train the student in an online fashion on the live data stream, in-
termittently running the teacher to provide a target for learning. This requires
a judicious schedule for running the teacher as well as an online adaption algo-
rithm that can process correlated streaming data. We demonstrate that existing
o✏ine solvers when carefully tuned and used in the online setting are as accurate
as the best o✏ine model trained in hindsight (e.g., with low regret [3]). Our final
approach learns compact students that perform comparably to high capacity
models trained o✏ine but o↵ers predictably low-latency inference (sub 20 ms)
and an overall 7.8⇥ reduction in computation time.

Weather, time-of-day, types of vehicles in view, etc…
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Name of the game: good training data
“We cannot stress strongly enough the importance of good training data for this 
segmentation task: choosing a wide enough variety of poses, discarding poor 
training images, cleaning up inaccurate [ground truth] polygon masks, etc. With 
each improvement we made over a 9-month period in our training data, we 
observed the quality of our defocused portraits to improve commensurately.”
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Experiment
▪ Plop camera down in a new environment 
▪ We want a specialized (tiny) model for processing the stream from 

this camera 
▪ How much data is needed to train the model?

time
training data test

time

training data test

time

training data test
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Continuous model adaptation
▪ Tiny, e!cient models can retain high accuracy for complex 

tasks in challenging environments if they are continuously 
specialized to the contents of video streams 

▪ A.k.a. Don’t worry about carefully sampling everything you 
might see to create a good training set, just make sure you 
can adapt quickly online when you see it
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Example task: semantic segmentation
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JITNet (“Just-in-time net”)
▪ Step 1: design a compact DNN that can evaluated and trained quickly 

- Our model: > 90x less $ops for inference than Mask R-CNN 
▪ Step 2: continuously retrain model as necessary as video stream evolves  

- Continuously train tiny “student" model to mimic output of expensive 
“teacher” model
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JITNet model architecture
▪ Standard encoder-decoder with skips 

▪ Each block is ResNet inspired (internal skips)

鏃 15.2B FLOPs for inference on 720p video 

鏃 Trains at high learning rates (0.01) and high 
momentum (0.9)
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Online model distillation: results

Mask R-CNN 
300ms/frame

Online JITNet 
(~20x faster including training)
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Online model distillation: results

Mask R-CNN 
300ms/frame

Online JITNet 
(~7.3x faster including training)
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Online model distillation: results

Mask R-CNN 
300ms/frame

Online JITNet 
(~9x faster including training)
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Discussion: 
When should the cameras always be on?



Stanford CS348K, Spring 2021

Analyzing images for robot navigation
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Analyzing images for urban e!ciency

“Managing urban areas has become one of the most 
important development challenges of the 21st 
century. Our success or failure in building sustainable 
cities will be a major factor in the success of the 
post-2015 UN development agenda.”  

- UN Dept. of Economic and Social A#airs
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Analyzing egocentric images to augment humans

What does this say?

What is this?

Gwangjiang Market (Seoul)
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Some recent examples
Comprehensive capture of athlete performance

Image credit: Second Spectrum
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Some recent examples
Comprehensive capture of athlete performance

Image credit: Second Spectrum
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Comprehensive capture of 
worker performance?
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Some recent examples
Surveillance of hospital workers (hand washing)

Towards Vision-Based Smart Hospitals: A System for Tracking and Monitoring Hand Hygiene Compliance 
Haque et al. 2017
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Surveillance for contact tracing
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Privacy and ethics in a world with always-on video
Image credit: 

The Circle (movie)
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Discussion: 
What are your standards for when observational 

technology is reasonable to be deployed? 

What safeguards (both technical and non-technical) 
should be put in place to protect privacy?
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Summary
▪ An increasing number of cameras across the world will be capturing near 

continuous video 

▪ Many applications will seek to extract value from these data streams 
- Implications for e!ciency of cities (transportation, infrastructure 

monitoring), brick-and-mortar commerce, security, health-care, 
robotics, human-robot interactions, autonomous vehicles 

▪ Need signi"cant e!ciency gains to process this worldwide visual signal 
- We’ve already talked about hardware specialization 
- Today’s focus: specialization of model to video stream or scene context


