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So far in class
▪ Computational photography algorithms and their mapping to 

e!cient systems (plus abstractions for expressing and scheduling 
these algorithms 

▪ Deep learning workloads and their mapping to e!cient systems 
- And the design of specialized hardware for DNN workloads 
- And discussions of where abstractions/system support might be 

lacking 

▪ Video compression and video conferencing workloads and systems 
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This image was rendered in real-time on a 
single high-end GPU
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So was this
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Real-time ray tracing
▪ Exciting example of co-design of algorithms, specialized 

hardware, and software abstractions 

▪ It’s becoming increasingly clear that the immediate future of 
real-time graphics will involve large amounts of ray tracing

NVIDIA GeForce RTX 3080 GPU
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Ray tracing in one class

Take that Pete Shirley!
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The “visibility problem” in computer graphics
▪ Stated in terms of casting rays from a simulated camera: 

- What scene primitive is “hit” by a ray originating from a point on the virtual 
sensor and traveling through the aperture of the pinhole camera? (coverage) 

- What scene primitive is the "rst hit along that ray? (occlusion)

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

o,do,d
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In this class: scene geometry = triangles
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Basic “ray casting” algorithm to render a picture
Sample = a ray in 3D 
Coverage: 3D ray-triangle intersection tests  (does ray “hit” triangle) 
Occlusion: closest intersection along ray

initialize color[]                                 // store scene color for all samples 
for each sample s in frame buffer:                 // loop 1: over visibility samples (rays) 
    r = ray from s on sensor through pinhole aperture 
    r.min_t = INFINITY                             // only store closest-so-far for current ray 
    r.tri = NULL; 
    for each triangle tri in scene:                  // loop 2: over triangles 
        if (intersects(r, tri)) {                    // 3D ray-triangle intersection test 
            if (intersection distance along ray is closer than r.min_t) 
                update r.min_t and r.tri = tri; 
        } 
    color[s] = compute surface color of triangle r.tri at hit point  

Compared to rasterization approach: just a reordering of the loops! 
“Given a ray, !nd the closest triangle it hits.”
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Does a ray (in 3D) hit a triangle (in 3D)?
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Ray equation
▪ Can express ray as:

“time”
point along ray

origin unit direction
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Review: matrix form of a line (and a plane)
Line is de"ned by: 

- Its normal: N 
- A point x0 on the line

X
N

x0

The line (in 2D) is all points x, 
where x - x0 is orthogonal to N.

(And a plane (in 3D) is all points x where x - x0 is orthogonal to N.) 

(N, x, x0 are 2-vectors)

(N, x, x0 are 3-vectors)
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Now solve for t: 

And plug t back into ray equation:

Ray-plane intersection
▪ Suppose we have a plane NTx = c 

- N - unit normal 
- c - o#set 

▪ How do we "nd intersection with ray r(t) = o + td?

Replace the point x with the ray equation t:
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Barycentric coordinates (as ratio of areas)
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Why must coordinates sum to one?

Barycentric coords are signed areas:

Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

AC =
1

2
(b� a)⇥ (x� a)Area of triangle formed 

by points: a, b, x 
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Ray-triangle intersection
▪ Algorithm: 

- Compute ray-plane intersection 
- Compute barycentric coordinates of hit point 
- If barycentric coordinates are all positive, point is in 

triangle 

▪ Many di#erent techniques if you care about e!ciency
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Basic ray casting algorithm
Sample = a ray in 3D 
Coverage: 3D ray-triangle intersection tests  (does ray “hit” triangle) 
Occlusion: closest intersection along ray
initialize color[]                                 // store scene color for all samples 
for each sample s in frame buffer:                 // loop 1: visibility samples (rays) 
    r = ray from s on sensor through pinhole aperture 
    r.closest_dist = INFINITY                        // only store closest-so-far for current ray 
    r.closest_tri = NULL; 
    for each triangle tri in scene:                  // loop 2: triangles 
        if (intersects(r, tri)) {                    // 3D ray-triangle intersection test 
            if (intersection distance along ray is closer than r.closest_dist) 
                update r.closest_dist and r.closest_tri = tri; 
        } 
    color[s] = compute surface color of triangle r.tri at hit point  // hit shader

“Given a ray, "nd the closest triangle it hits” 

We’ll replace this brute force O(N) loop: “for each triangle, see if it’s the closest” soon with 
an acceleration structure in a few slides… 
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What object is visible to the camera? 
What light sources are visible from a point on a surface (is a surface in shadow?) 
What re$ection is visible on a surface?

Generality of ray-scene queries

Virtual 
Sensor
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Takeaway: 
ray-triangle intersection is an 
arithmetically rich operation
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Ray-scene intersection
Given a scene de"ned by a set of N primitives and a ray r, "nd the 
closest point of intersection of r with the scene

p_closest = NULL 
t_closest = inf 
for each primitive p in scene: 
   t = p.intersect(r) 
   if t >= 0 && t < t_closest: 
      t_closest = t 
      p_closest = p 
            

“Find the "rst primitive the ray hits”

O(N)Complexity?
Can we do better?

(Assume p.intersect(r) returns value of t corresponding to 
the point of intersection with ray r)
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 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!
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Can we also reorganize scene primitives to 
enable fast ray-scene intersection queries?
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Simple case (rays miss bounding box of scene)
o,d

o,d
Ray misses bounding box of all primitives in scene

Cost (misses box): 
preprocessing: O(n) 
ray-box test: O(1) 
amortized cost*: O(1)

*amortized over many ray-scene intersection tests
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Another (should be) simple case
o,d

o,d

Cost (hits box): 
preprocessing: O(n) 
ray-box test: O(1) 
triangle tests: O(n) 
amortized cost*: O(n)

*amortized over many ray-scene intersection tests

Still no better than 
naïve algorithm 

(test all triangles)!
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Q: How can we do better?
A: Apply this strategy hierarchically
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Bounding volume hierarchy (BVH)

Root
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Bounding volume hierarchy (BVH)
▪ BVH partitions each node’s primitives into disjoints sets 

- Note: the sets can overlap in space (see example below) 
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Bounding volume hierarchy (BVH)
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C D

B

Bounding volume hierarchy (BVH)

A

A
B

C

D

▪ Leaf nodes: 
- Contain small list of primitives 

▪ Interior nodes: 
- Proxy for a large subset of primitives 
- Stores bounding box for all primitives in subtree
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Bounding volume hierarchy (BVH)
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Left: two di#erent BVH 
organizations of the same 
scene containing 22 
primitives.  

Is one BVH better than the 
other?
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Ray-scene intersection using a BVH
struct BVHNode {
   bool leaf;  // true if node is a leaf
   BBox bbox;  // min/max coords of enclosed primitives
   BVHNode* child1; // “left” child (could be NULL)
   BVHNode* child2; // “right” child (could be NULL)
   Primitive* primList; // for leaves, stores primitives
};

struct HitInfo {
   Primitive* prim;  // which primitive did the ray hit?
   float t;          // at what t value along ray?
};

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {
   HitInfo hit = intersect(ray, node->bbox);  // test ray against node’s bounding box
   if (hit.t > closest.t))
      return; // don’t update the hit record

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim != NULL && hit.t < closest.t) {
            closest.prim = p;
            closest.t = t;
         }
      }
   } else {
      find_closest_hit(ray, node->child1, closest);
      find_closest_hit(ray, node->child2, closest);
   }}

Can this occur if ray hits the box? 
(assume hit.t is INF if ray misses box)

node

child1
child2
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Improvement: “front-to-back” traversal

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim != NULL && t < closest.t) {
            closest.prim = p;
            closest.t = t;
         }
      }
   } else {
      HitInfo hit1 = intersect(ray, node->child1->bbox);
      HitInfo hit2 = intersect(ray, node->child2->bbox);

      NVHNode* first = (hit1.t <= hit2.t) ? child1 : child2;
      NVHNode* second = (hit1.t <= hit2.t) ? child2 : child1;

      find_closest_hit(ray, first, closest);
      if (second child’s t is closer than closest.t)  
         find_closest_hit(ray, second, closest); // why might we still need to do this?
   }
}

“Front to back” traversal. 
Traverse to closest child node "rst. 
Why? 

node

child1

child2

New invariant compared to last slide: 
assume "nd_closest_hit() is only called for nodes where 
ray intersects bbox.
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Aside: another type of query: any hit
Sometimes it is useful to know if the ray hits ANY primitive in the 
scene at all (don’t care about distance to "rst hit)

bool find_any_hit(Ray* ray, BVHNode* node) {

   if (!intersect(ray, node->bbox))
      return false;

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim)
            return true;
   } else {

 return ( find_closest_hit(ray, node->child1, closest) ||
              find_closest_hit(ray, node->child2, closest) );
   }
}

Interesting question of which child to enter 
"rst. How might you make a good decision? 
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Why “any hit” queries?

P

L1

L2

Shadow computations!



Stanford CS348K, Spring 2021

Takeaway: 
Ray-BVH traversal generates 

unpredictable (data-dependent) 
access to an irregular data structure

(Later we’ll talk about why this can create situations 
where traversal is bandwidth-limited)
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For a given set of primitives, there are 
many possible BVHs 

(~2N ways to partition N primitives into two groups) 

Q: How do we build a high-quality BVH?
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How would you partition these triangles 
into two groups?
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What about these?
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Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition 
Intuition: want small bounding boxes (minimize overlap between children, 

avoid bboxes with signi"cant empty space)
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What are we really trying to do?
A good partitioning minimizes the expected cost of "nding the 
closest intersection of a ray with the scene primitives in the node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere                            is the cost of ray-primitive 
intersection for primitive i in the node.                

(Common to assume all primitives have the same cost)



Stanford CS348K, Spring 2021

Cost of making a partition
A good partitioning minimizes the expected cost of "nding the closest 
intersection of a ray with primitives in the node.

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data + bbox intersection check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees
C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

Remaining question: how do we get the probabilities pA, pB?
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Estimating probabilities
▪ For convex object A inside convex object B, the probability 

that a random ray that hits B also hits A is given by the ratio 
of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Leads to surface area heuristic (SAH):

Assumptions of the SAH (which may not hold in practice!): 
- Rays are randomly distributed 
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect
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Implementing partitions
▪ Constrain search for good partitions to axis-aligned spatial partitions 

- Choose an axis; choose a split plane on that axis 
- Partition primitives by the side of splitting plane their centroid lies 
- SAH changes only when split plane moves past triangle boundary 
- Have to consider large number of possible split planes… O(# objects)
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E!ciently implementing partitioning
▪ E!cient modern approximation: split spatial extent of 

primitives into B buckets (B is typically small: B < 32) 

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z: 
   initialize bucket counts to 0, per-bucket bboxes to empty 
   For each primitive p in node: 
      b = compute_bucket(p.centroid) 
      b.bbox.union(p.bbox); 
      b.prim_count++; 
   For each of the B-1 possible partitioning planes evaluate SAH 
Use lowest cost partition found (or make node a leaf)
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Why do we trace rays?
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Shadows

Image credit: Grand Theft Auto V
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How to compute if a surface point is in shadow?

x

P

L1

L2

Assume you have an 
algorithm for ray-scene 
intersection…
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A simple shadow computation algorithm
▪ Trace ray from point P to 

location Li of light source 

▪ If ray hits scene object 
before reaching light 
source… then P is in 
shadow

x

P

L1

L2
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Soft shadows

Image credit: Pixar

Hard shadows 
(created by point light source)

Soft shadows 
(created by ???)
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Shadow cast by an area light

▪ Based on ray tracing… 

▪ Trace ray from point P to 
location Li of light source 

▪ If ray hits scene object before 
reaching light source… then 
P is in shadow

x

P1

P2

Notice that a fraction of the light from 
an area light may reach a point.

(Fully lit)

(Partially lit)
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Sampling based algorithm

x

P

PL
Goal: estimate the amount of 
light from area source arriving 
at a surface point P

▪ For all samples: 
- Randomly pick a point PL on the area light: 
- Determine if surface point P is in shadow with respect to PL 

- Compute contribution to illumination from PL

Implication: must trace many rays per pixel!
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4 area light samples 
(high variance in irradiance estimate)
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16 area light samples 
(lower variance in irradiance estimate)
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Re$ections

Image credit: NVIDIA
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Recall: perfect mirror re$ection

x

P1

P2

P3

Light re$ected from P1 in 
direction of P0 is incident on P1 
from re$ection about surface 
normal at P1.

p0
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Direct illumination + re$ection + transparency

Image credit: Henrik Wann Jensen
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Global illumination solution

Image credit: Henrik Wann Jensen
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Accounting for indirect illumination

Pinhole x

y

p
!o

!i

Lo(p,!o)

Implication: even more ray tracing per pixel!
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Sampling light paths

Image credit: Wann Jensen, Hanrahan
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Direct illumination

p
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One-bounce global illumination

p
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Sixteen-bounce global illumination

p
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One sample per pixel
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32 samples per pixel
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1024 samples per pixel
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Understanding ray coherence
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Ray traversal “coherence”

1 

2 
3 

4 

5 

C E 

F

D

B

B

C D

E F

1 2 

3 4 5 

6 

G
6 

A

A

G 

r0, r1 

r0 r1 

r0 visits nodes: A, B, D, E… 
r1 visits nodes: A, B, D, E… 

Bandwidth reduction: BVH nodes (and triangles) loaded into cache 
for computing scene intersection with r0 are cache hits for r1
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Ray traversal “divergence”

1 

2 
3 

4 

5 

C E 
F

D

B

B

C D

E F

1 2 

3 4 5 

6 

G
6 

A

A

G 

r0 

r0 visits nodes: A, B, D, E… 
r1 visits nodes: A, B, D, E… 

r1 

r2

r2 

r3 

r2 visits nodes: A, B, D, E, C… 
r3 visits nodes: A, B, D, E, G… 

R2 and R3 require di#erent BVH nodes and triangles 

r3
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Incoherent rays
Incoherence is a property of both the rays and the scene

Example: random rays are “coherent” with respect to the BVH if the scene is one big triangle!
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Incoherent rays
Incoherence is a property of both the rays and the scene

Similarly oriented rays from the same point become “incoherent” with 
respect to lower nodes in the BVH if a scene is overly detailed 

(Side note: this suggests the importance of choosing the right geometric level of detail)
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Ray incoherence
Nearby rays may hit di#erent surfaces, with di#erent “shaders”
Consider implications for SIMD processing
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Perfect specular re$ection material

Image credit: PBRT
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More complex materials: glint
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Velvet

[Westin et al. 1992]
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Subsurface scattering
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When rays hit di#erent surfaces…
Surface shading incoherence: 
Di#erent code paths needed to compute the re$ectance of 
di#erent materials



Stanford CS348K, Spring 2021

Parallelizing ray-scene intersection
▪ Parallelize across rays 

- Simultaneously intersect multiple rays with scene 
- Enables wide data-parallel execution
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Parallelizing single ray-scene queries
(Intra-ray parallelism)
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Parallelize ray-box, ray-triangle intersection

▪ Given one ray and one bounding box, there are opportunities for 
SIMD processing 
- Can use 3 of 4 vector lanes (e.g., xyz work, multiple point-plane tests, etc.) 

▪ Similar SIMD parallelism in ray-triangle test at BVH leaf 

▪ If BVH leaf nodes contain multiple triangles, can parallelize ray-
triangle intersection across these triangles 
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Parallelize over BVH child nodes

▪ Idea: use wider-branching BVH (test single ray against multiple child 
node bboxes in parallel) 
- Empirical result: BVH with branching factor four has similar work e!ciency to 

branching factor two 
- BVH with branching factor 8 or 16 is less work e!cient (diminished bene"t of 

leveraging SIMD execution) 

[Wald et al. 2008]
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Parallelizing BVH build
▪ To compute splits, parallelize across primitives 

- Recall binned SAH build is largely generating a histogram 

▪ Divide and conquer parallelism 
- After a split, both subtrees can be processed in parallel
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Building a low-quality BVH quickly

00 01

10 11

B=1 B=2

B=3 B=4

1. Discretize each dimension of scene into 2B cells 
2. Compute index of centroid of bounding box of each primitive: 

(c_i, c_j, c_k) 
3. Interleave bits of c_i, c_j, c_k to get 3B bit-Morton code 
4. Sort primitives by Morton code (primitives now ordered with high 

locality in 3D space: in a space-"lling curve!) 
- O(N) radix sort

Partition(int i, primitives): 
 node.bbox = bbox(primitives) 
 (left, right) = partition primitives by bit i 
if there are more bits: 
   Partition(left, i+1); 
   Partition(right, i+1); 
else: 
   make a leaf node

2D Morton Order

Simple, highly parallelizable BVH build:
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Modern, fast BVH construction schemes
▪ Combine greedy “top-down” divide-and-conquer build with “bottom up” 

construction techniques 

▪ Build low-quality BVH quickly using Morton Codes 

▪ Use initial BVH to accelerate construction of high-quality BVH 

▪ Example: [Kerras 2013]

For all treelets of size < N in original “low 
quality” BVH: (in parallel) 

 try all possible trees, keeping “optimal” 
 topology that minimizes SAH for treelet
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Re"tting (instead of rebuilding) a BVH
▪ Imagine you have a valid BVH 
▪ Now I move one of the triangles in the scene to a new location 
▪ How do I “re"t” the BVH so it is a valid BVH?

Imagine I moved a triangle 
in this red leaf node.
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Ray tracing performance challenges

To simulate advanced e#ects renderer must trace many rays per 
pixel to reduce variance (noise) that results from numerical 
integration (via Monte Carlo sampling) 

3D ray-triangle intersection math is expensive

Ray-scene intersection requires traversal through bounding 
volume hierarchy acceleration structure 

- Unpredictable data access 
- Rays are essentially randomly oriented after enough bounces


