
Visual Computing Systems
Stanford CS348K, Spring 2021

Lecture 14:

Real Time Ray Tracing
Workload

Stanford CS348K, Spring 2021

So far in class
▪ Computational photography algorithms and their mapping to

e!cient systems (plus abstractions for expressing and scheduling
these algorithms

▪ Deep learning workloads and their mapping to e!cient systems
- And the design of specialized hardware for DNN workloads
- And discussions of where abstractions/system support might be

lacking

▪ Video compression and video conferencing workloads and systems

Stanford CS348K, Spring 2021

This image was rendered in real-time on a
single high-end GPU

Stanford CS348K, Spring 2021

So was this

Stanford CS348K, Spring 2021

Real-time ray tracing
▪ Exciting example of co-design of algorithms, specialized

hardware, and software abstractions

▪ It’s becoming increasingly clear that the immediate future of
real-time graphics will involve large amounts of ray tracing

NVIDIA GeForce RTX 3080 GPU

Stanford CS348K, Spring 2021

Ray tracing in one class

Take that Pete Shirley!

Stanford CS348K, Spring 2021

The “visibility problem” in computer graphics
▪ Stated in terms of casting rays from a simulated camera:

- What scene primitive is “hit” by a ray originating from a point on the virtual
sensor and traveling through the aperture of the pinhole camera? (coverage)

- What scene primitive is the "rst hit along that ray? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

o,do,d

Stanford CS348K, Spring 2021

In this class: scene geometry = triangles

Stanford CS348K, Spring 2021

Basic “ray casting” algorithm to render a picture
Sample = a ray in 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

initialize color[] // store scene color for all samples
for each sample s in frame buffer: // loop 1: over visibility samples (rays)
 r = ray from s on sensor through pinhole aperture
 r.min_t = INFINITY // only store closest-so-far for current ray
 r.tri = NULL;
 for each triangle tri in scene: // loop 2: over triangles
 if (intersects(r, tri)) { // 3D ray-triangle intersection test
 if (intersection distance along ray is closer than r.min_t)
 update r.min_t and r.tri = tri;
 }
 color[s] = compute surface color of triangle r.tri at hit point

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, !nd the closest triangle it hits.”

Stanford CS348K, Spring 2021

Does a ray (in 3D) hit a triangle (in 3D)?

Stanford CS348K, Spring 2021

Ray equation
▪ Can express ray as:

“time”
point along ray

origin unit direction

Stanford CS348K, Spring 2021

Review: matrix form of a line (and a plane)
Line is de"ned by:

- Its normal: N
- A point x0 on the line

X
N

x0

The line (in 2D) is all points x,
where x - x0 is orthogonal to N.

(And a plane (in 3D) is all points x where x - x0 is orthogonal to N.)

(N, x, x0 are 2-vectors)

(N, x, x0 are 3-vectors)

Stanford CS348K, Spring 2021

Now solve for t:

And plug t back into ray equation:

Ray-plane intersection
▪ Suppose we have a plane NTx = c

- N - unit normal
- c - o#set

▪ How do we "nd intersection with ray r(t) = o + td?

Replace the point x with the ray equation t:

Stanford CS348K, Spring 2021

Barycentric coordinates (as ratio of areas)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

AC

AB
AA

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

2

Why must coordinates sum to one?

Barycentric coords are signed areas:

Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

AC =
1

2
(b� a)⇥ (x� a)Area of triangle formed

by points: a, b, x

Stanford CS348K, Spring 2021

Ray-triangle intersection
▪ Algorithm:

- Compute ray-plane intersection
- Compute barycentric coordinates of hit point
- If barycentric coordinates are all positive, point is in

triangle

▪ Many di#erent techniques if you care about e!ciency

Stanford CS348K, Spring 2021

Basic ray casting algorithm
Sample = a ray in 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray
initialize color[] // store scene color for all samples
for each sample s in frame buffer: // loop 1: visibility samples (rays)
 r = ray from s on sensor through pinhole aperture
 r.closest_dist = INFINITY // only store closest-so-far for current ray
 r.closest_tri = NULL;
 for each triangle tri in scene: // loop 2: triangles
 if (intersects(r, tri)) { // 3D ray-triangle intersection test
 if (intersection distance along ray is closer than r.closest_dist)
 update r.closest_dist and r.closest_tri = tri;
 }
 color[s] = compute surface color of triangle r.tri at hit point // hit shader

“Given a ray, "nd the closest triangle it hits”

We’ll replace this brute force O(N) loop: “for each triangle, see if it’s the closest” soon with
an acceleration structure in a few slides…

Stanford CS348K, Spring 2021

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What re$ection is visible on a surface?

Generality of ray-scene queries

Virtual
Sensor

Stanford CS348K, Spring 2021

Takeaway:
ray-triangle intersection is an
arithmetically rich operation

Stanford CS348K, Spring 2021

Ray-scene intersection
Given a scene de"ned by a set of N primitives and a ray r, "nd the
closest point of intersection of r with the scene

p_closest = NULL
t_closest = inf
for each primitive p in scene:
 t = p.intersect(r)
 if t >= 0 && t < t_closest:
 t_closest = t
 p_closest = p

“Find the "rst primitive the ray hits”

O(N)Complexity?
Can we do better?

(Assume p.intersect(r) returns value of t corresponding to
the point of intersection with ray r)

Stanford CS348K, Spring 2021

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

Can we also reorganize scene primitives to
enable fast ray-scene intersection queries?

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

 CMU 15-462/662, Fall 2015

Assignment 2, Part II is out!

Stanford CS348K, Spring 2021

Simple case (rays miss bounding box of scene)
o,d

o,d
Ray misses bounding box of all primitives in scene

Cost (misses box):
preprocessing: O(n)
ray-box test: O(1)
amortized cost*: O(1)

*amortized over many ray-scene intersection tests

Stanford CS348K, Spring 2021

Another (should be) simple case
o,d

o,d

Cost (hits box):
preprocessing: O(n)
ray-box test: O(1)
triangle tests: O(n)
amortized cost*: O(n)

*amortized over many ray-scene intersection tests

Still no better than
naïve algorithm

(test all triangles)!

Stanford CS348K, Spring 2021

Q: How can we do better?
A: Apply this strategy hierarchically

Stanford CS348K, Spring 2021

Bounding volume hierarchy (BVH)

Root

Stanford CS348K, Spring 2021

Bounding volume hierarchy (BVH)
▪ BVH partitions each node’s primitives into disjoints sets

- Note: the sets can overlap in space (see example below)

Stanford CS348K, Spring 2021

Bounding volume hierarchy (BVH)

Stanford CS348K, Spring 2021

C D

B

Bounding volume hierarchy (BVH)

A

A
B

C

D

▪ Leaf nodes:
- Contain small list of primitives

▪ Interior nodes:
- Proxy for a large subset of primitives
- Stores bounding box for all primitives in subtree

Stanford CS348K, Spring 2021

Bounding volume hierarchy (BVH)

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

A

B

C

D E

F G

A

B C

D E F G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15, 16,17

18,19,20,
21,22

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

AB C

D E

F G

A

B C

D F E G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15,16,17

18,19,20,
21,22

Left: two di#erent BVH
organizations of the same
scene containing 22
primitives.

Is one BVH better than the
other?

Stanford CS348K, Spring 2021

Ray-scene intersection using a BVH
struct BVHNode {
 bool leaf; // true if node is a leaf
 BBox bbox; // min/max coords of enclosed primitives
 BVHNode* child1; // “left” child (could be NULL)
 BVHNode* child2; // “right” child (could be NULL)
 Primitive* primList; // for leaves, stores primitives
};

struct HitInfo {
 Primitive* prim; // which primitive did the ray hit?
 float t; // at what t value along ray?
};

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {
 HitInfo hit = intersect(ray, node->bbox); // test ray against node’s bounding box
 if (hit.t > closest.t))
 return; // don’t update the hit record

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim != NULL && hit.t < closest.t) {
 closest.prim = p;
 closest.t = t;
 }
 }
 } else {
 find_closest_hit(ray, node->child1, closest);
 find_closest_hit(ray, node->child2, closest);
 }}

Can this occur if ray hits the box?
(assume hit.t is INF if ray misses box)

node

child1
child2

Stanford CS348K, Spring 2021

Improvement: “front-to-back” traversal

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim != NULL && t < closest.t) {
 closest.prim = p;
 closest.t = t;
 }
 }
 } else {
 HitInfo hit1 = intersect(ray, node->child1->bbox);
 HitInfo hit2 = intersect(ray, node->child2->bbox);

 NVHNode* first = (hit1.t <= hit2.t) ? child1 : child2;
 NVHNode* second = (hit1.t <= hit2.t) ? child2 : child1;

 find_closest_hit(ray, first, closest);
 if (second child’s t is closer than closest.t)
 find_closest_hit(ray, second, closest); // why might we still need to do this?
 }
}

“Front to back” traversal.
Traverse to closest child node "rst.
Why?

node

child1

child2

New invariant compared to last slide:
assume "nd_closest_hit() is only called for nodes where
ray intersects bbox.

Stanford CS348K, Spring 2021

Aside: another type of query: any hit
Sometimes it is useful to know if the ray hits ANY primitive in the
scene at all (don’t care about distance to "rst hit)

bool find_any_hit(Ray* ray, BVHNode* node) {

 if (!intersect(ray, node->bbox))
 return false;

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim)
 return true;
 } else {

 return (find_closest_hit(ray, node->child1, closest) ||
 find_closest_hit(ray, node->child2, closest));
 }
}

Interesting question of which child to enter
"rst. How might you make a good decision?

Stanford CS348K, Spring 2021

Why “any hit” queries?

P

L1

L2

Shadow computations!

Stanford CS348K, Spring 2021

Takeaway:
Ray-BVH traversal generates

unpredictable (data-dependent)
access to an irregular data structure

(Later we’ll talk about why this can create situations
where traversal is bandwidth-limited)

Stanford CS348K, Spring 2021

For a given set of primitives, there are
many possible BVHs

(~2N ways to partition N primitives into two groups)

Q: How do we build a high-quality BVH?

Stanford CS348K, Spring 2021

How would you partition these triangles
into two groups?

Stanford CS348K, Spring 2021

What about these?

Stanford CS348K, Spring 2021

Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition
Intuition: want small bounding boxes (minimize overlap between children,

avoid bboxes with signi"cant empty space)

Stanford CS348K, Spring 2021

What are we really trying to do?
A good partitioning minimizes the expected cost of "nding the
closest intersection of a ray with the scene primitives in the node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere is the cost of ray-primitive
intersection for primitive i in the node.

(Common to assume all primitives have the same cost)

Stanford CS348K, Spring 2021

Cost of making a partition
A good partitioning minimizes the expected cost of "nding the closest
intersection of a ray with primitives in the node.

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data + bbox intersection check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees
C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

Remaining question: how do we get the probabilities pA, pB?

Stanford CS348K, Spring 2021

Estimating probabilities
▪ For convex object A inside convex object B, the probability

that a random ray that hits B also hits A is given by the ratio
of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Leads to surface area heuristic (SAH):

Assumptions of the SAH (which may not hold in practice!):
- Rays are randomly distributed
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect

Stanford CS348K, Spring 2021

Implementing partitions
▪ Constrain search for good partitions to axis-aligned spatial partitions

- Choose an axis; choose a split plane on that axis
- Partition primitives by the side of splitting plane their centroid lies
- SAH changes only when split plane moves past triangle boundary
- Have to consider large number of possible split planes… O(# objects)

Stanford CS348K, Spring 2021

E!ciently implementing partitioning
▪ E!cient modern approximation: split spatial extent of

primitives into B buckets (B is typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z:
 initialize bucket counts to 0, per-bucket bboxes to empty
 For each primitive p in node:
 b = compute_bucket(p.centroid)
 b.bbox.union(p.bbox);
 b.prim_count++;
 For each of the B-1 possible partitioning planes evaluate SAH
Use lowest cost partition found (or make node a leaf)

Stanford CS348K, Spring 2021

Why do we trace rays?

Stanford CS348K, Spring 2021

Shadows

Image credit: Grand Theft Auto V

Stanford CS348K, Spring 2021

How to compute if a surface point is in shadow?

x

P

L1

L2

Assume you have an
algorithm for ray-scene
intersection…

Stanford CS348K, Spring 2021

A simple shadow computation algorithm
▪ Trace ray from point P to

location Li of light source

▪ If ray hits scene object
before reaching light
source… then P is in
shadow

x

P

L1

L2

Stanford CS348K, Spring 2021

Soft shadows

Image credit: Pixar

Hard shadows
(created by point light source)

Soft shadows
(created by ???)

Stanford CS348K, Spring 2021

Shadow cast by an area light

▪ Based on ray tracing…

▪ Trace ray from point P to
location Li of light source

▪ If ray hits scene object before
reaching light source… then
P is in shadow

x

P1

P2

Notice that a fraction of the light from
an area light may reach a point.

(Fully lit)

(Partially lit)

Stanford CS348K, Spring 2021

Sampling based algorithm

x

P

PL
Goal: estimate the amount of
light from area source arriving
at a surface point P

▪ For all samples:
- Randomly pick a point PL on the area light:
- Determine if surface point P is in shadow with respect to PL

- Compute contribution to illumination from PL

Implication: must trace many rays per pixel!

Stanford CS348K, Spring 2021

4 area light samples
(high variance in irradiance estimate)

Stanford CS348K, Spring 2021

16 area light samples
(lower variance in irradiance estimate)

Stanford CS348K, Spring 2021

Re$ections

Image credit: NVIDIA

Stanford CS348K, Spring 2021

Recall: perfect mirror re$ection

x

P1

P2

P3

Light re$ected from P1 in
direction of P0 is incident on P1
from re$ection about surface
normal at P1.

p0

Stanford CS348K, Spring 2021

Direct illumination + re$ection + transparency

Image credit: Henrik Wann Jensen

Stanford CS348K, Spring 2021

Global illumination solution

Image credit: Henrik Wann Jensen

Stanford CS348K, Spring 2021

Accounting for indirect illumination

Pinhole x

y

p
!o

!i

Lo(p,!o)

Implication: even more ray tracing per pixel!

Stanford CS348K, Spring 2021

Sampling light paths

Image credit: Wann Jensen, Hanrahan

Stanford CS348K, Spring 2021

Direct illumination

p

Stanford CS348K, Spring 2021

One-bounce global illumination

p

Stanford CS348K, Spring 2021

Sixteen-bounce global illumination

p

Stanford CS348K, Spring 2021

One sample per pixel

Stanford CS348K, Spring 2021

32 samples per pixel

Stanford CS348K, Spring 2021

1024 samples per pixel

Stanford CS348K, Spring 2021

Understanding ray coherence

Stanford CS348K, Spring 2021

Ray traversal “coherence”

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

r0, r1

r0 r1

r0 visits nodes: A, B, D, E…
r1 visits nodes: A, B, D, E…

Bandwidth reduction: BVH nodes (and triangles) loaded into cache
for computing scene intersection with r0 are cache hits for r1

Stanford CS348K, Spring 2021

Ray traversal “divergence”

1

2
3

4

5

C E
F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

r0

r0 visits nodes: A, B, D, E…
r1 visits nodes: A, B, D, E…

r1

r2

r2

r3

r2 visits nodes: A, B, D, E, C…
r3 visits nodes: A, B, D, E, G…

R2 and R3 require di#erent BVH nodes and triangles

r3

Stanford CS348K, Spring 2021

Incoherent rays
Incoherence is a property of both the rays and the scene

Example: random rays are “coherent” with respect to the BVH if the scene is one big triangle!

Stanford CS348K, Spring 2021

Incoherent rays
Incoherence is a property of both the rays and the scene

Similarly oriented rays from the same point become “incoherent” with
respect to lower nodes in the BVH if a scene is overly detailed

(Side note: this suggests the importance of choosing the right geometric level of detail)

Stanford CS348K, Spring 2021

Ray incoherence
Nearby rays may hit di#erent surfaces, with di#erent “shaders”
Consider implications for SIMD processing

Stanford CS348K, Spring 2021

Perfect specular re$ection material

Image credit: PBRT

Stanford CS348K, Spring 2021

More complex materials: glint

Stanford CS348K, Spring 2021

Velvet

[Westin et al. 1992]

Stanford CS348K, Spring 2021

Subsurface scattering

Stanford CS348K, Spring 2021

When rays hit di#erent surfaces…
Surface shading incoherence:
Di#erent code paths needed to compute the re$ectance of
di#erent materials

Stanford CS348K, Spring 2021

Parallelizing ray-scene intersection
▪ Parallelize across rays

- Simultaneously intersect multiple rays with scene
- Enables wide data-parallel execution

Stanford CS348K, Spring 2021

Parallelizing single ray-scene queries
(Intra-ray parallelism)

Stanford CS348K, Spring 2021

Parallelize ray-box, ray-triangle intersection

▪ Given one ray and one bounding box, there are opportunities for
SIMD processing
- Can use 3 of 4 vector lanes (e.g., xyz work, multiple point-plane tests, etc.)

▪ Similar SIMD parallelism in ray-triangle test at BVH leaf

▪ If BVH leaf nodes contain multiple triangles, can parallelize ray-
triangle intersection across these triangles

Stanford CS348K, Spring 2021

Parallelize over BVH child nodes

▪ Idea: use wider-branching BVH (test single ray against multiple child
node bboxes in parallel)
- Empirical result: BVH with branching factor four has similar work e!ciency to

branching factor two
- BVH with branching factor 8 or 16 is less work e!cient (diminished bene"t of

leveraging SIMD execution)

[Wald et al. 2008]

Stanford CS348K, Spring 2021

Parallelizing BVH build
▪ To compute splits, parallelize across primitives

- Recall binned SAH build is largely generating a histogram

▪ Divide and conquer parallelism
- After a split, both subtrees can be processed in parallel

Stanford CS348K, Spring 2021

Building a low-quality BVH quickly

00 01

10 11

B=1 B=2

B=3 B=4

1. Discretize each dimension of scene into 2B cells
2. Compute index of centroid of bounding box of each primitive:

(c_i, c_j, c_k)
3. Interleave bits of c_i, c_j, c_k to get 3B bit-Morton code
4. Sort primitives by Morton code (primitives now ordered with high

locality in 3D space: in a space-"lling curve!)
- O(N) radix sort

Partition(int i, primitives):
 node.bbox = bbox(primitives)
 (left, right) = partition primitives by bit i
if there are more bits:
 Partition(left, i+1);
 Partition(right, i+1);
else:
 make a leaf node

2D Morton Order

Simple, highly parallelizable BVH build:

Stanford CS348K, Spring 2021

Modern, fast BVH construction schemes
▪ Combine greedy “top-down” divide-and-conquer build with “bottom up”

construction techniques

▪ Build low-quality BVH quickly using Morton Codes

▪ Use initial BVH to accelerate construction of high-quality BVH

▪ Example: [Kerras 2013]

For all treelets of size < N in original “low
quality” BVH: (in parallel)

 try all possible trees, keeping “optimal”
 topology that minimizes SAH for treelet

Stanford CS348K, Spring 2021

Re"tting (instead of rebuilding) a BVH
▪ Imagine you have a valid BVH
▪ Now I move one of the triangles in the scene to a new location
▪ How do I “re"t” the BVH so it is a valid BVH?

Imagine I moved a triangle
in this red leaf node.

Stanford CS348K, Spring 2021

Ray tracing performance challenges

To simulate advanced e#ects renderer must trace many rays per
pixel to reduce variance (noise) that results from numerical
integration (via Monte Carlo sampling)

3D ray-triangle intersection math is expensive

Ray-scene intersection requires traversal through bounding
volume hierarchy acceleration structure

- Unpredictable data access
- Rays are essentially randomly oriented after enough bounces

