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Lecture 17:

Rendering (and Simulation) 
for Learning
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Think back to earlier in course
What was the biggest practical bottleneck to training good models?
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Data-augmentation

[Credit: Ho et al. 2019]

[Credit: Zhu et al. 2017]

A common strategy for automatically generating 
new labeled training data from a small number of 
labeled examples (as long as augmentations don’t 
change classification result)
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Using advanced rendering/simulation to 
train better models
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Carla: urban driving simulator based on Unreal Engine
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Example Carla outputs

Figure 2: Three of the sensing modalities provided by CARLA. From left to right: normal vision
camera, ground-truth depth, and ground-truth semantic segmentation. Depth and semantic segmen-
tation are pseudo-sensors that support experiments that control for the role of perception. Additional
sensor models can be plugged in via the API.

pseudo-sensor provides 12 semantic classes: road, lane-marking, traffic sign, sidewalk, fence, pole,
wall, building, vegetation, vehicle, pedestrian, and other.

In addition to sensor and pseudo-sensor readings, CARLA provides a range of measurements associ-
ated with the state of the agent and compliance with traffic rules. Measurements of the agent’s state
include vehicle location and orientation with respect to the world coordinate system (akin to GPS
and compass), speed, acceleration vector, and accumulated impact from collisions. Measurements
concerning traffic rules include the percentage of the vehicle’s footprint that impinges on wrong-way
lanes or sidewalks, as well as states of the traffic lights and the speed limit at the current location of
the vehicle. Finally, CARLA provides access to exact locations and bounding boxes of all dynamic
objects in the environment. These signals play an important role in training and evaluating driving
policies.

3 Autonomous Driving

CARLA supports development, training, and detailed performance analysis of autonomous driving
systems. We have used CARLA to evaluate three approaches to autonomous driving. The first is
a modular pipeline that relies on dedicated subsystems for visual perception, planning, and control.
This architecture is in line with most existing autonomous driving systems [21, 8]. The second
approach is based on a deep network trained end-to-end via imitation learning [4]. This approach
represents a long line of investigation that has recently attracted renewed interest [22, 16, 4]. The
third approach is based on a deep network trained end-to-end via reinforcement learning [19].

We begin by introducing notation that is common to all methods and then proceed to describe each
in turn. Consider an agent that interacts with the environment over discrete time steps. At each
time step, the agent gets an observation ot and must produce an action at. The action is a three-
dimensional vector that represents the steering, throttle, and brake. The observation ot is a tuple of
sensory inputs. This can include high-dimensional sensory observations, such as color images and
depth maps, and lower-dimensional measurements, such as speed and GPS readings.

In addition to momentary observations, all approaches also make use of a plan provided by a high-
level topological planner. This planner takes the current position of the agent and the location of the
goal as input, and uses the A⇤ algorithm to provide a high-level plan that the agent needs to follow
in order to reach the goal. This plan advises the agent to turn left, turn right, or keep straight at
intersections. The plan does not provide a trajectory and does not contain geometric information. It
is thus a weaker form of the plan that is given by common GPS navigation applications which guide
human drivers and autonomous vehicles in the physical world. We do not use metric maps.

3.1 Modular pipeline

Our first method is a modular pipeline that decomposes the driving task among the following sub-
systems: (i) perception, (ii) planning, and (iii) continuous control. Since no metric map is provided
as input, visual perception becomes a critical task. Local planning is completely dependent on the
scene layout estimated by the perception module.

The perception stack uses semantic segmentation to estimate lanes, road limits, and dynamic objects
and other hazards. In addition, a classification model is used to determine proximity to intersections.
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RGB Depth

Object type

Since renderer has complete description of 
scene, it can output detailed, fine-grained 
labels as well as RGB image.


(would be laborious to annotate)
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NVIDIA Drive Sim
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Gibson: acquire/render real world data
▪ Dataset acquired via 3D scanning (3D mesh + texture)

▪ Geometry, normals, semantics, + “photorealistic” 3D
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Enhancing CG images using learned image-to-
image transfer
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Physics simulation
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OpenAI gym:

Atari games
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OpenAI’s “OpenAI 5” Dota 2 bot



Stanford CS348K, Spring 2021

Need significant amounts 
of simulated experience 
Example: even for simple PointGoal 
navigation task: need billions of steps of 
“experience” to exceed traditional non-
learned approaches
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Deeper dive:

Accelerating reinforcement learning
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RL in 30 seconds
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agent 
action

environment 
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e.g. RGB image

Model 
Inference



Stanford CS348K, Spring 2021

RL in 30 seconds
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RL in 30 seconds
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RL in 30 seconds
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gradients

…

Many rollouts:

- Agents independently navigating 

same environments
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RL in 30 seconds
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Batch Model 
Training

Rollout 0

update 
model 

via 
SGD

Rollout 1

Rollout 2

Rollout N-1

compute loss 
gradients

…

Rollout 3

Rollout 4

…Rollout 5
…

Many rollouts:

- Agents independently navigating 

same environments

- Or different environments
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Workload summary
▪ Within a rollout


- For each step of a rollout:

- Render -> Execute policy inference -> simulate next world 

state


▪ Across *many* independent rollouts

- Simulated agents may (or may not) share scene state

- Diversity in scenes in a batch of rollouts is desirable to 

avoid overfitting, sample efficiency of learning
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System components

“Simulator” 
(updates position of agent in scene,


detects collisions with scene geometry)

Renderer 
(render scene from viewpoint of agent)

Inference/Learning 
(inference: action from rendered image,


learning: update policy model from rollouts)
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Viewpoints, scene object positions

Database of 3D assets (meshes, textures collision meshes)

Rendered framesNon-rendered state: position, compass…

Next action
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Basic design: parallelize over workers
Simulator

Renderer

Scene A

Simulator

Renderer

Scene B

Simulator

Renderer

Scene D

Simulator

Renderer

Scene A

Simulator

Renderer

Scene B

Simulator

Renderer

Scene D

Simulator

Renderer

Scene A

Simulator

Renderer

Scene C

Simulator

Renderer

Scene D

Learning 
learning: update policy model


from rollouts)
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Inference Inference Inference

Inference Inference Inference

Inference Inference Inference

Ask yourself:

1. What data gets 

communicated?

2. Can the system scale to 

sufficient parallelism?

3. Are there sync bottlenecks
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Example: Rapid (OpenAI)
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Design issues
▪ Expensive communication of weights from learner node to workers


▪ Worker nodes inefficiently run inference

- May run on CPU if simulation code on workers doesn’t require 

GPU (use cheap worker nodes that don’t feature GPUs)

- Run inference on small batches since each worker is running one 

rollout sim
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Centralize inference AND training

Simulator

Renderer

Batch 
Inference/
Learning 

(inference: action from 
rendered image,


learning: update policy model 
from rollouts)

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Scene A

Simulator

Renderer

Scene B

Simulator

Renderer

Scene D

Simulator

Renderer

Scene A

Simulator

Renderer

Scene B

Simulator

Renderer

Scene D

Simulator

Renderer

Scene A

Simulator

Renderer

Scene C

Simulator

Renderer

Scene D

Efficient batch inference/training

Centralization enables


heterogeneity (e.g., use TPU for training) 
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Advantages
▪ No communication of model weights between workers and learner


▪ Must communicate simulation state — surprisingly this can be 
compact (object locations, smaller rendered image)


▪ Can use efficient batch inference in a centralized location (batch 
over rollouts from many workers)


▪ Can use machine optimized for DNN operations in centralized 
location — e.g., run on a TPU
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REED RL
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Design issues
▪ Inefficient simulation/rendering: rendering a small image 

does not make good use of a modern GPU (rendering 
throughput is low)


▪ Duplication of computation and memory footprint (for scene 
data) across renderer/simulator instances
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What modern renderers are designed to render
(complex scenes at high resolution)
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Low-resolution images with pre-captured lighting

(from Gibson): clearly not state-of-the-art rendering! ;-)
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Often the best way to reduce communication / 
increase efficiency is often to make the best 

possible use out of one node

Can we make simulation faster?
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AI Habitat
▪ Focus on high-performance 

rendering/simulation to 
enable order of magnitude 
longer RL training runs
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Prior was still using simulators (game engines) designed to 
render large high-resolution images for human eyes.


How would you design an engine “from the ground up” for 
the RL workload?
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Main idea: design a renderer that executes rendering for 
100s-1000’s of unique rollouts in a single request
Inference/training, simulation, and rendering all operate on batches of N 
requests (rollouts)


Efficient bulk communication between three components



Stanford CS348K, Spring 2021

Example renderer output (PointNav task)
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Opportunities provided by a batch rendering interface

▪ Wide parallelism: rendering each scene in a batch is independent

- "Fill up” large parallel GPU with rendering work

- Enables graphics optimizations like pipelining frustum culling (removing off-

screen geometry before drawing it) for one environment with rendering of 
another


▪ Footprint optimizations: rendering requests in a batch can share same geometry assets

- Significantly reduces memory footprint, enables large batch size

- N ~ 256-1024 (per GPU) in our experiments: fills up large GPU

- Limit number of unique scenes in a batch to K≪N scenes.


- GPU RAM and scene size determines K


▪ Amortize communication: rendering requests in a batch can be packaged and drawn 
together


- Render frames in batch to tiles in a single large frame buffer to avoid state update
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Also, simultaneously optimize policy DNN
▪ DNN design/engineering (DNN encoder followed by policy LSTM)


▪ Reduce resolution of rendered input to from 128x128 to 64x64 


▪ Move to ResNet9-based visual encoder from ResNet50


▪ Replace key layers with performant alternatives (e.g. replace 
normalization with Fixup Initialization)


▪ Adjust learning rates and use Lamb optimization
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Example: 10,000+ FPS render→infer→train on a 
single GPU *

* But low resolution: 64x64 rendered output resolution
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Performance breakdown
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Interesting (open) rendering/simulation systems 
research questions

▪ If you had to design a rendering/simulation system “from the ground up” to support 
ML model training, what would you do differently from a modern high-performance 
game engine?


▪ What new opportunities for performance optimization are there? (amortize rendering 
across multiple virtual sensors, agents, etc.)

- What should the architecture/API to the renderer be?


▪ How much visual fidelity is needed to train models that transfer into the real-world?

- Do we even need photorealistic quality to train policies that work in the real world?

- If so, does ML-based image manipulation provide new opportunities to bridge the 

simulation to real world gap?
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Project presentation expectations
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Presentation day (next Thursday)
▪ Each group will present ~8 minutes


- Remember: write-ups are due on Friday at 5pm


▪ Short talks are tricky, so here are some tips


▪ As this point:

- If you are a performance-oriented project: are all your 

“baselines” in place

- You can run a script and produce “us” vs. “baseline” graphs


- If you are an applications project, do you have “any” result yet?

- For all projects: do you have the right test cases (datasets) to 

show off success?
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Benefit TO YOU of a good (clear) talk
▪ Non-linear increase in the impact of your work


- Others are more likely to remember and build upon your work

- Others are more likely to adopt your ideas

- Others are more likely to come up to you after the talk


▪ Clarity is highly prized in the world: the audience will remember clear 
communicators

- “Hey, that was a great talk yesterday... are you looking for a job 

anytime soon?”

- “Hey, that was a great talk, I’m working on something that you might 
find helpful.”
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Identify your audience

Tip 1

Easy: the people in this class!
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Your #1 priority should be to be clear, rather 
than be comprehensive�

(your project writeup is the place for completeness)�

Everything you say should be understandable by someone in this class.�
If you don’t think the audience will understand, leave it out (or change).�

(spend the time saying something we will understand)�

This will be much harder than it seems.  �
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Consider your audience
▪ Everyone in the audience knows about course readings/topics


- Terminology/concepts we all know about need not defined (just say 
“remember we talked about X”)


▪ Most of the audience knows little-to-nothing about the 
specific application domain or problem you are trying to solve

- Application-specific terminology should be defined or avoided


▪ Everyone wants to know the “most interesting” thing that you 
found out or accomplished (your job is to define most 
interesting for them)
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2.
Pick a focus.


Figure out what you want to say. Then say it.

(and nothing more)


 A good speaking philosophy: “every sentence matters”

Tip: for each sentence, ask yourself:


 What is the point I am trying to make?


Did the sentence I just say make that point?
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Pick a focus
▪ In this class, different projects should stress different results


▪ Some projects may wish to show a flashy demo and describe how it works 
(proof by “it works”)


▪ Other projects may wish to show a sequence of graphs (path of 
progressive optimization) and describe the optimization that took system 
from performance A to B to C


▪ Other projects may wish to clearly contrast parallel CPU vs. parallel GPU 
performance for a workload

Your job is not to explain what you did, but to explain what 
you think we should know
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Set up the problem:

establish inputs, outputs, and constraints�

(goals and assumptions)

Tip 3
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Establish goals and assumptions early
▪ Given these inputs, we wish to generate these outputs

▪ We are working under the following constraints


- Example: the outputs should have these properties


- Example: the computer graphics algorithm... 

- Should run in real time

- Should be parallelizable so it can run on a GPU

- Should not require artist intervention to get good output


- Example: the system…

- Need not compile all of Python, only this subset that we care about…  

- Should realize about 90% of the performance of hand-tuned code, with 

much lower development time
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Why is knowing the goals and constraints 
important?

Your contribution is typically a system or algorithm that 
meets the stated goals under the stated constraints.

Understanding whether a solution is “good” requires 
having this problem context.
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Image credit: Henrik Wann Jensen

Input: description of a scene:

3D surface geometry (e.g., triangle mesh)


surface materials, lights, camera, etc. 

Output: image of the scene 

Simple definition of rendering task: computing how each triangle in 3D 
mesh contributes to appearance of each pixel in the image?

Example: 3D rendering problem
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Show, don’t tell

It’s much easier to communicate with 

figures/images than text

Tip 4

(And it saves the speaker a lot of work explaining)
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Example:
▪ In a recent project, we asked the question… given enough 

video of tennis matches of a professional athlete, could we 
come up with an algorithm for turning all this input video 
into a controllable video game character?

Compare the description above to the following sequence…
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Here’s an example of that source video

The best way to describe the input data than to just show it!
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And there’s a lot of it!
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And here’s an example of controllable output

▪ James Hong, Will Crichton, Daniel Fu, Haotian Zhang


▪ Maneesh Agrawala, Kayvon Fatahalian, Geraldine Moriba

The best way to describe the output we seek is just show the result of the system!
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Another example:
▪ We had a problem in this project: input videos were taken in 

different lighting conditions, and these lighting differences 
were the cause of bad results.


▪ An anticipated audience question: “what do you mean by 
lighting differences?”
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The problem (lighting differences)
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After the fix
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Another example: a renderer that renders many views of the 
scene at the same time 
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Another example: it is difficult to train detectors 

= positive examples

= negative examples
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The audience prefers not to think (much)

Tip 5
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An audience has a finite supply of mental effort
▪ The audience does not want to burn mental effort about 

things you know and can just tell them.

- They want to be led by hand through the major steps of your story


- They do not want to interpret any of your figures or graphs, they want to be 
directly told how to interpret them (e.g., what to look for in a graph).


- They want to be told about your key assumptions


▪ The audience does want to spend their energy thinking 
about:

- Potential problems/limitations with what you did (did you consider all 

edge cases? Is your evaluation sound?)


- Implications of your approach to their work


- Connections to their own work
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Which leads me to…


The audience does not want to think about 
“why” you are telling them something.
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Surprises* are almost always bad:�
Say where you are going and why you must go there 

before you say what you did.

* I am referring to surprises in talk narrative and/or exposition.  A surprising result is great.

Tip 6
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Give the why before the what
▪ Why provides the listener context for...


- Compartmentalizing: assessing how hard they should pay attention (is this a 
critical idea, or just an implementation detail?). Especially useful if they are 
getting lost.


- Understanding how parts of the talk relate (“Why is the speaker now introducing a 
new optimization framework?”)


▪ In the algorithm description:

- “We need to first establish some terminology”


- “Even given X, the problem we still haven’t solved is...”


- “Now that we have defined a cost metric we need a method to minimize it...”

▪ In the results/evaluation:

- Speaker: “Key questions to ask about our 

approach are...”


- Audience: “Thanks! I agree, those are good 
questions. Let’s see what the results say!”
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Big surprises in a narrative are a bad sign
▪ Ideally, you want the audience to always be able to 

anticipate* what you are about to say

- This means: your story is so clear it’s obvious!

- It also means the talk is really easy to present without notes or text on 

slides (it just flows) 


▪ If you are practicing your talk, and you keep forgetting what’s 
coming on the next slide (that is, you can’t anticipate it)...

- This means: you probably need to restructure your talk because a clear 

narrative is not there.


- It’s not even obvious to you!  Ouch!

* Credit to Abhinav Gupta for suggesting the term anticipation, and for the example on this slide 
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Always, always, always�
explain any figure or graph�

(remember, the audience does not want to think about things you can tell them)

Tip 7
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Explain every figure
▪ Explain every visual element in the figure (never make the audience decode a figure)


▪ Refer to highlight colors explicitly (explain why the visual element is highlighted) 

Example voice over: “Here I’m showing you a pixel grid, a projected triangle, and the location of four sample 
points at each pixel.  Sample points falling within the triangle are colored red. 
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Explain every figure
▪ Lead the listener through the key points of the figure

▪ Useful phrase: “As you can see...”


- It’s like verbal eye contact. It keeps the listener engaged and makes the listener happy... “Oh yeah, I 
can see that! I am following this talk!”

Example voice over: “Now I’m showing you two adjacent triangles, and I’m coloring pixels according to the number 
of shading computations that occur at each pixel as a result of rendering these two triangles.  As you can see from 
the light blue region, pixels near the boundary of the two triangles get shaded twice.
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Explain every results graph
▪ May start with a general intro of what the graph will address (“anticipate” the result)

▪ Then describe the axes (and your axes better have labels!)

▪ Then describe the one point that you wish to make with this results slide 

Example voice over: “Our first questions were about performance: how much did the algorithm reduce the number of the shading 
computations?   And we found out that the answer is a lot.  This figure plots the number of shading computations per pixel when rendering 
different tessellations of the big guy scene. X-axis gives triangle size.  If you look at the left side of the graph, which corresponds to a high-
resolution micropolygon mesh, you can see that merging, shown by yellow line, shades over eight times less than the convention pipeline.
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Explain every results graph
▪ May start with a general intro of what the graph will address.

▪ Then describe the axes (your axes better have labels!)

▪ Then describe the one point that you wish to make with this results slide

Example voice over: “Our first question was about performance: how fast is the auto scheduler compared to experts?   And we found out that it’s quite 
good. This figure plots the performance of the autoscheduler compared to that of expert code.  So expert code is 1.  Faster code is to the right.  As you 
can see, the auto scheduler is within 10% of the performance of the experts in many cases, and always within a factor of 2.
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In the results section:�
One point per slide!�
One point per slide!�
One point per slide!�

(and the point is the title of the slide!!!)

Tip 8
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▪ Make the point of the graph the slide’s title:

- It provides audience context for interpreting the graph (“Let me see if I 

can verify that point in the graph to check my understanding”)

- Another example of the “audience prefers not to think” principle
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Titles matter
If you read the titles of your talk all the way through, it should be a 

great summary of the talk.


(basically, this is “one-point-per-slide” for the whole talk)

Tip 9
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Examples of good slide titles

The reason for meaningful slide titles is 
convenience and clarity for the audience


“Why is the speaker telling me this again?”


(Recall “why before what”)
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Read your slide titles in thumbnail view
Do they make all the points of the story you are trying to tell?
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Tip 10

Practice the presentation

▪ Given the time constraints, you’ll need to be smooth to say 
everything you want to say


▪ To be smooth you’ll have to practice


▪ Rehearse your presentation several times the night before (in 
front of a partner or friend)

- It’s only a short presentation, so a couple of practice runs are possible in a small 

amount of time
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General principles to keep in mind

Identify your audience (us), and strive for perfect clarity for them.


“Every sentence matters.”


“Show, don’t tell.”


“The audience prefers not to think” (about things you can just tell 
them)


“Surprises are bad”: say why before what


(indicate why you are saying something before you say it)


Explain every figure, graph, or equation


