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Think back to earlier in course

What was the biggest practical bottleneck to training good models?

Snorkel: Rapid Training Data Creation
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ABSTRACT

Labeling training data is increasingly the largest bottleneck
in deploying machine learning systems. We present Snorkel,
a first-of-its-kind system that enables users to train state-
of-the-art models without hand labeling any training data.
Instead, users write labeling functions that express arbi-
trary heuristics, which can have unknown accuracies and
correlations. Snorkel denoises their outputs without ac-
cess to ground truth by incorporating the first end-to-end
implementation of our recently proposed machine learning
paradigm, data programming. We present a flexible inter-
face layer for writing labeling functions based on our ex-
perience over the past year collaborating with companies,
agencies, and research labs. In a user study, subject mat-
ter experts build models 2.8 x faster and increase predictive
performance an average 45.5% versus seven hours of hand la-
beling. We study the modeling tradeoffs in this new setting
and propose an optimizer for automating tradeoff decisions
that gives up to 1.8x speedup per pipeline execution. In
two collaborations, with the U.S. Department of Veterans
Affairs and the U.S. Food and Drug Administration, and
on four open-source text and image data sets representa-
tive of other deployments, Snorkel provides 132% average
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Abstract

We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and
improving production machine learning systems. Key challenges engineers face are monitoring fine-grained quality,
diagnosing errors in sophisticated applications, and handling contradictory or incomplete supervision data. Overton
automates the life cycle of model construction, deployment, and monitoring by providing a set of novel high-level,
declarative abstractions. Overton’s vision is to shift developers to these higher-level tasks instead of lower-level machine
learning tasks. In fact, using Overton, engineers can build deep-learning-based applications without writing any code
in frameworks like TensorFlow. For over a year, Overton has been used in production to support multiple applications
in both near-real-time applications and back-of-house processing. In that time, Overton-based applications have
answered billions of queries in multiple languages and processed trillions of records reducing errors 1.7 — 2.9x versus
production systems.

-

Introduction

In the life cycle of many production machine-learning applications, maintaining and improving deployed models is the
dominant factor in their total cost and effectiveness—much greater than the cost of de novo model construction. Yet, there
is little tooling for model life-cycle support. For such applications, a key task for supporting engineers is to improve and
maintain the quality in the face of changes to the input distribution and new production features. This work describes
a new style of data management system called Overton that provides abstractions to support the model life cycle by
helping build models, manage supervision, and monitor application quality.*

Overton is used in both near-real-time and backend production applications. However, for concreteness, our running
example is a product that answers factoid queries, such as “how tall is the president of the united states?” In our
experience, the engineers who maintain such machine learning products face several challenges on which they spend the
bulk of their time.
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Data-augmentation

A common strategy for automatically generating
new labeled training data from a small number of
labeled examples (as long as augmentations don't
change classification result)
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Using advanced rendering/simulation to
train better models
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Carla: urban driving simulator based on Unreal Engine
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Since renderer has complete description of
scene, it can output detailed, fine-grained
labels as well as RGB image.

(would be laborious to annotate)
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Machine Learning
Made With Unity

Manufacturing

Monetize
Services

Technology

Synthetic data: Simulating myriad
possibilities to train robust machine
learning models

Srinivas Annambhotla, Cesar Romero and Alex Thaman, May 1, 2020 |

Popular posts

Introducing the new Input System
October 14, 2019

2D Pixel Perfect: How to set up your Unity project for
retro 8-bit games
March 13,2019

(Machine Learning) Cl\/lanufacturing)

The High Definition Render Pipeline: Getting Started
Guide for Artists
Sentember 24. 2018
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NVIDIA Drive Sim
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Gibson: acquire/render real world data

m Dataset acquired via 3D scanning (3D mesh + texture)
B Geometry, normals, semantics, + “photorealistic” 3D
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Enhancing (G images using learned image-to-
|mage transfer

Ours
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Physics simulation
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Atari

0 pe nA I gym o Reach high scores in Atari 2600 games.
o

Atari games . I

Alien-ram-v0
Maximize score in the game

AirRaid-ram-vO AirRaid-vO Alien, with RAM as input
Maximize score in the game Maximize score in the game
AirRaid, with RAM as input AirRaid, with screen images
as input

Alien-vO I l

Maximize score in the game

Alien, with screen images as Amidar-ram-vO Amidar-vO
input Maximize score in the game Maximize score in the game
Amidar, with RAM as input Amidar, with screen images
as input
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OpenAl’s “OpenAl 5" Dota 2 bot

OPENAI FIVE

CPUs 128,000 preemptible CPU cores on GCP

GPUs 256 P100 GPUs on GCP

Experience collected ~180 years per day (~900 years per day
counting each hero separately)

nnnnnnnnnnn

Size of observation ~36.8 kB

Observations per 7.5
second of gameplay

Batch size 1,048,576 observations

Batches per minute ~60

Stanford C5348K, Spring 2021



Need significant amounts

of simulated experience

Example: even for simple PointGoal
navigation task: need billions of steps of
“experience” to exceed traditional non-

learned approaches
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Deeper dive:
Accelerating reinforcement learning
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RLin 30 seconds

Model
Inference

environment
observation— 719 —
e.g. RGB image

agent
action
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RLin 30 seconds

Model

Inference

environment
observation— 779 —
e.g. RGB image

agent
action

Model
Training

sequence of
observations

compute loss

sequence of gradients update
agent actions — mo_del
A A B 7-‘-8 via
SGD

Reward: changein ~

distance from goal
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RLin 30 seconds

Model

Inference

environment
observation— 719 —
e.g. RGB image

Model
Training

agent
action

compute loss

gradients update

model
T 6 via
SGD

—
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RLin 30 seconds

Many rollouts:
- Agents independently navigating
same environments

Batch Model

Training
compu_te loss update
gradients
model

T 6 via
SGD
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RLin 30 seconds

Many rollouts:

- Agents independently navigating
same environments

- Ordifferent environments

Batch Model
Training

compute loss

Rollout 2 gradients

update
N model
0 via
SGD

Rollout 3 —>
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Workload summary

m Within arollout
- For each step of arollout:

- Render -> Execute policy inference -> simulate next world
state

m Across *many* independent rollouts
- Simulated agents may (or may not) share scene state

- Diversity in scenes in a batch of rollouts is desirable to
avoid overfitting, sample efficiency of learning

Stanford C5348K, Spring 2021



System components

Database of 3D assets (meshes, textures collision meshes)

l Viewpoints, scene object positions l
S e
QS
Simulator” Renderer
(updates position of agent in scene, (render scene from viewpoint of agent)

detects collisions with scene geometry)

Non-rendered state: position, compass... Rendered frames

Inference/Learning

(inference: action from rendered image,
learning: update policy model from rollouts)

o

Next action

Stanford (5348K, Spring 2021



Simulator

Renderer

Scene A

Inference

Simulator

Renderer

Scene B

Inference

Simulator

Renderer

Scene D

Inference

Simulator

Renderer

Scene A

Inference

Simulator

Renderer

Scene B

Inference

Simulator

Renderer

Scene D

Inference

Simulator

Renderer

Scene A

Inference

Simulator

Renderer

Scene C

Inference

Simulator

Renderer

Scene D

Inference

<+

Basic design: parallelize over workers

Ask yourself:

1. What data gets
communicated?

2. Can the system scale to
sufficient parallelism?

3. Are there sync bottlenecks

Learning

learning: update policy model
from rollouts)

o
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Example: Rapid (OpenAl)

Optimizer + Connected Rollout Workers (x256)

Rollout Workers
~500 CPUs

Run episodes
» 80% against current bot

» 20% against mixture of past versions Rollout 85:':‘&?:; o Sradiont
. . Data .
Randomized game settings Samples average gradients Updates

at every step.

Push data every 60s of gameplay

» Discount rewards across the 60s using
generalized advantage estimation

Model Parameters

(10M floats)

Eval Workers

~2500 CPUs -
Play in various environments Model
for evaluation Parameters

* vs hardcoded “scripted” bot

» vs previous similar bots (used to
compute Trueskill)

* vs self (for humans to watch
and analyze)
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Design issues

m Expensive communication of weights from learner node to workers
m  Worker nodes inefficiently run inference

- May run on CPU if simulation code on workers doesn’t require
GPU (use cheap worker nodes that don't feature GPUs)

= Run inference on small batches since each worker is running one
rollout sim

Stanford C5348K, Spring 2021



Centralize inference AND training

Simulator

Renderer

Scene A

Simulator

Renderer

Scene B

Simulator

Renderer

Scene D

Simulator

Renderer

Scene A

Simulator

Renderer

Scene B

Simulator

Renderer

Scene D

Simulator

Renderer

Scene A

Simulator

Renderer

Scene C

Simulator

Renderer

Scene D

I

Batch
Inference/

Learning
H (inference: action from

rendered image,
learning: update policy model
from rollouts)

o

Efficient batch inference/training
/ Centralization enables
heterogeneity (e.g., use TPU for training)

Stanford (5348K, Spring 2021



Advantages

B No communication of model weights between workers and learner

®m  Must communicate simulation state — surprisingly this can be
compact (object locations, smaller rendered image)

B (Can use efficient batch inference in a centralized location (batch
over rollouts from many workers)

m  (an use machine optimized for DNN operations in centralized
location — e.g., runona TPU

Stanford C5348K, Spring 2021



REED RL

Architecture Accelerators Environments Actor CPUs Batch Size FPS Ratio

DeepMind Lab

IMPALA Nvidia P100 176 176 32 30K @ —
SEED Nvidia P100 176 44 32 19K 0.63x
SEED TPU v3, 2 cores 312 104 32 74K 2.5x
SEED TPU v3, 8 cores 1560 520 48' 330K 11.0x
SEED TPU v3, 64 cores 12,480 4,160 384! 2.4M 80.0x
Google Research Football

IMPALA, Default 2 x Nvidia P100 400 400 128 11K —
SEED, Default TPU v3, 2 cores 624 416 128 18K 1.6x
SEED, Default  TPU v3, 8 cores 2.496 1,664 160° 71K  6.5x
SEED, Medium  TPU v3, 8 cores 1,550 1,032 160° 44K —
SEED, Large TPU v3, 8 cores 1,260 840 160° 29K  —
SEED, Large TPU v3, 32 cores 5,040 3,360 640° 114K 3.9x
Arcade Learning Environment

R2D?2 Nvidia V100 256 N/A 64 85K°> —
SEED Nvidia V100 256 55 64 67K 0.79x
SEED TPU v3, 8 cores 610 213 64 260K 3.1x

SEED TPU v3, 8 cores 1200 419 256 440K* 5.2x
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Design issues

m |nefficient simulation/rendering: rendering a small image
does not make good use of a modern GPU (rendering
throughput is low)

m Duplication of computation and memory footprint (for scene
data) across renderer/simulator instances

Stanford C5348K, Spring 2021



What modern renderers are designed to rend
complex scenes at high resolution)

\\\
)
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Low-resolution images with pre-captured lighting
(from Gibson): clearly not state-of-the-art rendering! ;-)

Stanford C5348K, Spring 2021



Often the best way to reduce communication /
increase efficiency is often to make the best
possible use out of one node

Can we make simulation faster?

Stanford C5348K, Spring 2021



Al Habitat

®  Focus on high-performance
rendering/simulation to
enable order of magnitude
longer RL training runs

The table below reports performance statistics for a test scene from the Matterport3D dataset (id 17DRP5sb8fy ) on a Xeon E5-
2690 v4 CPU and Nvidia Titan Xp . Single-thread performance reaches several thousand frames per second, while multi-
process operation with several independent simulation backends can reach more than 10,000 frames per second on a single
GPU!

1 proc 3 procs 5 procs
Sensors / Resolution 128 256 512 128 256 512 128 256 512
RGB 4093 1987 848 10638 3428 2068 10592 3574 2629
RGB + depth 2050 1042 423 5024 1715 1042 5223 1774 1348

RGB + depth + semantics* 709 596 394 1312 1219 979 1521 1429 1291

Previous simulation platforms that have operated on similar datasets typically produce on the order of a couple hundred
frames per second. For example Gibson reports up to about 150 fps with 8 processes, and MINOS reports up to about 167 fps

with 4 threads.

Stanford C5348K, Spring 2021



Prior was still using simulators (game engines) designed to
render large high-resolution images for human eyes.

How would you design an engine “from the ground up” for
the RL workload?

Stanford C5348K, Spring 2021



Main idea: design a renderer that executes rendering for
100s-1000’s of unique rollouts in a single request

Inference/training, simulation, and rendering all operate on batches of N
requests (rollouts)

Efficient bulk communication between three components

Learning +
Inference

—

- N
Batch Simulator
N actions Worker Worker | &2 of Worker N states
ﬁ Thread Thread Thread ﬁ

Scene Scene

Metadata eee Metadata
\_ )

N states \

——————
N frames

Batch Renderer
N environment states

' J Vv

Scene

00
Assets Scene Assets

New Scene | New Scene
Assets eee | Assets
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Example renderer output (PointNav task)

Stanford C5348K, Spring 2021



Opportunities provided by a batch rendering interface

B Wide parallelism: rendering each scene in a batch is independent
- "Fill up” large parallel GPU with rendering work

- Enables graphics optimizations like pipelining frustum culling (removing off-
screen geometry before drawing it) for one environment with rendering of
another

®  Footprint optimizations: rendering requests in a batch can share same geometry assets
- Significantly reduces memory footprint, enables large batch size
- N~ 256-1024 (per GPU) in our experiments: fills up large GPU
- Limit number of unique scenes in a batch to K«N scenes.
- GPU RAM and scene size determines K

B Amortize communication: rendering requests in a batch can be packaged and drawn
together

- Render frames in batch to tiles in a single large frame buffer to avoid state update

Stanford C5348K, Spring 2021



Also, simultaneously optimize policy DNN

DNN design/engineering (DNN encoder followed by policy LSTM)
Reduce resolution of rendered input to from 128x128 to 64x64
Move to ResNet9-based visual encoder from ResNet50

Replace key layers with performant alternatives (e.g. replace
normalization with Fixup Initialization)

B Adjust learning rates and use Lamb optimization

Stanford C5348K, Spring 2021



Example: 10,000+ FPS render— infer— train on a
single GPU *

Agent
Sensor  System CNN Res. RTX 3090 RTX 2080Ti Tesla V100 8x2080Ti 8xV100
BPS SE-ResNet9 64 19900 12900 12600 72000 46900
Septh BPS-RSO ResNet50 128 2300 1400 2500 10800 18400
P WiMANs++ SE-ResNet9 64 2800 2800 2100 9300 13100
WIMANS20  ResNet50 128 180 230 200 1600 1360
BPS SE-ResNet9 64 13300 8400 9000 43000 37800
e BPS-RS0 ResNet50 128 2000 1050 2200 6800 14300
woMANs++ SE-ResNet9 64 990 360 1500 4600 8400
WIMANS20  ResNet50 128 140 OOM 190 OOM 1320

100%

80%

60%

40%

— 0Our System

20% —— |CLR 2020 Baseline

SPL (Higher is Better)

0%
0 10 20 30 40
Wall-Clock Training Time (Hours)

* But low resolution: 64x64 rendered output resolution Stanford (348K, Spring 2021
tanfor , Spring



Performance breakdown

14.6 5.9 16.6

RTX 3090 (Depth) il

RTX 3090 (RGB)
47.2 /.0 228
V100 (Depth) -

23.8 13.8  30.0

Cumulative time (us) per frame (per GPU)

Simulation I Inference
B Rendering mm Learning

Stanford C5348K, Spring 2021



Interesting (open) rendering/simulation systems
research questions

®  [fyou had to design a rendering/simulation system “from the ground up” to support
ML model training, what would you do differently from a modern high-performance
game engine?

m What new opportunities for performance optimization are there? (amortize rendering
across multiple virtual sensors, agents, etc.)

- What should the architecture/API to the renderer be?

B How much visual fidelity is needed to train models that transfer into the real-world?
- Do we even need photorealistic quality to train policies that work in the real world?

- Ifso, does ML-based image manipulation provide new opportunities to bridge the
simulation to real world gap?

Stanford C5348K, Spring 2021



Project presentation expectations

Stanford C5348K, Spring 2021



Presentation day (next Thursday)

m Each group will present ~8 minutes
- Remember: write-ups are due on Friday at 5pm
m Short talks are tricky, so here are some tips

m As this point:

- If you are a performance-oriented project: are all your
“baselines” in place

- You can run a script and produce “us” vs. “baseline” graphs
- If you are an applications project, do you have “any” result yet?

- For all projects: do you have the right test cases (datasets) to
show off success?

Stanford C5348K, Spring 2021



Benefit TO YOU of a good (clear) talk

B Non-linear increase in the impact of your work
- Others are more likely to remember and build upon your work
- Others are more likely to adopt your ideas
= Others are more likely to come up to you after the talk

m  (larity is highly prized in the world: the audience will remember clear
communicators

- “Hey, that was a great talk yesterday... are you looking for a job
anytime soon?”

- “Hey, that was a great talk, I'm working on something that you might
find helpful.”

Stanford C5348K, Spring 2021



Tip 1

|dentify your audience

Easy: the people in this class!



Your #1 priority should be to be clear, rather
than be comprehensive

(your project writeup is the place for completeness)

Everything you say should be understandable by someone in this class.
If you don’t think the audience will understand, leave it out (or change).
(spend the time saying something we will understand)

This will be much harder than it seems.

Stanford C5348K, Spring 2021



Consider your audience

m Everyone in the audience knows about course readings/topics

- Terminology/concepts we all know about need not defined (just say
“remember we talked about X”)

m Most of the audience knows little-to-nothing about the
specificapplication domain or problem you are trying to solve
- Application-specific terminology should be defined or avoided

m Everyone wants to know the “most interesting” thing that you
found out or accomplished (your job is to define most
interesting for them)

Stanford C5348K, Spring 2021



2.

Pick a focus.
Figure out what you want to say. Then say it.
(and nothing more)

A good speaking philosophy: “every sentence matters”

Tip: for each sentence, ask yourself:
What is the point | am trying to make?

Did the sentence | just say make that point?

Stanford C5348K, Spring 2021



Pick a focus

In this class, different projects should stress different results

Some projects may wish to show a flashy demo and describe how it works
(proof by “it works”)

Other projects may wish to show a sequence of graphs (path of
progressive optimization) and describe the optimization that took system
from performance Ato B to C

Other projects may wish to clearly contrast parallel CPU vs. parallel GPU
performance for a workload

Your job is not to explain what you did, but to explain what
you think we should know

Stanford C5348K, Spring 2021



Tip 3
Set up the problem:

establish inputs, outputs, and constraints
(goals and assumptions)




Establish goals and assumptions early

m Given these inputs, we wish to generate these outputs
m We are working under the following constraints

- Example: the outputs should have these properties

- Example: the computer graphics algorithm...

= Should run in real time
- Should be parallelizable so it can run on a GPU
- Should not require artist intervention to get good output

- Example: the system...

- Need not compile all of Python, only this subset that we care about...

- Should realize about 90% of the performance of hand-tuned code, with
much lower development time

Stanford C5348K, Spring 2021



Why is knowing the goals and constraints
Important?

Your contribution is typically a system or algorithm that
meets the stated goals under the stated constraints.

Understanding whether a solution is “good” requires
having this problem context.

Stanford C5348K, Spring 2021



Example: 3D rendering problem

/
_—

NN

Image credit: Henrik Wann Jensen

Input: description of a scene: Output: image of the scene

3D surface geometry (e.g., triangle mesh)
surface materials, lights, camera, etc.

Simple definition of rendering task: computing how each triangle in 3D
mesh contributes to appearance of each pixel in the image?

Stanford C5348K, Spring 2021



Tip4
Show, don't tell

It’s much easier to communicate with
figures/images than text

(And it saves the speaker a lot of work explaining)

Stanford C5348K, Spring 2021



Example:

® |narecent project, we asked the question... given enough
video of tennis matches of a professional athlete, could we
come up with an algorithm for turning all this input video
into a controllable video game character?

Compare the description above to the following sequence...

Stanford C5348K, Spring 2021



Here’s an example of that source video
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The best way to describe the input data than to just show it! Stanford C5348K, Spring 2021




And there’s a lot of it!
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And here’s an example of controllable output
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The best way to describe the output we seek is just show the result of the system! Stanford (348K, Spring 2021



Another example:

m We had a problem in this project: input videos were taken in
different lighting conditions, and these lighting differences
were the cause of bad results.

® Ananticipated audience question: “what do you mean by
lighting differences?”

Stanford C5348K, Spring 2021



e
13 "
g
& .J*
TN
i
M
|
TR i
1 b
P 9.
4 3 LS.
7| I
- =y
..u,_
{4
hipiat |
| ]
M =
- X2
} #7
|
& 3
ity
4 oy
51 1

LT

A L AS | \.&
B . ‘l '
el [ et
ey al
, - &
|
: p
™ ¢
% 3
2 i -
Y

-y 24
i Y »
§
Ay
i
=
P —
|
&
~
4 :
S5
e
= o
’ Shet. y
s
+ : fe:
1 < |V <

| ray

i
HIIL

9
e

< =
-
a
W
£ >
&
|
=2
b7
4 "
L
[} n {
&
A
o
»
e
-
y
i
A :_. 1 'w.
-
%
=
A
U
73] ]
= ot 7
=3 | W
Rt ) v_", R
- -
| ) "
)
4 y
&
e |
=
2=,
i
I ]
=t )
e 22 Y
2= )
2]
&
]
3 = ,Q
I4r—
.
3P
=
=
L
i
ry
L™ 1 |
-
{
) B
L AT - |
P 4
\ [/
S
}
-
A o
' ')
r. v
' )
A"
)
T
" )
'
hidak Ay
¢
1
,-
R/
AF.-
e = {
Al —
ok
™ ...' gy
) £
| 4] =g
e o
DS
" /. .
o !
A
oSiEE
ot
; -
. . >
- S\
' 3 ‘.,
’
i
L ! ~.IAV. ‘
- .
‘...
e . s W
(o
= )
Noh
’
3
M
(et 2 - _
- "
e
e o
1
des 3
24

vl

)

s

S
(e )
oy Y -
=4 .
it )

AT

~

-

i3

‘2

/;;/_/: /a

~

FI&
. /B __

N

X——E

A

F.

=)

.
=

2

DA 2 AR

A\

ol
= o
=l
_ by }
1'
bogl
.
= ¥ . of
8
- \-

Al /
5 :

N




,_x'

R
N
\ b

";{l\‘\- |

\a

A




Another example: a renderer that renders many views of the
scene at the same time

)
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L | b mie )
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Another exampl
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= positive examples

= negative examples

e: itis difficult to train detectors
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Tip 5

The audience prefers not to think (much)




An audience has a finite supply of mental effort

B The audience does not want to burn mental effort about
things you know and can just tell them.

- They want to be led by hand through the major steps of your story

- They do not want to interpret any of your figures or graphs, they want to be
directly told how to interpret them (e.g., what to look for in a graph).

- They want to be told about your key assumptions

B The audience does want to spend their energy thinking
about:

- Potential problems/limitations with what you did (did you consider all
edge cases? Is your evaluation sound?)

- Implications of your approach to their work

- Connections to their own work

Stanford C5348K, Spring 2021



Which leads me to...

The audience does not want to think about
“why” you are telling them something.



Tip6
Surprises™ are almost always bad:

Say where you are going and why you must go there
before you say what you did.

* | am referring to surprises in talk narrative and/or exposition. A surprising result is great.
Stanford C5348K, Spring 2021



Give the why hefore the what

m Why provides the listener context for...

- Compartmentalizing: assessing how hard they should pay attention (is this a
critical idea, or just an implementation detail?). Especially useful if they are
getting lost.

- Understanding how parts of the talk relate (“Why is the speaker now introducing a
new optimization framework?”)

m |n the algorithm description:
- “We need to first establish some terminology”
- “Even given X, the problem we still haven't solved is...”

- “Now that we have defined a cost metric we need a nag

Two key questions:

_ I n the resu ItS/ evd I uatlon: * How much does SRDH improve traversal cost
p . when perfect information about shadow rays
- Speaker: “Key questions to ask about our is present?

approach are...”
 How does the benefit of the SRDH decrease as

= Audience: “Thanks! | agree, those are QOOd less shadow ray information is known a priori?
questions. Let’s see what the results say!” (Is 2 practca I possiDie )




Big surprises in a narrative are a bad sign

m |deally, you want the audience to always be able to
anticipate* what you are about to say

- This means: your story is so clear it’s obvious!

- It also means the talk is really easy to present without notes or text on
slides (it just flows)

m [fyou are practicing your talk, and you keep forgetting what'’s
coming on the next slide (that is, you can't anticipate it)...

- This means: you probably need to restructure your talk because a clear
narrative is not there.

- It's not even obvious to you! Ouch!

* Credit to Abhinav Gupta for suggesting the term anticipation, and for the example on this slide Stanford (348K, Spring 2021



Tip7
Always, always, always
explain any figure or graph

(remember, the audience does not want to think about things you can tell them)

Stanford C5348K, Spring 2021



Explain every figure

m Explain every visual element in the figure (never make the audience decode a figure)

m Refer to highlight colors explicitly (explain why the visual element is highlighted)

Multi-sample locations [Akeley 93]

Sample coverage multiple times per pixel (for anti-aliased edges)

Example voice over: “Here I'm showing you a pixel grid, a projected triangle, and the location of four sample

points at each pixel. Sample points falling within the triangle are colored red.
Stanford C5348K, Spring 2021



Explain every figure

B Lead the listener through the key points of the figure

m Useful phrase: “As you can see...”

- It's like verbal eye contact. It keeps the listener engaged and makes the listener happy... “Oh yeah, |
can see that! | am following this talk!”

Pixels at triangle boundaries are shaded multiple times

Shading computations per pixel

Example voice over: “Now I'm showing you two adjacent triangles, and I'm coloring pixels according to the number
of shading computations that occur at each pixel as a result of rendering these two triangles. As you can see from
the light blue region, pixels near the boundary of the two triangles get shaded twice. Stanford (348K, Spring 2021




Explain every results graph

B May start with a general intro of what the graph will address (“anticipate” the result)
B Then describe the axes (and your axes better have labels!)
B Then describe the one point that you wish to make with this results slide

Merging reduces total shaded quad fragments
1/2-pixel-area triangles: 8x reduction

Big Guy Scene , !\3
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Average triangle area (pixels)

Example voice over: “Our first questions were about performance: how much did the algorithm reduce the number of the shading
computations? And we found out that the answer is a lot. This figure plots the number of shading computations per pixel when rendering
different tessellations of the big guy scene. X-axis gives triangle size. If you look at the left side of the graph, which corresponds to a high-

resolution micropolygon mesh, you can see that merging, shown by yellow line, shades over eight times less than the convention pipeline.
Stanford C5348K, Spring 2021




Explain every results graph

B May start with a general intro of what the graph will address.
B Then describe the axes (your axes better have labels!)
B Then describe the one point that you wish to make with this results slide

Autoscheduler performs comparably to experts

Performance relative to schedules authored by experts
(6 core Xeon CPU)

0.5 1 1.5
Bilateral grid On 8 of the 14 benchmarks

o performance within 10% of
Camera pipe

Convolution layer experts or better

Harris corner

Histogram equal
Mscale interpolate
Lens blur
Local laplacian
Matrix multiply

Max filter

Non-local means |
Unsharp mask
VGG-16 evaluation

Example voice over: “Our first question was about performance: how fast is the auto scheduler compared to experts? And we found out that it's quite
good. This figure plots the performance of the autoscheduler compared to that of expert code. So expert code is 1. Faster code is to the right. As you

can see, the auto scheduler is within 10% of the performance of the experts in many cases, and always within a factor of 2.

Stanford C5348K, Spring 2021



Tip 8
In the results section:
One point per slide!

One point per slide!
One point per slide!

(and the point is the title of the slide!!!)



m Make the point of the graph the slide’s title:

- It provides audience context for interpreting the graph (“Let me see if |
can verify that point in the graph to check my understanding”)
- Another example of the “audience prefers not to think” principle

Scanner scales when processing large datasets

Throughput when processing large datasets

=== 657 Movies

Linear scaling —, T
Ips

-
o

Throughput
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The COMPONENTS renderer uses 2x less CPU time than
BASELINE VK

CPU Performance Comparison (single core)

215 30 8 '8
2
£ 10 20 12
= 4
= 10 I - 6
S |
w0 0 0 0
BOXES BOXES1K FACTORY1 FACTORY?2 ROME

. COMPONENT CPU Time ™ BASELINE VK CPU Time
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AAC-Fast produces BVHs with equal or lower
cost than the full sweep build in all cases

except Buddha.

1.2 t
“é 1.0 fommmmmemnnnn, e I e
(&) w10 M = == -
o 0.8 | . . Blal= . —]
=
8 0.6
-
%0'4 X . :
o 0.2

0

Soonza Fairy Conference Buddha Half-Life = San Miguel

BsaAH [LIsSAH-BIN  [Local-Ord

B AAC-HQ [ AAC-Fast

Extra shading occurs at merging window boundaries

1/2 pixel area triangles




Tip9
Titles matter

If you read the titles of your talk all the way through, it should be a
great summary of the talk.

(basically, this is “one-point-per-slide” for the whole talk)

Stanford C5348K, Spring 2021



Examples of good slide titles

GPUs shade quad fragments (2x2 pixel blocks) Greedy SRDH build optimizes over
partitions and traversal policies

Texture data Quad fragment

SAH:
(So0,%00)

.avaluate SAH and pick min..

SRDH:

forall (traversalKernels in set-of-kernels)
..evaluate SRDH and pick min..

(s10,t10) (s11,t11)
SRDH(R,L,xr)=(1- x(r)H(L,r))|R|+(1- x(r)H(R,r))|L]

use differences between neighboring
texture coordinates to estimate derivatives

AAC IS AN APPROXIMATION TO THE TRUE . . . .
AGGLOMERATIVE CLUSTERING SOLUTION. The reason for meaningful slide titles is

convenience and clarity for the audience

Computation graph: Primitive partitioning:

“Why is the speaker telling me this again?”

EIE[]
(Recall “why before what”)
@ @ E A

Stanford C5348K, Spring 2021



Read your slide titles in thumbnail view

Do they make all the points of the story you are trying to tell?

High-resclutian meshes are appeannq in games High-resclution meshes are appeannq in games Nulti-sample locatiens Shading sample locatians

Redudng Shading on GPUs
using Quad-Fragment Merging
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Surface derivatives are needed for texture filtering
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GPUs shade quad fragments (252 pixel blacks)

Shaded quad fragments
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Pixeds at triangle beundaries are shaded multiple times
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Pixeds at triangle beundaries are shaded multiple times
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Small triangles result in extra shading
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GPU pipeline [with tessellation)
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GPU pipeline: triangle cannectivity is knawn
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Nerging quad fragments
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Tip 10

Practice the presentation

B Given the time constraints, you'll need to be smooth to say
everything you want to say

m To be smooth you'll have to practice

m Rehearse your presentation several times the night before (in
front of a partner or friend)

- It's only a short presentation, so a couple of practice runs are possible in a small
amount of time

Stanford C5348K, Spring 2021



General principles to keep in mind

|dentify your audience (us), and strive for perfect clarity for them.
“Every sentence matters.’

“Show, don't tell.”

“The audience prefers not to think” (about things you can just tell
them)

“Surprises are bad”: say why before what
(indicate why you are saying something before you say it)

Explain every figure, graph, or equation

Stanford C5348K, Spring 2021



