
Visual Computing Systems
Stanford CS348K, Spring 2021

Lecture 15:

Optimizing Ray Tracing

Stanford CS348K, Spring 2021

Last time: a ray tracer samples light paths

Image credit: Wann Jensen, Hanrahan

Stanford CS348K, Spring 2021

Direct illumination

p

Stanford CS348K, Spring 2021

One-bounce global illumination

p

Stanford CS348K, Spring 2021

Sixteen-bounce global illumination

p

Stanford CS348K, Spring 2021

One sample per pixel

Stanford CS348K, Spring 2021

32 samples per pixel

Stanford CS348K, Spring 2021

1024 samples per pixel

Stanford CS348K, Spring 2021

Recall: BVH acceleration structure

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

r0

r0 visits nodes: A, B, D, E…

Stanford CS348K, Spring 2021

Ray tracing performance challenges

3. To simulate advanced e!ects renderer must trace many rays per
pixel to reduce variance (noise) that results from numerical
integration (via Monte Carlo sampling)

1. 3D ray-triangle intersection math is expensive

2. Ray-scene intersection requires traversal through bounding
volume hierarchy acceleration structure

- Unpredictable data access
- Rays are essentially randomly oriented after enough bounces

Stanford CS348K, Spring 2021

Ray tracing parallelism

Stanford CS348K, Spring 2021

Parallelizing ray-scene intersection
▪ Parallelize ray tracing across cores (naive data parallel)

- Simultaneously intersect multiple rays with scene
- Enables wide multi-core execution

Stanford CS348K, Spring 2021

Parallelizing single ray-scene queries
(Intra-ray parallelism)

Stanford CS348K, Spring 2021

Parallelize ray-box, ray-triangle intersection

▪ Given one ray and one bounding box, there are opportunities for
SIMD processing
- Can use 3 of 4 vector lanes (e.g., xyz work, multiple point-plane tests, etc.)

▪ Similar SIMD parallelism in ray-triangle test at BVH leaf

▪ If BVH leaf nodes contain multiple triangles, can parallelize ray-
triangle intersection across these triangles

Stanford CS348K, Spring 2021

Parallelize over BVH child nodes

▪ Idea: change the BVH data structure
▪ Use wider-branching BVH (test single ray against multiple child node

bboxes in parallel)
- Empirical result: BVH with branching factor four has similar work e"ciency as

BVH with branching factor two
- BVH with branching factor 8 or 16 is less work e"cient (diminished bene#t of

leveraging SIMD execution)

[Wald et al. 2008]

Stanford CS348K, Spring 2021

Understanding ray coherence

Stanford CS348K, Spring 2021

Ray traversal “coherence”

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

r0, r1

r0 r1

r0 visits nodes: A, B, D, E…
r1 visits nodes: A, B, D, E…

Bandwidth reduction: BVH nodes (and triangles) loaded into cache
for computing scene intersection with r0 are cache hits for r1

Stanford CS348K, Spring 2021

Ray traversal “divergence”

1

2
3

4

5

C E
F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

r0

r0 visits nodes: A, B, D, E…
r1 visits nodes: A, B, D, E…

r1

r2

r2

r3

r2 visits nodes: A, B, D, E, C…
r3 visits nodes: A, B, D, E, G…

R2 and R3 require di!erent BVH nodes and triangles

r3

Stanford CS348K, Spring 2021

Incoherent rays
Incoherence is a property of both the rays and the scene

Example: random rays are “coherent” with respect to the BVH if the scene is one big triangle!

Stanford CS348K, Spring 2021

Incoherent rays
Incoherence is a property of both the rays and the scene

Similarly oriented rays from the same point become “incoherent” with
respect to lower nodes in the BVH if a scene is overly detailed

(Side note: this suggests the importance of choosing the right geometric level of detail)

Stanford CS348K, Spring 2021

Wide SIMD ray tracing

Stanford CS348K, Spring 2021

Ray packet tracing (SIMD)
Program explicitly intersects a collection of rays against BVH at once
RayPacket
{
 Ray rays[PACKET_SIZE];
 bool active[PACKET_SIZE];
};

trace(RayPacket rays, BVHNode node, ClosestHitInfo packetHitInfo)
{
 if (!ANY_ACTIVE_intersect(rays, node.bbox) ||
 (closest point on box (for all active rays) is farther than hitInfo.distance))
 return;

 update packet active mask

 if (node.leaf) {
 for (each primitive in node) {
 for (each ACTIVE ray r in packet) {
 (hit, distance) = intersect(ray, primitive);
 if (hit && distance < hitInfo.distance) {
 hitInfo[r].primitive = primitive;
 hitInfo[r].distance = distance;
 }
 }
 }
 } else {
 trace(rays, node.leftChild, hitInfo);
 trace(rays, node.rightChild, hitInfo);
 }
}

[Wald et al. 2001]

Stanford CS348K, Spring 2021

Ray packet tracing
Program explicitly intersects a “packet” of rays against BVH at once

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active rays after node box test

r0
r1 r2 r3 r4 r5 r6

r7

Note: r6 does not pass node F box test due to closest-
so-far check, and thus does not visit F

Stanford CS348K, Spring 2021

Performance advantages of packets
▪ Enables wide SIMD execution

- One vector lane per ray

▪ Amortize BVH node data fetch: all rays in packet visit BVH
node at same time
- Load BVH node once for all rays in packet (not once per ray)
- Note: because of this, there is value to making packets bigger than SIMD width!

(e.g., size = 64)

▪ Amortize work (packets are hierarchies over rays)
- Use interval arithmetic to conservatively test entire set of rays against node

bbox (e.g., think of a packet as a beam)
- Further arithmetic optimizations possible when all rays share origin
- Note: there is value to making packets much bigger than SIMD width!

Stanford CS348K, Spring 2021

Disadvantages of packets
Program explicitly intersects a collection of rays against BVH
at once

B

C D

E F

1 2

3 4 5

G
6

A

Blue = active ray after node box test

▪ If any ray must visit a node, it drags all
rays in the packet along with it)

▪ Loss of e"ciency: node traversal,
intersection, etc. amortized over less
than a packet’s worth of rays

▪ Not all SIMD lanes doing useful work
(SIMD divergence)

Stanford CS348K, Spring 2021

Ray packet tracing: incoherent rays

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active ray after node box test

r0

r1

r3

r3

r4

r5

r6

r7

When rays are incoherent, bene#t of packets can decrease
signi#cantly. This example: packet visits all tree nodes.
(So all eight rays visit all tree nodes! No culling bene#t!)

Stanford CS348K, Spring 2021

SPMD ray tracing (GPU style)

stack<BVHNode> to_visit;
to_visit.push(BVH_root_node);
while (ray not terminated) {

 // ray is traversing interior nodes
 while (not reached leaf node) {
 traverse node // pop stack, perform
 // ray-box test, push
 // children to stack
 }

 // ray is now at leaf
 while (not done testing tris in leaf) {
 ray-triangle test
 }
}

stack<BVHNode> to_visit;
to_visit.push(BVH_root_node);
while (ray not terminated) {
 node = to_visit.pop();
 if (node is not a leaf) {
 traverse node // perform ray-box test,
 // push children to stack
 }
 else (not done testing tris in leaf) {
 ray-triangle test
 }
}

Algorithm 1 Algorithm 2

No packets!
Each work item (e.g., CUDA thread) carries out processing for one ray.
Each worker does no “extra traversal”. Each accesses only BVH nodes it needs
Is there SIMD divergence? Where is it?

Stanford CS348K, Spring 2021

Incoherent rays = bandwidth bound

1

2
3

4

5

C E
F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

R0

R1

R2

Di!erent threads may access di!erent BVH nodes at the same time:
Note how R0/R2 are accessing D while R1 is accessing C

Stanford CS348K, Spring 2021

Ray throughput decreases with increasing numbers of
bounces (aka increasing ray incoherence)

Ylitie et al 2017

Stanford CS348K, Spring 2021

BVH compression
▪ Example: store child bboxes as quantized values in local coordinate frame

de#ned by parent node’s bbox

plo

phi = plo + 2ei (2Nq -1)

ei encodes 8 bit exponent that de#nes “scale”
of the parent bbox so that quantized Nq-bit
values can be used to represent points in local
coordinate frame

So 3D coordinate frame is de#ned by 3 fp32
values (plo) and 3 8-bit extent exponents ei

Planes of child bboxes stored as Nq bit values.
Here Nq = 4 for illustration, in practice Nq = 8
(note quantization expands actual box,
reducing e"ciency of BVH structure)

phi

0 151 2 3 4 5 …3 4

Stanford CS348K, Spring 2021

BVH compression
▪ Example: store child bboxes as quantized values in local coordinate frame de#ned by

parent node’s bbox
▪ Use wider BVHs to:

- Amortize storage of local coordinate frame de#nition across multiple child nodes
- Reduce number of BVH node requests during traversal

Amortized 10 bytes per child
(3.2x compression over standard BVH formats)

Stanford CS348K, Spring 2021

Queue-based global ray reordering
Idea: dynamically batch up rays that must traverse the same part of the scene.
Process these rays together to increase locality in BVH access

Partition BVH into treelets
(treelets sized for L1 or L2 cache)

1. When ray (or packet) enters treelet, add rays
to treelet queue

2. When treelet queue is su"ciently large,
intersect enqueued rays with treelet
(amortize treelet load over all enqueued rays)

Bu!ering overhead to global ray reordering: must
store per-ray “stack” (need not be entire call stack,
but must contain traversal history) for many rays.

Per-treelet ray queues sized to #t in caches (or in
dedicated ray bu!er SRAM)

[Pharr 1997, Navratil 07, Alia 10]

Stanford CS348K, Spring 2021

Understanding ray coherence

Stanford CS348K, Spring 2021

Ray incoherence impacts shading
Nearby rays may hit di!erent surfaces, with di!erent “shaders”
Consider implications for SIMD processing

Stanford CS348K, Spring 2021

Perfect specular re$ection material

Image credit: PBRT

Stanford CS348K, Spring 2021

More complex materials: glint

Stanford CS348K, Spring 2021

Velvet

[Westin et al. 1992]

Stanford CS348K, Spring 2021

Subsurface scattering

Stanford CS348K, Spring 2021

When rays hit di!erent surfaces…
Surface shading incoherence:
Di!erent code paths needed to compute the re$ectance of
di!erent materials

Stanford CS348K, Spring 2021

Real-time ray tracing APIs

(Recurring theme in this course: increase level of abstraction
to enable optimized implementations)

D3D12’s DXR ray tracing “stages”
▪ Ray tracing is abstracted as a graph of programmable “stages”
▪ TraceRay() is a blocking function in some of those stages

Acceleration
structure

Can call TraceRay()

Can call TraceRay()

Can call TraceRay()

GPU understands format of BVH
acceleration structure and “shader table”

Stanford CS348K, Spring 2021

Hardware acceleration for ray tracing

Stanford CS348K, Spring 2021

Custom hardware for RT

NVIDIA GeForce RTX 3080 GPU

Stanford CS348K, Spring 2021

NVIDIA Ampere SM (RTX 3xxx series)
▪ Hardware support for ray-triangle

intersection and ray-BVH intersection
(“RT core”)

▪ Very little public documentation of
architectural details at this time

Stanford CS348K, Spring 2021

Denoising ray traced images

Stanford CS348K, Spring 2021

32 samples per pixel

Stanford CS348K, Spring 2021

Deep learning-based denoising
▪ Can we “learn” to turn noisy images into clean ones?

▪ Idea: Use image-to-image transfer methods based on deep
learning to convert cheap to compute (but noisy) ray traced
images into higher quality images that look like they were
produced by tracing many rays per pixel

Example: NVIDIA Optix denoiser
▪ https://developer.nvidia.com/optix-denoiser

Stanford CS348K, Spring 2021

Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Stanford CS348K, Spring 2021

Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Stanford CS348K, Spring 2021

Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Stanford CS348K, Spring 2021

Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Stanford CS348K, Spring 2021

Surprising synergies
▪ New GPU hardware for ray-

tracing operations

▪ But ray tracing still too
expensive for noise-free
images in real-time

▪ Tensor core: specialized
hardware for accelerated
DNN computations
(that can be used to perform
sophisticated denoising of
ray traced images)

Stanford CS348K, Spring 2021

Technologies that are making real-time ray
tracing possible
▪ Better algorithms: fast parallel BVH construction and traversal

algorithms (many SIGGRAPH/HPG papers circa 2010-2017)

▪ GPU hardware evaluation:
- HW acceleration of ray-triangle intersection, BVH traversal
- Increasingly $exible aspects of traditional GPU pipeline

(bindless textures/resources)

▪ DNN-based image denoising
- Can make plausible images using small number of rays per pixel
- Make use of DNN hardware acceleration

Stanford CS348K, Spring 2021

Not discussed today
▪ Parallelizing BVH construction
▪ Shading coherence issues/optimizations

