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Lecture 15:

Optimizing Ray Tracing
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Last time: a ray tracer samples light paths

Image credit: Wann Jensen, Hanrahan
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Direct illumination
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One-bounce global illumination
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Sixteen-bounce global illumination
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One sample per pixel
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32 samples per pixel
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1024 samples per pixel
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Recall: BVH acceleration structure
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Ray tracing performance challenges

3. To simulate advanced e!ects renderer must trace many rays per 
pixel to reduce variance (noise) that results from numerical 
integration (via Monte Carlo sampling) 

1. 3D ray-triangle intersection math is expensive

2. Ray-scene intersection requires traversal through bounding 
volume hierarchy acceleration structure 

- Unpredictable data access 
- Rays are essentially randomly oriented after enough bounces
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Ray tracing parallelism
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Parallelizing ray-scene intersection
▪ Parallelize ray tracing across cores (naive data parallel) 

- Simultaneously intersect multiple rays with scene 
- Enables wide multi-core execution



Stanford CS348K, Spring 2021

Parallelizing single ray-scene queries
(Intra-ray parallelism)
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Parallelize ray-box, ray-triangle intersection

▪ Given one ray and one bounding box, there are opportunities for 
SIMD processing 
- Can use 3 of 4 vector lanes (e.g., xyz work, multiple point-plane tests, etc.) 

▪ Similar SIMD parallelism in ray-triangle test at BVH leaf 

▪ If BVH leaf nodes contain multiple triangles, can parallelize ray-
triangle intersection across these triangles 
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Parallelize over BVH child nodes

▪ Idea: change the BVH data structure 
▪ Use wider-branching BVH (test single ray against multiple child node 

bboxes in parallel) 
- Empirical result: BVH with branching factor four has similar work e"ciency as 

BVH with branching factor two 
- BVH with branching factor 8 or 16 is less work e"cient (diminished bene#t of 

leveraging SIMD execution) 

[Wald et al. 2008]



Stanford CS348K, Spring 2021

Understanding ray coherence
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Ray traversal “coherence”
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r0 visits nodes: A, B, D, E… 
r1 visits nodes: A, B, D, E… 

Bandwidth reduction: BVH nodes (and triangles) loaded into cache 
for computing scene intersection with r0 are cache hits for r1
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Ray traversal “divergence”
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Incoherent rays
Incoherence is a property of both the rays and the scene

Example: random rays are “coherent” with respect to the BVH if the scene is one big triangle!
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Incoherent rays
Incoherence is a property of both the rays and the scene

Similarly oriented rays from the same point become “incoherent” with 
respect to lower nodes in the BVH if a scene is overly detailed 

(Side note: this suggests the importance of choosing the right geometric level of detail)
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Wide SIMD ray tracing
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Ray packet tracing (SIMD)
Program explicitly intersects a collection of rays against BVH at once 
RayPacket 
{ 
    Ray rays[PACKET_SIZE]; 
    bool active[PACKET_SIZE]; 
}; 

trace(RayPacket rays, BVHNode node, ClosestHitInfo packetHitInfo) 
{ 
   if ( !ANY_ACTIVE_intersect(rays, node.bbox) || 
        (closest point on box (for all active rays) is farther than hitInfo.distance)) 
      return; 

   update packet active mask 

   if (node.leaf) { 
      for (each primitive in node) { 
         for (each ACTIVE ray r in packet) { 
            (hit, distance) = intersect(ray, primitive); 
            if (hit && distance < hitInfo.distance) { 
               hitInfo[r].primitive = primitive; 
               hitInfo[r].distance = distance; 
            } 
         } 
      } 
   } else { 
     trace(rays, node.leftChild, hitInfo); 
     trace(rays, node.rightChild, hitInfo); 
   } 
}

[Wald et al. 2001]
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Ray packet tracing
Program explicitly intersects a “packet” of rays against BVH at once 
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Performance advantages of packets
▪ Enables wide SIMD execution 

- One vector lane per ray 

▪ Amortize BVH node data fetch: all rays in packet visit BVH 
node at same time 
- Load BVH node once for all rays in packet (not once per ray) 
- Note: because of this, there is value to making packets bigger than SIMD width! 

(e.g., size = 64) 

▪ Amortize work (packets are hierarchies over rays) 
- Use interval arithmetic to conservatively test entire set of rays against node 

bbox (e.g., think of a packet as a beam) 
- Further arithmetic optimizations possible when all rays share origin  
- Note: there is value to making packets much bigger than SIMD width!
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Disadvantages of packets
Program explicitly intersects a collection of rays against BVH 
at once 
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▪ If any ray must visit a node, it drags all 
rays in the packet along with it) 

▪ Loss of e"ciency: node traversal, 
intersection, etc. amortized over less 
than a packet’s worth of rays 

▪ Not all SIMD lanes doing useful work 
(SIMD divergence)
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Ray packet tracing: incoherent rays
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When rays are incoherent, bene#t of packets can decrease 
signi#cantly.  This example: packet visits all tree nodes. 
(So all eight rays visit all tree nodes! No culling bene#t!) 
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SPMD ray tracing (GPU style)

stack<BVHNode> to_visit; 
to_visit.push(BVH_root_node); 
while (ray not terminated) { 

   // ray is traversing interior nodes 
   while (not reached leaf node) { 
     traverse node // pop stack, perform 
                   // ray-box test, push 
                   // children to stack 
   } 

   // ray is now at leaf 
   while (not done testing tris in leaf) { 
     ray-triangle test 
   } 
}

stack<BVHNode> to_visit; 
to_visit.push(BVH_root_node); 
while (ray not terminated) { 
   node = to_visit.pop(); 
   if (node is not a leaf) { 
      traverse node // perform ray-box test, 
                    // push children to stack 
   }  
   else (not done testing tris in leaf) { 
      ray-triangle test 
   } 
}

Algorithm 1 Algorithm 2

No packets! 
Each work item (e.g., CUDA thread) carries out processing for one ray. 
Each worker does no “extra traversal”. Each accesses only BVH nodes it needs 
Is there SIMD divergence?  Where is it?
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Incoherent rays = bandwidth bound
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Di!erent threads may access di!erent BVH nodes at the same time: 
Note how R0/R2 are accessing D while R1 is accessing C
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Ray throughput decreases with increasing numbers of 
bounces (aka increasing ray incoherence)

Ylitie et al 2017
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BVH compression
▪ Example: store child bboxes as quantized values in local coordinate frame 

de#ned by parent node’s bbox

plo

phi = plo + 2ei (2Nq -1)

ei encodes 8 bit exponent that de#nes “scale” 
of the parent bbox so that quantized Nq-bit 
values can be used to represent points in local 
coordinate frame 

So 3D coordinate frame is de#ned by 3 fp32 
values (plo) and 3 8-bit extent exponents ei

Planes of child bboxes stored as Nq bit values. 
Here Nq = 4 for illustration, in practice Nq = 8 
(note quantization expands actual box, 
reducing e"ciency of BVH structure)

phi

0 151 2 3 4 5 …3 4
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BVH compression
▪ Example: store child bboxes as quantized values in local coordinate frame de#ned by 

parent node’s bbox 
▪ Use wider BVHs to: 

- Amortize storage of local coordinate frame de#nition across multiple child nodes 
- Reduce number of BVH node requests during traversal

Amortized 10 bytes per child 
(3.2x compression over standard BVH formats)
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Queue-based global ray reordering
Idea: dynamically batch up rays that must traverse the same part of the scene.  
Process these rays together to increase locality in BVH access

Partition BVH into treelets 
(treelets sized for L1 or L2 cache) 

1. When ray (or packet) enters treelet, add rays 
to treelet queue 

2. When treelet queue is su"ciently large, 
intersect enqueued rays with treelet 
(amortize treelet load over all enqueued rays) 

Bu!ering overhead to global ray reordering: must 
store per-ray “stack” (need not be entire call stack, 
but must contain traversal history) for many rays. 

Per-treelet ray queues sized to #t in caches (or in 
dedicated ray bu!er SRAM)

[Pharr 1997, Navratil 07, Alia 10]
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Understanding ray coherence
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Ray incoherence impacts shading
Nearby rays may hit di!erent surfaces, with di!erent “shaders”
Consider implications for SIMD processing
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Perfect specular re$ection material

Image credit: PBRT
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More complex materials: glint
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Velvet

[Westin et al. 1992]
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Subsurface scattering
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When rays hit di!erent surfaces…
Surface shading incoherence: 
Di!erent code paths needed to compute the re$ectance of 
di!erent materials
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Real-time ray tracing APIs

(Recurring theme in this course: increase level of abstraction 
to enable optimized implementations)



D3D12’s DXR ray tracing “stages”
▪ Ray tracing is abstracted as a graph of programmable “stages” 
▪ TraceRay() is a blocking function in some of those stages

Acceleration 
structure

Can call TraceRay()

Can call TraceRay()

Can call TraceRay()



GPU understands format of BVH 
acceleration structure and “shader table”
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Hardware acceleration for ray tracing
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Custom hardware for RT

NVIDIA GeForce RTX 3080 GPU
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NVIDIA Ampere SM (RTX 3xxx series)
▪ Hardware support for ray-triangle 

intersection and ray-BVH intersection 
(“RT core”) 

▪ Very little public documentation of 
architectural details at this time
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Denoising ray traced images
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32 samples per pixel
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Deep learning-based denoising
▪ Can we “learn” to turn noisy images into clean ones? 

▪ Idea: Use image-to-image transfer methods based on deep 
learning to convert cheap to compute (but noisy) ray traced 
images into higher quality images that look like they were 
produced by tracing many rays per pixel



Example: NVIDIA Optix denoiser
▪ https://developer.nvidia.com/optix-denoiser
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Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/
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Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/
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Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/
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Denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/
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Surprising synergies
▪ New GPU hardware for ray-

tracing operations 

▪ But ray tracing still too 
expensive for noise-free 
images in real-time 

▪ Tensor core: specialized 
hardware for accelerated 
DNN computations 
(that can be used to perform 
sophisticated denoising of 
ray traced images)



Stanford CS348K, Spring 2021

Technologies that are making real-time ray 
tracing possible
▪ Better algorithms: fast parallel BVH construction and traversal 

algorithms (many SIGGRAPH/HPG papers circa 2010-2017) 

▪ GPU hardware evaluation: 
- HW acceleration of ray-triangle intersection, BVH traversal 
- Increasingly $exible aspects of traditional GPU pipeline 

(bindless textures/resources) 

▪ DNN-based image denoising 
- Can make plausible images using small number of rays per pixel 
- Make use of DNN hardware acceleration
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Not discussed today
▪ Parallelizing BVH construction 
▪ Shading coherence issues/optimizations


