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Technologies that are making real-time ray 
tracing possible

▪ Better algorithms: fast parallel BVH construction and traversal 
algorithms (many SIGGRAPH/HPG papers circa 2010-2017) 

▪ GPU hardware evaluation: 
- HW acceleration of ray-triangle intersection, BVH traversal 
- Increasingly !exible aspects of traditional GPU pipeline 

(bindless textures/resources) 

▪ DNN-based image post-processing (denoising) 
- Can make plausible images using small number of rays per pixel 
- Makes use of existing DNN hardware acceleration
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Convenient synergies in HW

▪ New GPU hardware for ray-tracing 
operations 

▪ But ray tracing still too expensive 
for noise-free images in real-time 

▪ Tensor core: specialized hardware 
for accelerated DNN computations 
(that can be used to perform 
sophisticated denoising of ray 
traced images)



Stanford CS348K, Spring 2021

Denoising ray traced images
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32 samples per pixel (visible noise)
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Deep learning-based denoising
▪ Can we “learn” to turn noisy images into clean ones? 

▪ Idea: Use neural image-to-image transfer methods to convert 
cheap to compute (but noisy) ray traced images into higher 
quality images that look like they were produced by tracing 
many rays per pixel
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Example: neural denoiser RNN
▪ https://developer.nvidia.com/optix-denoiser

Depth Normal Roughness

Input to network is noisy RGB image * + additional normal, depth, and roughness channels 
(These cheap to compute inputs help network identify silhouettes)

* Actually the input is RGB demodulated by (divided by) texture albedo  (don’t force network to learn what texture was)

Albedo

[Chaitanya 17]
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Denoising results
▪ https://developer.nvidia.com/optix-denoiser

[Chaitanya 17]

1 spp (input)
4000 spp 

(ground truth)Denoised
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Denoising results (challenging) [Chaitanya 17]

1 spp (input)
4000 spp 

(ground truth)Denoised
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More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Original (noisy)
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More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Denoised
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More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Original (noisy)
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More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Denoised
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Aside: upsampling low-resolution 
images to higher resolution images

(This is upsampling, not reducing Monte Carlo noise.)



Stanford CS348K, Spring 2021

Neural upsampling (hallucinating detail)

 + auxiliary inputs

[Xiao 20]
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Neural upsampling (hallucinating detail)

4x4 upsampled result (16x more pixels)

[Xiao 20]
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Neural upsampling pipeline

Main idea: gain resolution by aligning and merging multiple recent frames 

Alignment vectors provided by renderer 
Learn model that determines weights for aligned features (“feature reweighting”) 
Then decode with neural decoder (“reconstruction”)

[Xiao 20]
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Closer look [Xiao 20]
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Rapidly Constructing 
BVH Acceleration Structures
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BVH construction review: 
How would you partition these triangles 
into two groups?
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What about these?
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Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition 
Intuition: want small bounding boxes (minimize overlap between children, 

avoid bboxes with signi"cant empty space)
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What are we really trying to do?
A good partitioning minimizes the expected cost of "nding the 
closest intersection of a ray with the scene primitives in the 
node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere                            is the cost of ray-primitive 
intersection for primitive i in the node.                

(Common to assume all primitives have the same cost)
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Cost of making a partition
A good partitioning minimizes the expected cost of "nding the closest 
intersection of a ray with primitives in the node.

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data + bbox intersection check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees
C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

Remaining question: how do we get the probabilities pA, pB?
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Estimating probabilities
▪ For convex object A inside convex object B, the probability 

that a random ray that hits B also hits A is given by the ratio 
of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Leads to surface area heuristic (SAH):

Assumptions of the SAH (which may not hold in practice!): 
- Rays are randomly distributed 
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect
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Implementing partitions
▪ Constrain search for good partitions to axis-aligned spatial partitions 

- Choose an axis; choose a split plane on that axis 
- Partition primitives by the side of splitting plane their centroid lies 
- SAH changes only when split plane moves past triangle boundary 
- Have to consider large number of possible split planes… O(# objects)
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E#ciently implementing partitioning
▪ E#cient modern approximation: split spatial extent of 

primitives into B buckets (B is typically small: B < 32) 

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z: 
   initialize bucket counts to 0, per-bucket bboxes to empty 
   [POTENTIALLY IN PARALLEL] 
   For each primitive p in node:   
      b = compute_bucket(p.centroid) 
      b.bbox.union(p.bbox); 
      b.prim_count++; 
   [POTENTIALLY IN PARALLEL] 
   For each of the B-1 possible partitioning planes evaluate SAH 
      Use lowest cost partition found (or make node a leaf)
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Top-down BVH construction
Partition(list of prims) { 

  if (list is small enough, or no cost benefit from SAH split) { 

    // make leaf node 

  } 

   

  (prim_list_1, prim_list2) = // perform SAH split  

  // recursive calls can execute in parallel 

  left_child = Partition(prim_list_1) 

  right_child = Partition(prim_list_2) 

}



Stanford CS348K, Spring 2021

Building a low-quality BVH quickly

00 01

10 11

B=1 B=2

B=3 B=4

1. Discretize each dimension of scene into 2B cells 
2. Compute index of centroid of bounding box of each primitive:

(c_i, c_j, c_k) 
3. Interleave bits of c_i, c_j, c_k to get 3B bit-Morton code 
4. Sort primitives by Morton code (primitives now ordered with 

high locality in 3D space: in a space-"lling curve!) 
- O(N) parallel radix sort

Partition(int i, primitives): 
 node.bbox = bbox(primitives) 
 (left, right) = partition prims by bit i 
if there are more bits: 
   Partition(left, i+1); 
   Partition(right, i+1); 
else: 
   make a leaf node

2D Morton Order

Simple, highly parallelizable BVH build:

[Lauterbach 09, 
Pantaleone 10]
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Modern, fast BVH construction schemes
▪ Combine greedy “top-down” divide-and-conquer build with 

“bottom up” construction techniques 

▪ Step 1: build low-quality BVH quickly (e.g, using Morton 
codes) 

▪ Step 2: Use initial BVH to accelerate construction of high-
quality BVH
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Kerras 2013 bottom up treelet-based construction
▪ Step 1: (top down) build low quality BVH quickly using Morton codes 
▪ Step 2: (bottom up) walk from leaves toward root forming small treeless 

- For each treelet, exhaustively try all possible combinations to "nd optimal (SAH) treelet 
- Brute force search implemented using dynamic programming method

Shaded region: treelet with 7 leaf nodes After optimization: this is the optimal 
treelet for these nodes (minimal SAH cost)

[Kerras 13]
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Can a$ord to build a better BVH if you are shooting 
many rays
▪ The graph below plots e$ective ray throughput (Mrays/sec) as a function of the 

number of rays traced per BVH build 
- More rays = can amortize costs of BVH build across many ray trace operations

[Morton code based]
[Kerras 13]

[High quality top-down]
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Two-level BVHs
▪ Many scene objects do not move from frame-to-frame, or only move rigidly 
▪ Approach: two-level BVH: build a BVH over per-object BVHs 

- Only rebuild this top level BVH each frame as objects move

A B

C

BVH for object A BVH for object B BVH for object CTop Level BVH

Contains hundreds 
of scene objects

Each per-object BVH might contains tens’s of thousands of triangles. 
If object’s geometry does not under relative change 

(other than rotation/translation in world) 
the BVH can be build once and remain applicable.
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Real time ray tracing: what’s next
▪ Continued development of specialized HW 

- More transistors = more RT cores = more rays/sec 
- Currently no hardware acceleration in game consoles 

▪ Continued application developer work to integrate tech into games 
- Application developers want a smooth adoption path (can’t just throw 

out their current game engines and replace with a ray tracer)  

▪ Substantial algorithmic innovation to reduce required ray counts 
- Interesting recent results rendering scenes with many lights (we’ll have 

a guest speaker on June 1) 
- Improvements to neural denoising techniques


