
Visual Computing Systems
Stanford CS348K, Spring 2021

Lecture 16:

Optimizing Ray Tracing
(Part II)

Stanford CS348K, Spring 2021

Technologies that are making real-time ray
tracing possible

▪ Better algorithms: fast parallel BVH construction and traversal
algorithms (many SIGGRAPH/HPG papers circa 2010-2017)

▪ GPU hardware evaluation:
- HW acceleration of ray-triangle intersection, BVH traversal
- Increasingly !exible aspects of traditional GPU pipeline

(bindless textures/resources)

▪ DNN-based image post-processing (denoising)
- Can make plausible images using small number of rays per pixel
- Makes use of existing DNN hardware acceleration

Stanford CS348K, Spring 2021

Convenient synergies in HW

▪ New GPU hardware for ray-tracing
operations

▪ But ray tracing still too expensive
for noise-free images in real-time

▪ Tensor core: specialized hardware
for accelerated DNN computations
(that can be used to perform
sophisticated denoising of ray
traced images)

Stanford CS348K, Spring 2021

Denoising ray traced images

Stanford CS348K, Spring 2021

32 samples per pixel (visible noise)

Stanford CS348K, Spring 2021

Deep learning-based denoising
▪ Can we “learn” to turn noisy images into clean ones?

▪ Idea: Use neural image-to-image transfer methods to convert
cheap to compute (but noisy) ray traced images into higher
quality images that look like they were produced by tracing
many rays per pixel

Stanford CS348K, Spring 2021

Example: neural denoiser RNN
▪ https://developer.nvidia.com/optix-denoiser

Depth Normal Roughness

Input to network is noisy RGB image * + additional normal, depth, and roughness channels
(These cheap to compute inputs help network identify silhouettes)

* Actually the input is RGB demodulated by (divided by) texture albedo (don’t force network to learn what texture was)

Albedo

[Chaitanya 17]

Stanford CS348K, Spring 2021

Denoising results
▪ https://developer.nvidia.com/optix-denoiser

[Chaitanya 17]

1 spp (input)
4000 spp

(ground truth)Denoised

Stanford CS348K, Spring 2021

Denoising results (challenging) [Chaitanya 17]

1 spp (input)
4000 spp

(ground truth)Denoised

Stanford CS348K, Spring 2021

More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Original (noisy)

Stanford CS348K, Spring 2021

More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Denoised

Stanford CS348K, Spring 2021

More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Original (noisy)

Stanford CS348K, Spring 2021

More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Denoised

Stanford CS348K, Spring 2021

Aside: upsampling low-resolution
images to higher resolution images

(This is upsampling, not reducing Monte Carlo noise.)

Stanford CS348K, Spring 2021

Neural upsampling (hallucinating detail)

 + auxiliary inputs

[Xiao 20]

Stanford CS348K, Spring 2021

Neural upsampling (hallucinating detail)

4x4 upsampled result (16x more pixels)

[Xiao 20]

Stanford CS348K, Spring 2021

Neural upsampling pipeline

Main idea: gain resolution by aligning and merging multiple recent frames

Alignment vectors provided by renderer
Learn model that determines weights for aligned features (“feature reweighting”)
Then decode with neural decoder (“reconstruction”)

[Xiao 20]

Stanford CS348K, Spring 2021

Closer look [Xiao 20]

Stanford CS348K, Spring 2021

Rapidly Constructing
BVH Acceleration Structures

Stanford CS348K, Spring 2021

BVH construction review:
How would you partition these triangles
into two groups?

Stanford CS348K, Spring 2021

What about these?

Stanford CS348K, Spring 2021

Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition
Intuition: want small bounding boxes (minimize overlap between children,

avoid bboxes with signi"cant empty space)

Stanford CS348K, Spring 2021

What are we really trying to do?
A good partitioning minimizes the expected cost of "nding the
closest intersection of a ray with the scene primitives in the
node.

If a node is a leaf node (no partitioning):

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisect

C =
NX

i=1

Cisect(i) = NCisectWhere is the cost of ray-primitive
intersection for primitive i in the node.

(Common to assume all primitives have the same cost)

Stanford CS348K, Spring 2021

Cost of making a partition
A good partitioning minimizes the expected cost of "nding the closest
intersection of a ray with primitives in the node.

C = Ctrav + pACA + pBCB

C = Ctrav + pACA + pBCB

is the cost of traversing an interior node (e.g., load data + bbox intersection check)C = Ctrav + pACA + pBCB

and C = Ctrav + pACA + pBCB are the costs of intersection with the resultant child subtrees
C = Ctrav + pACA + pBCBand C = Ctrav + pACA + pBCBare the probability a ray intersects the bbox of the child nodes A and B

C = Ctrav + pANACisect + pBNBCisect

Primitive count is common approximation for child node costs:

Remaining question: how do we get the probabilities pA, pB?

Stanford CS348K, Spring 2021

Estimating probabilities
▪ For convex object A inside convex object B, the probability

that a random ray that hits B also hits A is given by the ratio
of the surface areas SA and SB of these objects.

P (hitA|hitB) =
SA

SB

Leads to surface area heuristic (SAH):

Assumptions of the SAH (which may not hold in practice!):
- Rays are randomly distributed
- Rays are not occluded

C = Ctrav +
SA

SN
NACisect +

SB

SN
NBCisect

Stanford CS348K, Spring 2021

Implementing partitions
▪ Constrain search for good partitions to axis-aligned spatial partitions

- Choose an axis; choose a split plane on that axis
- Partition primitives by the side of splitting plane their centroid lies
- SAH changes only when split plane moves past triangle boundary
- Have to consider large number of possible split planes… O(# objects)

Stanford CS348K, Spring 2021

E#ciently implementing partitioning
▪ E#cient modern approximation: split spatial extent of

primitives into B buckets (B is typically small: B < 32)

b0 b1 b2 b3 b4 b5 b6 b7

For each axis: x,y,z:
 initialize bucket counts to 0, per-bucket bboxes to empty
 [POTENTIALLY IN PARALLEL]
 For each primitive p in node:
 b = compute_bucket(p.centroid)
 b.bbox.union(p.bbox);
 b.prim_count++;
 [POTENTIALLY IN PARALLEL]
 For each of the B-1 possible partitioning planes evaluate SAH
 Use lowest cost partition found (or make node a leaf)

Stanford CS348K, Spring 2021

Top-down BVH construction
Partition(list of prims) {

 if (list is small enough, or no cost benefit from SAH split) {

 // make leaf node

 }

 (prim_list_1, prim_list2) = // perform SAH split

 // recursive calls can execute in parallel

 left_child = Partition(prim_list_1)

 right_child = Partition(prim_list_2)

}

Stanford CS348K, Spring 2021

Building a low-quality BVH quickly

00 01

10 11

B=1 B=2

B=3 B=4

1. Discretize each dimension of scene into 2B cells
2. Compute index of centroid of bounding box of each primitive:

(c_i, c_j, c_k)
3. Interleave bits of c_i, c_j, c_k to get 3B bit-Morton code
4. Sort primitives by Morton code (primitives now ordered with

high locality in 3D space: in a space-"lling curve!)
- O(N) parallel radix sort

Partition(int i, primitives):
 node.bbox = bbox(primitives)
 (left, right) = partition prims by bit i
if there are more bits:
 Partition(left, i+1);
 Partition(right, i+1);
else:
 make a leaf node

2D Morton Order

Simple, highly parallelizable BVH build:

[Lauterbach 09,
Pantaleone 10]

Stanford CS348K, Spring 2021

Modern, fast BVH construction schemes
▪ Combine greedy “top-down” divide-and-conquer build with

“bottom up” construction techniques

▪ Step 1: build low-quality BVH quickly (e.g, using Morton
codes)

▪ Step 2: Use initial BVH to accelerate construction of high-
quality BVH

Stanford CS348K, Spring 2021

Kerras 2013 bottom up treelet-based construction
▪ Step 1: (top down) build low quality BVH quickly using Morton codes
▪ Step 2: (bottom up) walk from leaves toward root forming small treeless

- For each treelet, exhaustively try all possible combinations to "nd optimal (SAH) treelet
- Brute force search implemented using dynamic programming method

Shaded region: treelet with 7 leaf nodes After optimization: this is the optimal
treelet for these nodes (minimal SAH cost)

[Kerras 13]

Stanford CS348K, Spring 2021

Can a$ord to build a better BVH if you are shooting
many rays
▪ The graph below plots e$ective ray throughput (Mrays/sec) as a function of the

number of rays traced per BVH build
- More rays = can amortize costs of BVH build across many ray trace operations

[Morton code based]
[Kerras 13]

[High quality top-down]

Stanford CS348K, Spring 2021

Two-level BVHs
▪ Many scene objects do not move from frame-to-frame, or only move rigidly
▪ Approach: two-level BVH: build a BVH over per-object BVHs

- Only rebuild this top level BVH each frame as objects move

A B

C

BVH for object A BVH for object B BVH for object CTop Level BVH

Contains hundreds
of scene objects

Each per-object BVH might contains tens’s of thousands of triangles.
If object’s geometry does not under relative change

(other than rotation/translation in world)
the BVH can be build once and remain applicable.

Stanford CS348K, Spring 2021

Real time ray tracing: what’s next
▪ Continued development of specialized HW

- More transistors = more RT cores = more rays/sec
- Currently no hardware acceleration in game consoles

▪ Continued application developer work to integrate tech into games
- Application developers want a smooth adoption path (can’t just throw

out their current game engines and replace with a ray tracer)

▪ Substantial algorithmic innovation to reduce required ray counts
- Interesting recent results rendering scenes with many lights (we’ll have

a guest speaker on June 1)
- Improvements to neural denoising techniques

