Lecture 9:

Generating Supervision

Parallel Computing Stanford CS348K, Spring 2021

Note

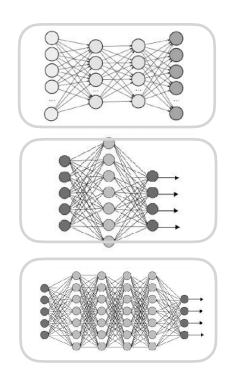
Much of this class involved discussing the Snorkel paper(s)

Today's theme

- Data alone is not precious. Today, in many domains large collections of *unlabeled data* are readily accessible
- But labels (supervision) for this data is extremely precious
- Implication: ML engineers are interested in using any means necessary to acquire sources of supervision

Today's problem setup

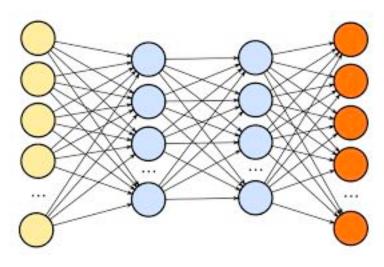
Given:



Pre-trained models (other tasks)

Huge corpus of unlabeled data Perhaps with a sparse set of human labels

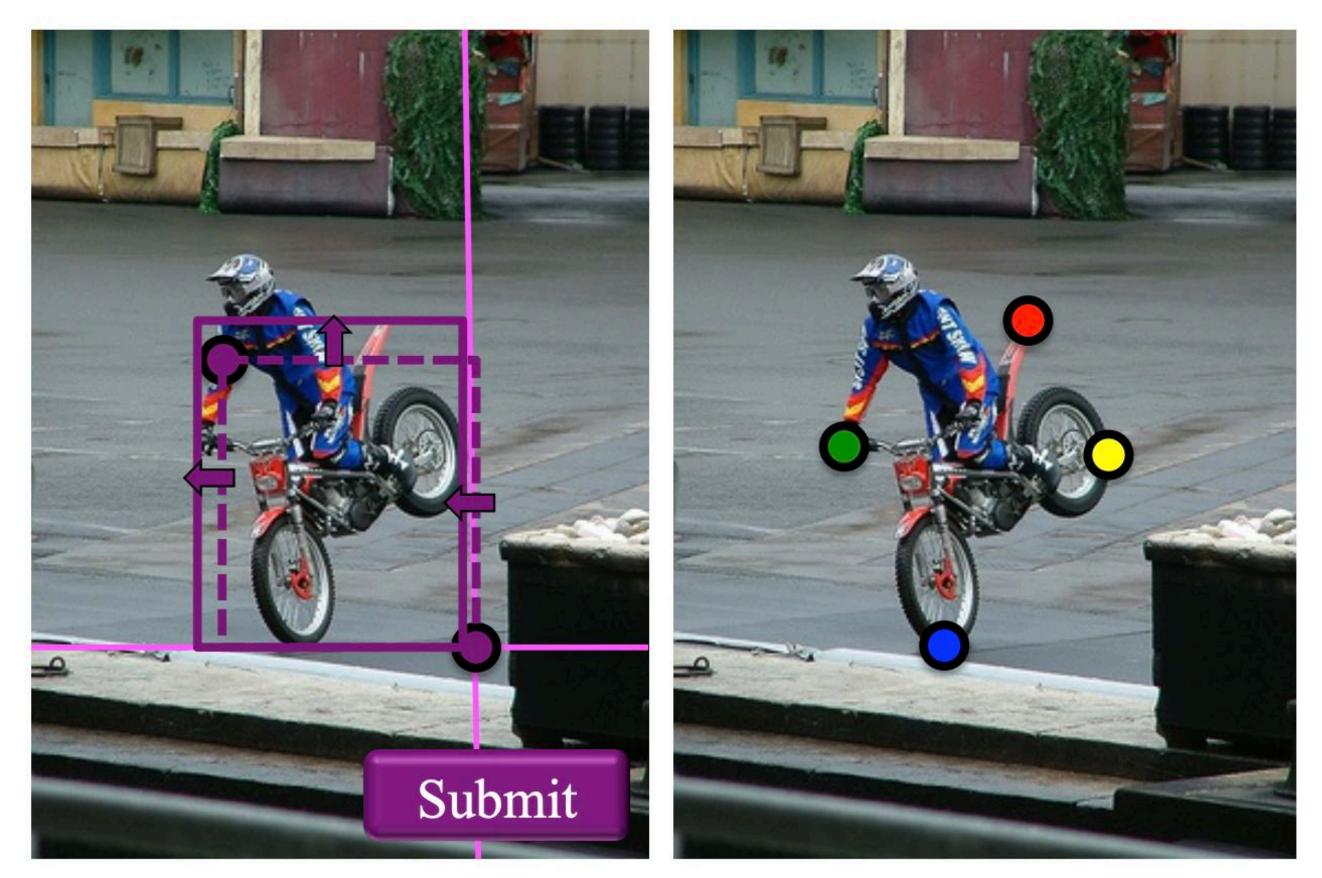
Goal: generate large amounts of supervision for use in training a model for a new task of interest



Abundant Compute

Making human labelers more efficient

Example: "extreme clicking" is a faster way to define an object bounding box AND IT ALSO gives four points on the object's silhouette



[Source: Papadopoulos et al. ICCV 2017]

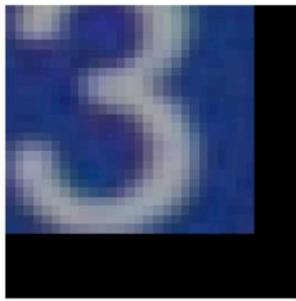
5x faster for humans to label

Amplify sparse human labels: Automatically transfer labels from labeled data points to "similar" unlabeled data points

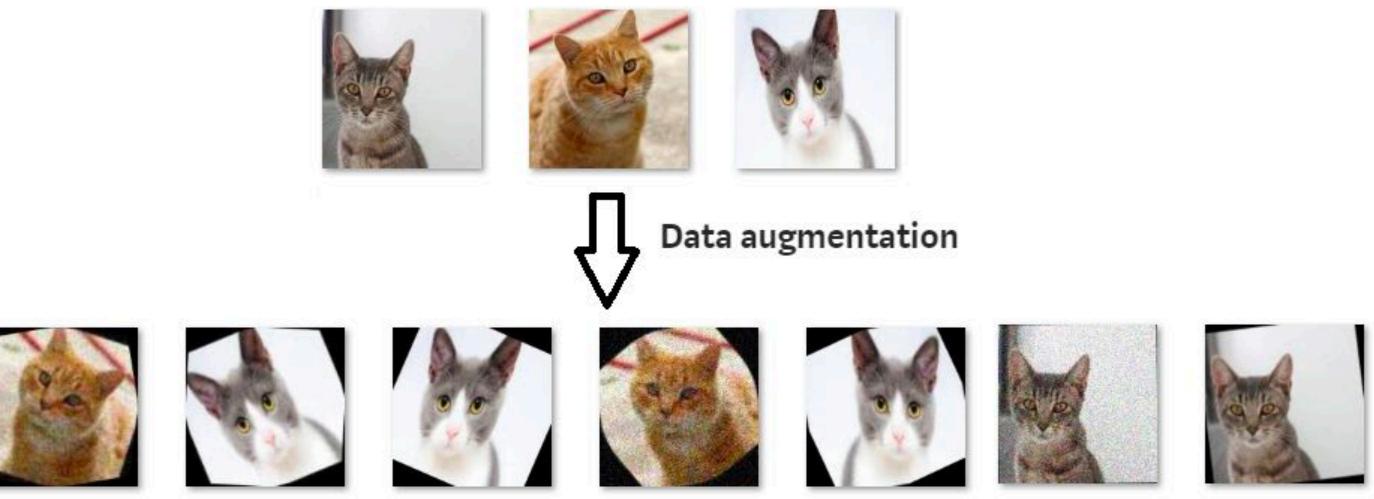
Data augmentation

Apply category-preserving transformations to images to increase size of labeled dataset.

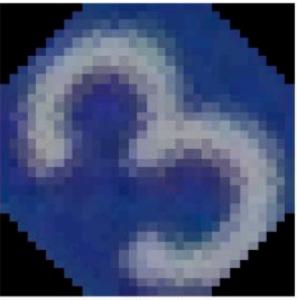
Horizontal Flip



Pad & Crop



[Source: https://medium.com/@thimblot/data-augmentation-boost-your-image-dataset-with-few-lines-of-python-155c2dc1baec]

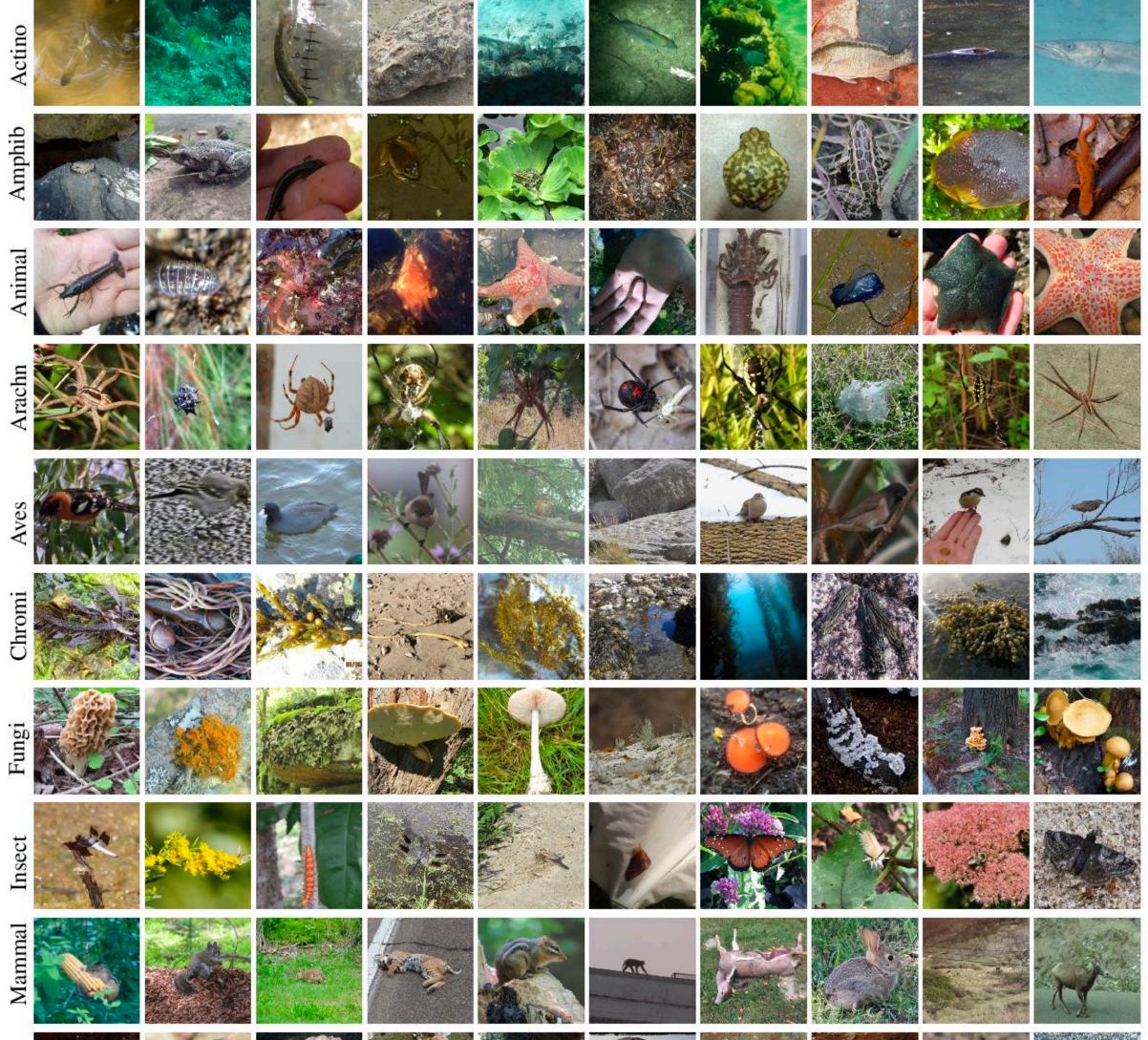


Rotate

Must be mindful of which transformations are label preserving for a task

Example: iNaturalist dataset

Is color change a good data augmentation?



Label transfer via visual similarity

If I know this image contains a cactus, then visually similar images in my unlabeled collection likely also contain a cactus as well.

Saguaro cactus

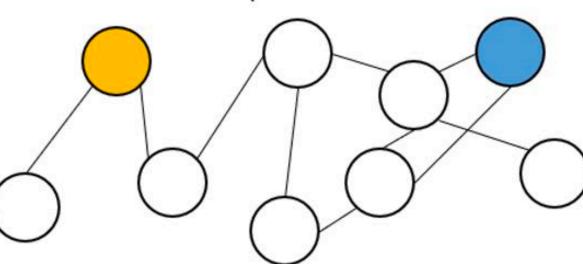
What are good ways to define similar?

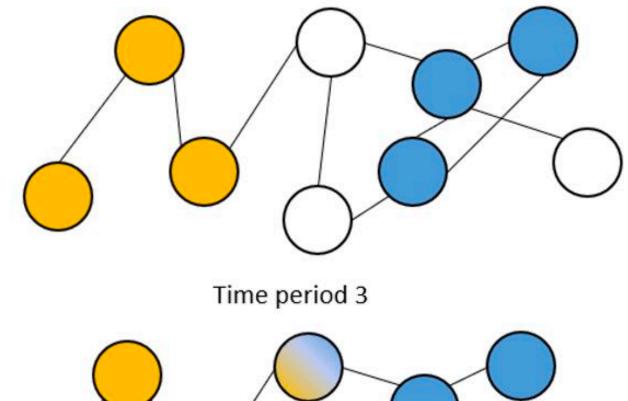
visually similar

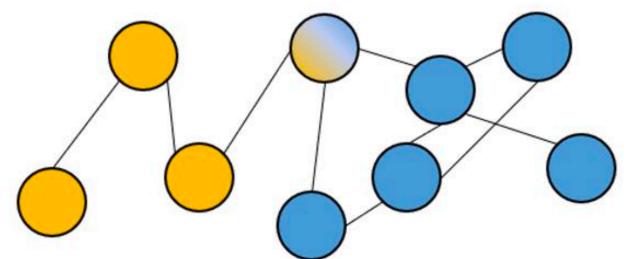
https://blog.waymo.com/2020/02/content-search.html

Label transfer via label propagation

- Given graph of unlabeled data points
 - e.g., nodes = images, edge weights given by visual similarity
- "Diffuse" sparse labels onto unlabeled nodes







[Image credit: https://www.cylynx.io/blog/efficient-large-graph-label-propagation-algorithm/]

Label Propagation Algorithm

Time period 1

Time period 2

Iterations

Key idea: bringing in additional priors

Priors from previous examples:

1. similar images likely have same label (knn, label prop, clustering)

2. Certain transformations will not change the label

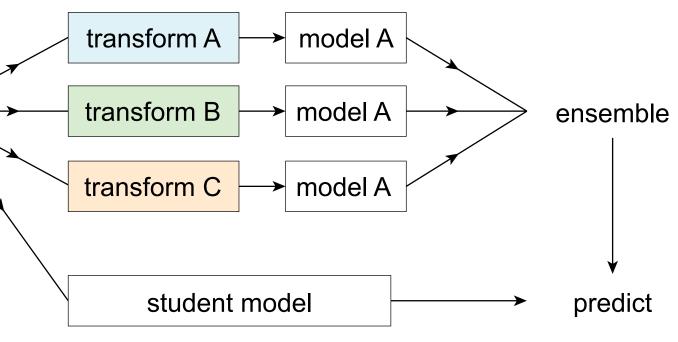
Using a trained model to supervise itself

- **Example: omni-supervised learning**
- Train original model using smaller labeled training set
- **Evaluate model on different augmentations of unlabeled image**
 - Ensemble model's predictions to estimate "ground truth" label for image
- **Re-train model on both labeled images AND estimated labels from ensemble**

backbone	DD	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	_
ResNet-50		37.1	59.1	39.6	20.0	40.0	49.4	
ResNet-50	\checkmark	37.9	60.1	40.8	20.3	41.6	50.8	
ResNet-101		39.2	61.0	42.3	21.7	42.9	52.3	
ResNet-101	\checkmark	40.1	62.1	43.5	21.7	44.3	53.7	
ResNeXt-101-32 \times 4		40.1	62.4	43.2	22.6	43.7	53.7	
ResNeXt-101-32 \times 4	\checkmark	41.0	63.3	44.4	22.9	45.5	54.8	

image

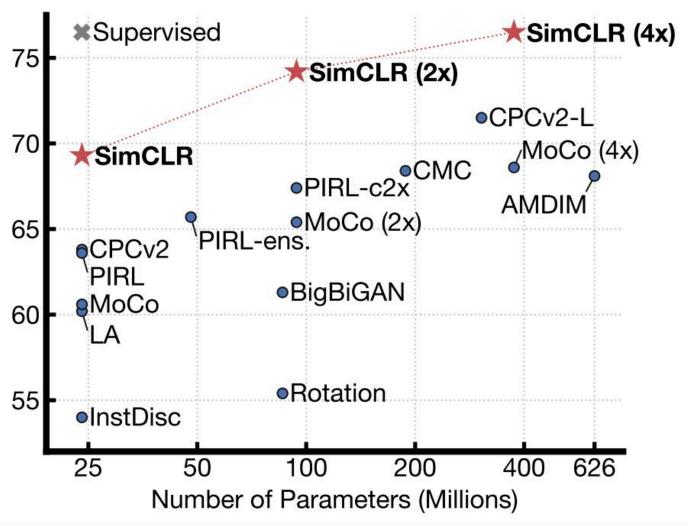
[Source: Radosavovic et al. CVPR 2018]

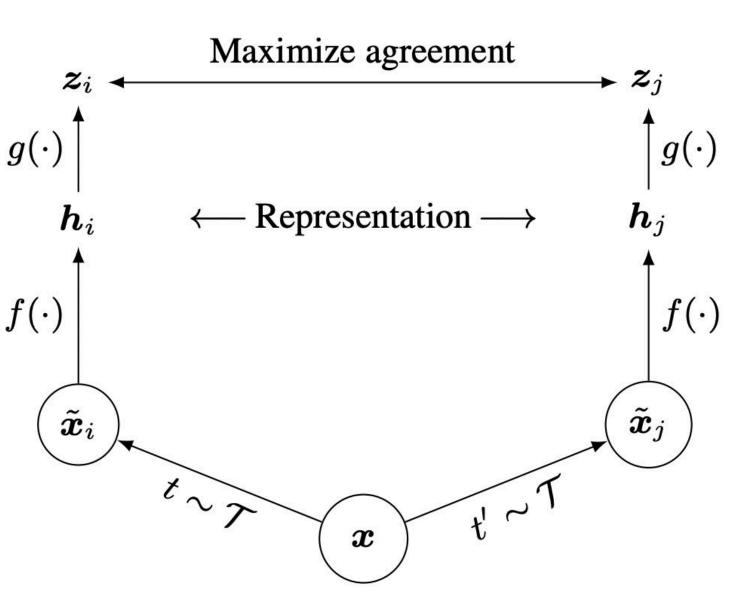


Modern trend: unsupervised pre-training

- Unsupervised pre-training at scale (using lots of data and using large models) learns good representations
- e.g. SimCLR, based on contrastive loss
- Give training image x, apply augmentation t(x) (crop, resize, flip)

 Train DNN with contrastive loss that encourages projection of different transformations of the same image x to be close (g(f(t(x))) close to g(f(t'(x)))), transformations of different images to be far.





Providing supervision by writing programs

Encode external priors in programs

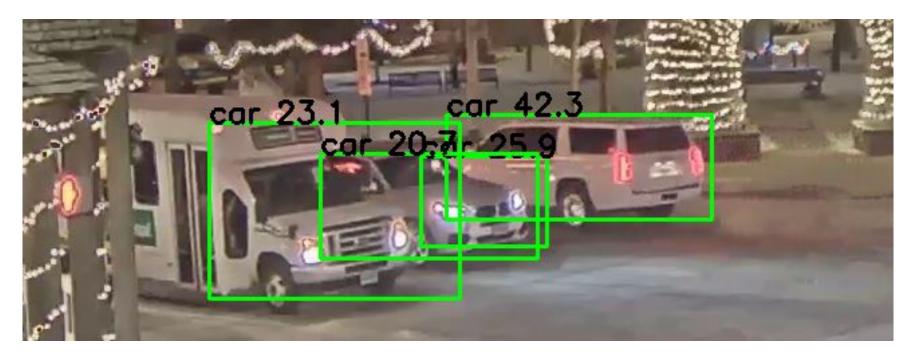
Example: temporal consistency prior: the state of world should not change significantly from frame to frame

Frame 1

Frame 2

Example: domain-knowledge prior: objects like cars cannot overlap in space

(a) Example error 1.



[Source: Kang et al. MLSys 2020]

Frame 3

(b) Example error 2.

DB queries as concept "detectors" (find elements in database matching this predicate)

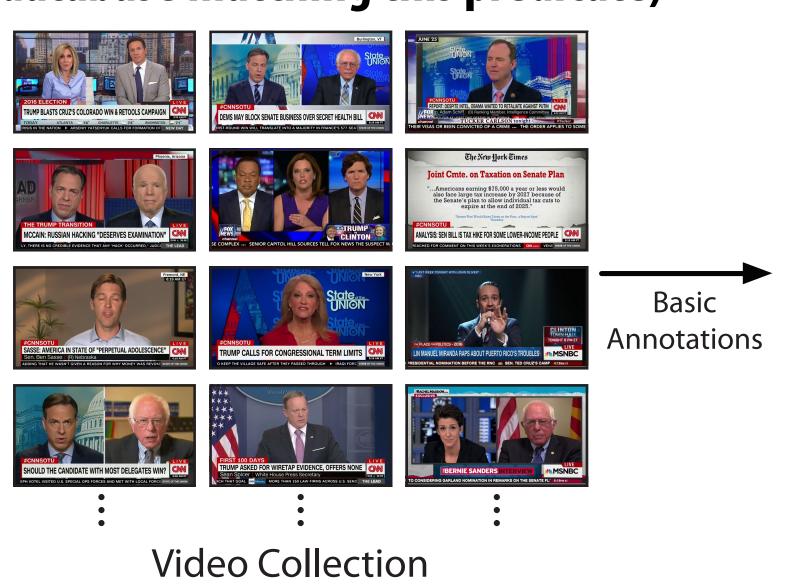
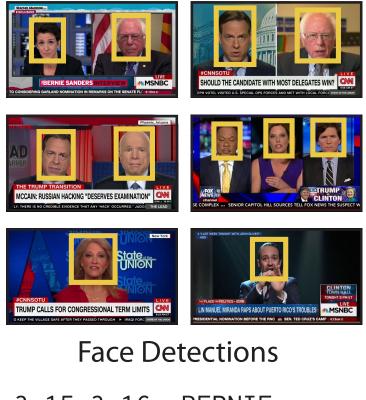


 Image: Source: Fu et al. 2019]
 Image: Source: Fu et al. 2019]



3:15-3:16: BERNIE... 5:18-5:20: THANK YOU... 9:15-9:17: TODAY IN... Captions

Three-person panels (three faces, bounding boxes greater than 30% of screen height, in horizontal alignment)

Today's discussion: using weak supervision via "data programming"

Many, many ways to find, generate, and operationalize supervision

- Multiple-modalities of data, knowledge in prior models, weak sources of supervision, return to basic heuristics, etc.
- It does seem like better platform and system support would be helpful here! (more next class)