Lecture 12:;

Video Compression

Visual Computing Systems
Stanford C5348K, Spring 2021

Image compression review/fundamentals

Stanford C5348K, Spring 2021

Y'CbCr color space

Y’ = luma: perceived luminance (non-linear)
Cb = blue-yellow deviation from gray
Cr =red-cyan deviation from gray

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Non-linear RGB
(primed notation indicates
perceptual (non-linear) space)

Conversion from R'G'B’ to Y'Cbh(r:
65.738 - R, 129.057 - G, 25.064 - B,

Y — 16
T 056 056 256
- _37945.R, TA494.G, 112439. B,
el %6 956 956
- 112439- R, 94.154-G, 18.285- B,
Cr= 1254 056 %6 256

Image credit: Wikipedia Stanford CS348K, Spring 2021

Example: compression in Y'ChCr

Original picture of Kayvon

Stanford C5348K, Spring 2021

Example: compression in Y'ChCr

Contents of ChCr color channels downsampled by a factor of 20 in each dimension

(400x reduction in number of samples)
Stanford C5348K, Spring 2021

Example: compression in Y'ChCr

Full resolution sampling of luma (Y’)

Stanford C5348K, Spring 2021

Example: compression in Y'ChCr

Reconstructed result
(looks pretty good)

Stanford C5348K, Spring 2021

Chroma subsampling

Y'ChCr is an efficient representation for storage (and transmission) because Y’ can be
stored at higher resolution than ChCr without significant loss in perceived visual quality

Y00 Y'10 Y'2 Y'30 Y 0o Y'10 Y'2 Y30
Choo Chyo Choo Cho

Croo Crao Croo Crao

Y'o1 Y11 Y2 Y's; Yo Y1 Y2 | Y
Cho; Ch;;

Cro Cra

4:2:2 representation: 4:2:0 representation:

Store Y’ at full resolution
Store Ch, Cr at full vertical resolution,
but only half horizontal resolution

Store Y’ at full resolution

Store Ch, Cr at half resolution in both
dimensions

Real-world 4:2:0 examples:

X:Y:Z notation: most JPG images and H.264 video

X = width of block
Y = number of chroma samples in first row
Z = number of chroma samples in second row

Stanford C5348K, Spring 2021

Image transform coding via discrete cosign
transform (DCT)

64 basis coefficients 64 cosine basis vectors
(each vector is 8x8 image)

8x8 pixel block
(64 coefficients of signal in
“pixel basis”)
, () 1
l basis[i, j] = cos [WN (a: + 5
[0,0]

=415 =30 —-61 27 56 =20 -2 O]

4
m L. I _L-
Lo (R KA 0 e
I Rl il 1 e
(] o o]
| | O
u Ll I- | 5

4 =22 -61 10 18 -7 -9 5 -
-47 7T 7T =25 -20 10 5 -6 -
_ -49 12 34 -15 -10 6 2 2 -
— 12 =7 =I% -4 3 2 =3 3 —
-8 % 2 -8 <=2] 2

1

4
-1 0 0 -2 -1 -3 4
0 0 -1 -4 -1 0 1

b
L

X<
e

(e .

In practice: DCT applied to 8x8 pixel blocks of Y’ channel, 16x16 pixel blocks of Cb, Cr (assuming 4:2:0)

Stanford C5348K, Spring 2021

Quantization

~415 30 —61 27 56 -20 —2 O 16 11 10 16 24 40 51 61
4 -2 61 10 13 -7 -9 5 12 12 14 19 26 58 60 55
47 7T 77 -25 -29 10 5 -6 14 13 16 24 40 57 69 56
49 12 34 -15 -10 6 2 2| / |14 17 22 29 51 87 30 62
2 7 <13 ~4 -2 9 5 8 18 22 37 56 63 109 103 77
8 3 2 -8 -2 1 4 2 24 35 55 64 81 104 113 92
4 0 0 =8 =1 -3 4§ =1 19 64 78 87 103 121 120 101
0 0 -1 -4 -1 0 1 2| 72 92 95 93 112 100 103 99 |

Result of DCT Quantization Matrix

(representation of image in cosine basis)
Changing JPEG quality setting in your favorite photo app

modifies this matrix (“lower quality” = higher values for

—26 -3 -6 2 2 ~1 0 0 . . :
0 -9 —4 1 1 0 0 0 elements in quantization matrix)
-3 1 5 =1 =1 0 0 0 JPEG Options
— 4 1 . 1 0 0 0 0 Matte: MNone E
- 1 O 0 0 0 0 00
0 0 0 0 0 0 0 0 — Image Options — Cancel
0 0 0 0 0 0 00 Quaity: [8_| (Hih B | g
! O 0 O 0 0 0 0 0 amall file large file o

Quantization produces small values for coefficients (only few bits needed per coefficient)
Quantization zeros out many coefficients

[Credit: Wikipedia, Pat Hanrahan] Stanford CS348K, Spring 2021

JPEG compression artifacts

Noticeable 8x8 pixel block boundaries

Noticeable error near high gradients

Low Quality

Medium Quality

!

Low-frequency regions of image represented accurately even under high compression . - . .o o rinoa021

Lossless compression of quantized DCT values

0 0 1,
0 -2 -4 1 1 0 00 yam
-3 1 5 -1 -1 0 00 ¥ J
-4 1 2 -1 0 0 00 A
1 0 0 0 0 0 00
0 0 0 0 0 0 00O
0 0 0 0 0 0 00
|0 0 0 0 0 0 0 0]
Quantized DCT Values

Entropy encoding: (lossless) :
Reorder values Reordering
Run-length encode (RLE) 0's

Huffman encode non-zero values

Image credit: Wikipedia Stanford (348K, Spring 2021

JPEG compression summary

Convert image to Y'ChCr

Downsample ChCr (to 4:2:2 or 4:2:0) (information loss occurs here)
For each color channel (Y, Cb, Cr):
For each 8x8 block of values
Compute DCT

Quantize results (information loss occurs here)
Reorder values

Run-length encode 0-spans
Huffman encode non-zero values

Stanford C5348K, Spring 2021

H.264 Video Compression

Stanford C5348K, Spring 2021

Example video

30 second video: 1920 x 1080, @ 30fps

After decode: 8-bits per channel RGB — 24 bits/pixel = 6.2MB/frame
(6.2 MB * 30 sec * 30 fps = 5.2 GB)
Size of data when each frames stored as JPG: ‘531MB
Actual H.264 video file size: 65.4 MB (80-to-1 compression ratio, 8-to-1 compared to JPG)
Compression/encoding performed in real time on my iPhone

Stanford C5348K, Spring 2021

H.264/AVC video compression

B AV(C=advanced video coding
m Also called MPEG4 Part 10

m Common format in many modern HD video applications:
- Blue Ray

- HD streaming video on internet (Youtube, Vimeo, iTunes store, etc.)
- HD video recorded by your smart phone

- European broadcast HDTV (U.S. broadcast HDTV uses MPEG 2)
- Some satellite TV broadcasts (e.g., DirecTV)

m Benefit: higher compression ratios than MPEG2 or MPEG4
- Alternatively, higher quality video for fixed bit rate

m (osts: higher decoding complexity, substantially higher encoding cost
- |ldea: trades off more compute for requiring less bandwidth/storage

Stanford C5348K, Spring 2021

Hardware implementations

m Support for H.264 video encode/decode is provided by fixed-function
hardware on most modern processors (not just mobile devices)

B Hardware encoding/decoding support existed in modern Intel CPUs since
Sandy Bridge (Intel “Quick Sync”)

B Modern operating systems expose hardware encode decode support
through hardware-accelerated APIs

- e.g., DirectShow/DirectX (Windows), AVFoundation (i0S)

Stanford C5348K, Spring 2021

Video container format versus video codec

m Video container (MOV, AVI) bundles media assets

m Video codec: H.264/AVC (MPEG 4 Part 10)

- H.264 standard defines how to represent and decode video
- H.264 does not define how to encode video (this is left up to implementations)
- H.264 has many profiles

- High Profile (HiP): supported by HDV and Blue Ray

Stanford C5348K, Spring 2021

Video compression: main ideas

m Compression is about exploiting redundancy in a signal

- Intra-frame redundancy: value of pixels in neighboring
regions of a frame are good predictor of values for other
pixels in the frame (spatial redundancy)

- Inter-frame redundancy: pixels from nearby frames in time
are a good predictor for the current frame’s pixels
(temporal redundancy)

Stanford C5348K, Spring 2021

Residual: difference between compressed image and
original image

Compressed pixels Residual
(JPEG quality level 6) (amplified for visualization)

Original pixels

Compressed pixels Residual
(JPEG quality level 2) (amplified for visualization)

Stanford C5348K, Spring 2021

H.264/AVC video compression overview

Basis
r D : r . r)
Source Intra-/Inter-frame | Residual Transform/) coefficients [Eptropy Compressed
(4 ﬁ ﬁ I ﬁ T — ’ [
Video Prediction Model Quantize ' Encoding Video Stream
. y ‘ . Residual : I—’k y
Prediction :
Previously parameters .

CodedData [« ---------=============-

Residual: difference between predicted pixel values and input video pixel values

In other words: The main idea today: use an algorithm to predict what a future pixel
should be, then store a description of the algorithm and the residual of the prediction.

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010 Stanford CS348K, Spring 2021

16 x 16 macroblocks

Video frame is partitioned into 16 x 16
pixel macroblocks

Due to 4:2:0 chroma subsampling,
macroblocks correspond to 16 x 16 luma
samples and 8 x 8 chroma samples

Stanford C5348K, Spring 2021

Macroblocks in an image are organized
into slices

Figure to left shows the macroblocks in a
frame (boxes are macroblocks not pixels)

Macroblocks are grouped into “slices”

Can think of a slice as a sequence of
macroblocks in raster scan order *

Slices can be decoded independently **

(This facilitates parallel decode or robustness
to transmission failure)

One 16x16 macroblock

* H.264 also has non-raster-scan order modes (FMO), will not discuss today.
** Final “deblocking” pass is often applied to post-decode pixel data, so technically slices are not fully independent.

Stanford C5348K, Spring 2021

Decoding via prediction + correction

m During decode, samples in a macroblock are generated by:

1. Making a prediction based on already decoded samples in macroblocks from
the same frame (intra-frame prediction) or from other frames (inter-frame

prediction)

2. Correcting the prediction with a residual stored in the video stream

m Three forms of prediction:

- |-macroblock: macroblock samples predicted from samples in previous
macroblocks in the same slice of the current frame

- P-macroblock: macroblock samples can be predicted from samples from one
other frame (one prediction per macroblock)

- B-macroblock: macroblock samples can be predicted by a weighted combination
of multiple predictions from samples from other frames

Stanford C5348K, Spring 2021

Intra-frame prediction (I-macroblock)

B Prediction of sample values is performed in spatial domain, not transform domain

- Predict pixel values, not basis coefficients

B Modes for predicting the 16x16 luma (Y) values: *
- Intra_4x4 mode: predict 4x4 block of samples from adjacent row/col of pixels
- Intra_16x16 mode: predict entire 16x16 block of pixels from adjacent row/col

- |_PCM: actual sample values provided

5

6

7

8

01| 2| 3| 4
9
10
11
112
Intra_4X4

Yellow pixels: already reconstructed (values known)

White pixels: 4x4 block to be reconstructed

* An additional 8x8 mode exists in the H.264 High Profile

Intra_16x16

Stanford C5348K, Spring 2021

Intra_4x4 prediction modes

B Nine prediction modes (6 shown below)
- Other modes: horiz-down, vertical-left, horiz-up

0 4 11 2| 3| 4

0
9 9
10 1
11 11

112 112
Mode 0: vertical Mode 1: horizontal Mode 2: DC

(4x4 block is copy of (4x4 block is copy of left (4x4 block is average of above

above row of pixels) col of pixels) row and left col of pixels)

(1,2 3,,4,5,6,7, 8 1, 2| 3| 4

00 1 3 4
9 9

1

1

0
9
1

10
11 11

112 12 112
Mode 3: diagonal down-left (45°) Mode 4: diagonal down-right (45°) Mode 5: vertical-right (26.6°)

Stanford (5348K, Spring 2021

Intra_4x4 prediction modes (another look)

neighboring pixels E block to be predicted
mode 0O mode 1 mode 2 mode 3 mode 4 mode 5 mode 6 mode 7 mode 8

(vertical) (horizontal) (DC) (diag/left) (diag/right) (vert/right) (horiz/down) (vert/left) (horiz/up)

AVC/H.264 intra prediction modes

https://hacks.mozilla.org/2018/06/av1-next-generation-video-the-constrained-directional-enhancement-filter/ Stanford (S348K, Spring 2021

Intra_16x16 prediction modes

m 4 prediction modes: vertical, horizontal, DC, plane

Mode 0: vertical Mode 1: horizontal Mode 2: DC

Pli,jl=Ai*Bj +C
A derived from top row, B derived from left col, C from both

Mode 4: plane
Stanford C5348K, Spring 2021

Further details

B |ntra-prediction of chroma (8x8 block) is performed using four modes similar to
those of intra_16x16 (except reordered as: DC, vertical, horizontal, plane)

Each mode is a different prediction algorithm, so we have to store
which algorithm we chose in the video stream in order to decode it.

4

B [ntra-prediction scheme for each 4x4 block within macroblock encoded as follows:

= One bit per 4x4 block:
- if 1, use most probable mode

- Most probable = lower of modes used for 4x4 block to left or above
current block

- if 0, use additional 3-bit value rem_intra4x4_pred_mode to encode
one of nine modes

- ifintrad4x4_pred_mode is smaller than most
probable mode, use mode given by

intrad4x4_pred_mode
- else, modeis intra4x4_pred mode + 1

Stanford C5348K, Spring 2021

Inter-frame prediction (P-macroblock)

B Predict sample values using values from a block of a previously decoded frame *

® Basicidea: current frame formed by translation of pixels from temporally
nearby frames (e.g., object moved slightly on screen between frames)

- “Motion compensation”: use of spatial displacement to make prediction

about pixel values
macroblock
Recently decoded frames Frafne currently
being decoded

(stored in “decoded picture buffer”)

* Note: “previously decoded” does not imply source frame must come before current frame in the video sequence.

(H.264 supports decoding out of order.) |
Stanford C5348K, Spring 2021

P-macroblock prediction

® Prediction can be performed at macroblock or sub-macroblock granularity
- Macroblock can be divided into 16x16, 8x16, 16x8, 8x8 “partitions”

- 8x8 partitions can be further subdivided into 4x8, 8x4, 4x4 sub-macroblock partitions

B Each partition predicted by sample values defined by:
(reference frame id, motion vector)

4x4 pixel sub-
“ | | macroblock
partition
Decoded picture Decoded picture Current frame
buffer: frame 1 buffer: frame 0

Block A: predicted from (frame 0, motion-vector =[-3, -1])

Note: non-inteqger motion vector
Block B: predicted from (frame 1, motion-vector =[-2.5, -0.5]) —)

Stanford C5348K, Spring 2021

Motion vector visualization

* » » - * - » * * + * * * * + + - + - - - + + + + + + * + + + + * * + + + * * * * * * * * * + * * * * * * * * + +* * * * * * + + + + + + + + - + + * + * * * + +
* * * + * + + - + + + - - - +» + + + + * + + + + * + * * * + + + * + * + + * * * * * * * + * * * * * * * * * * * * * * * * * + + * + + * + + * + + . + + + + * +
* + + * - + + - + + * * + + * + + + + + + + + + + + + + + + * + * + * * * * * * * + + + + + * + * * * * * * * * * * + * + + +* + + + + + * +* + + + - + + + + + +
+ + + * 4 * * + + * + * + + + + + + +* + + +* + + + - +* + + + + + + + + + + + + + - + * + + + +
- - * - - - + + . +* + + + * + + * * * * +* + + + + - + + + + + + + +* + + + + + + + +
- +* + + + + + + * * * * * * +* * * - + * - * * + * + +* + + * +* +* + + + + + +* + +* + * * + + + * +* + + + + + + + +
+ + + + + + + + * * * + * + + + + + * + + + + + + + * + + + + + + + + + + + + * + + + + + + * + + + - + - + + + + + + + * + + + * + + + + + + * + + + + + - - -

Image credit: Keyi Zhang Stanford C5348K, Spring 2021

Non-integer motion vectors require resampling

o 9o ¢ ¢ ¢ ¢ ¢ Example: motion vector with 1/2 pixel values.

o 0‘ 0‘0‘0‘0 ® Must resample reference block at positions given by red dots.

O—90 00 0 0 ¢ 0

oo 0‘0.0.0.0 @

[]) o0 0 0 .A. 0

8800008 2888088

o000 0 0 0 ©c..

o0 0 0 0 0 ooD§..
O—90 09 OEQ *—0
)P P NP WP LiF P W
o—0 00 0 0 0§

Interpolation to 1/2 pixel sample points via 6-tap filter:
half_integer_value = clamp((A - 5B + 20C + 20D - 5E + F) / 32)

H.264 supports both 1/2 pixel and 1/4 pixel resolution motion vectors
1/4 resolution resampling performed by bilinear interpolation of 1/2 pixel samples
1/8 resolution (chroma only) by bilinear interpolation of 1/4 pixel samples

Stanford C5348K, Spring 2021

Motion vector prediction

® Problem: per-partition motion vectors require significant amount of storage

® Solution: predict motion vectors from neighboring partitions and encode
residual in compressed video stream

- Example below: predict D’s motion vector as average of motion vectors of A, B, C

- Prediction logic hecomes more complex when partitions of neighboring blocks are of

different size
.

Stanford C5348K, Spring 2021

Question: what partition size is best?

m Smaller partitions likely yield more accurate prediction

- Fewer bits needed for residuals

m Smaller partitions require more bits to store partition
information (diminish benefits of prediction)
- Must store:

- source pictureid

- Motion vectors (note: motion vectors are more coherent with finer
sampling, so they likely compress well)

Stanford C5348K, Spring 2021

Inter-frame prediction (B-macroblock)

m Each partition predicted by up to two source blocks

- Prediction is the average of the two reference blocks

- Each B-macroblock partition stores two frame references and two motion
vectors (recall P-macroblock partitions only stored one)

prediction|=(A+B)/2

Frame currently

Previously decoded frames)
being decoded

(stored in “decoded picture Buffer”)

Stanford C5348K, Spring 2021

Additional prediction details

m (Optional weighting to prediction:
- Per-slice explicit weighting (reference samples multiplied by weight)

- Per-B-slice implicit weights (reference samples weights by temporal distance of
reference frame from current frame in video)

- ldea: weight samples from reference frames nearby in time more

Stanford C5348K, Spring 2021

Post-process filtering
m Deblocking

- Blocking artifacts may result as a
result of macroblock granularity
encoding

- After macroblock decoding is
complete, optionally perform
smoothing filter across block
edges.

(d)

[Image credit: Averbuch et al. 2005] Stanford (5348K, Spring 2021

Putting it all together: encoding an inter-
predicted macroblock

® [nputs:
- Current state of decoded picture buffer (state of the video decoder)
- 16x16 block of input video to encode

B General steps: (need not be performed in this order)
- Resample images in decoded picture buffer to obtain 1/2, and 1/4, 1/8 pixel

resampling
- Choose prediction type (P-type or B-type)
. .« oo Coupled
- Choose reference pictures for prediction decisions

- Choose motion vectors for each partition (or sub-partition) of macroblock

- Predict motion vectors and compute motion vector difference

- Encode choice of prediction type, reference pictures, and motion vector differences
- Encode residual for macroblock prediction

- Store reconstructed macroblock (post deblocking) in decoded picture buffer to use
as reference picture for future macroblocks

Stanford C5348K, Spring 2021

H.264/AV(C video encoding

MB = macroblock
MV = motion vector

Actual MB pixels
Basis

coefficients

-
Intra-frame Compute Taau';s::irz“;/ Entropy — Compressed
Prediction Predicted MB Residual ' Residual ! Encoder Video Stream

Inter-frame Motion Motion Compute
Prediction vectors | Vector Pred. MV Diffs

Prediction parameters

Decoded Inverse
picture buffer |[¢-""""""""""""- { Deblock }' transform/ [-
quantize

Source
Video
Frame

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010 Stanford CS348K, Spring 2021

Motion estimation

B Encoder must find reference block that predicts current frame’s pixels well.

- (Can search over multiple pictures in decoded picture buffer + motion vectors can be
non-integer (huge search space)

= Must also choose block size (macroblock partition size)
= And whether to predict using combination of two blocks
- Literature is full of heuristics to accelerate this process

- Remember, must execute motion estimation in real-time for HD video
(1920x1080), on a low-power smartphone

==

Limit search window:

gray area: /

search region

Decoded picture
buffer: frame 0

Current frame

Stanford C5348K, Spring 2021

Motion estimation optimizations

B (oarser search:
- Limit search window to small region

- First compute block differences at coarse scale (save partial sums from previous searches)

B Smarter search:

- Guess motion vectors similar to motion vectors used for neighboring blocks
- Diamond search: start by test large diamond pattern centered around block

- If best match is interior, refine to finer scale

- Else, recenter around hest match

o

®

0
0’0
L BB S

L B

Original

|
Refined

Recentered

B Early termination: don’t find optimal reference patch, just find one that’s “good enough”: e.g.,
compressed representation is lower than threshold

- Test zero-motion vector first (optimize for non-moving background)

B (Optimizations for subpixel motion vectors:

- Refinement: find best reference block given only pixel offsets, then try 1/2, 1/4-subpixel

offsets around this match

Stanford C5348K, Spring 2021

H.265 (HVEC)

m Standard ratified in 2013
m Goal: ~2X better compression than H.264

B Mainideas:

- Macroblock sizes up to 64x64
- Prediction block size and residual block sizes can be different
- 35 intra-frame prediction modes (recall H.264 had 9)

Stanford C5348K, Spring 2021

AV1

B Main appeal may not be technical: royalty free codec, but many technical
options for encoders

AV1 Superblock Partitionings 56 angles for intraframe block prediction!
(recall H.264 had nine!)
128x128 (recursive)
; Global transforms to geometrically warp
f \ previous frames to new frames
64%x64 (recursive)
k Prediction of chroma channels from luma
(\
32x32 (recursive)
| Synthetic generation of film-grain texture so
(A \ that high-frequency film grain does not need
16x16 — to be compressed...
X
re \

Stanford C5348K, Spring 2021

Example: searching for best intra angles

; & 1
EY

Compute image gradients in block

Bin gradients to find most likely to
be useful angles.

Mode O Maode 1 Mode 2 Mode 4 Maode 5 Maode 6 Mode 7 Made 8

Only try the most likely angles.

https://www.slideshare.net/luctrudeau/i-dont-care-if-you-have-360-intra-directional-predictors Stanford 5348K, Spring 2021

High cost of software encoders

m Statistic from Google: [Ranganathan 2021]

- About 8-10 CPU minutes to compress 150 frames of 2160p H.264 video
- About 1 CPU hour for more expensive VP9 codec

Stanford C5348K, Spring 2021

Coarse-grained parallel video encoding

m Parallelized across segments (I-frame inserted at start of segment)
m (oncatenate independently encoded bitstreams

Example: encoding an eight minute video
Task 1 Task 2 Task 3 Task 4

(encode 0-2 min) (encode 2-4 min) (encode 4-6 min) (encode 6-8 min)

Task 5

concat

Smaller segments = more potential parallelism, worse video compression

Stanford (5348K, Spring 2021

Fraction of energy consumed by different parts of
instruction pipeline (H.264 video encoding) mecsetsiiscizom

no SIMD/VLIW vs. SIMD/VLIW

Y\

100%
90% —
80% —
70% -
60% -
50% OFU
B RF
40%
m Ctl
30% W Pip
HD-5
20%
M IF
10%
0%
3 ¥ 3 ¢ % B 5 % 8 = 5 & 8 =z 5 3
3 s = % 3 8§ = * % 85 = ® % & =z
o = 2 2
= = = =
w u I I
IME FME IP CABAC
integer motion estimation fractional (subpixel) intraframe prediction, : . .
) o AR arithmetic encoding
motion estimation DTC, quantization
56% of total time 36% of total time 7% of total time 1% of total time (of baseline CPU imp)
FU = functional units Ctrl = misc pipeline control D-$ = data cache

RF =register fetch Pip = pipeline registers (interstage) IF = instruction fetch + instruction cache Stanford 5348K, Spring 2021

ASIC acceleration of video encode/decode

Advanced power High-efficiency CPU cores High-performance Secure Camera fusion Neural Engine
management CPU cores Enclave
Depth Engine High-performance
GPU
High-bandwidth HDR imaging
caches
HDR video
processor
Cryptography : Computational
acceleration Jin photography
i = Pro video encode
High-performance Always-on Performance
unified memory processor controller
Pro video decode
Machine learning Desktop-class Low-power Advanced High-efficiency audio Advanced
accelerators storage design display engine processor silicon
packaging

Stanford C5348K, Spring 2021

NVIDIA GPUs have video encode/decode ASICs

m Example: GeForce NOW game streaming service

m Rendered images immediately compressed by GPU and bits
streamed to remote player

/

Decode HW* Encode HW* GEFORCE
Formats: @ E
. AV nvipia., NOW
« MPEG-2 Formats: ‘

VC1 . H.264 s ‘ y—

VP8 « H.265

VP9 Lossles

H.264
H.265 \ - 4 Bit de_pth
« Lossless . ?Obg
. it
Bit depth: NVDEC = rer ™ NVENC

8 bit =) EES Color**

« 10 bit « YUV 4:44

» 12 bit (HEVC 444) ‘ : 4 | « YUV 4:2:0
» Lossless

Color**

« YUV 4:2:0 Resolution

» Lossless « Up to 8K***

Resolution

« Up to 8K***

®m Another example: consumers at home streaming to Twitch

— Do not want compression to take processing capability away from
running the game itself.

Stanford C5348K, Spring 2021

Google’s Video (Trans)coding Unit (VCU)

ASIC hardware for decoding/encoding video in Google datacenter for Youtube/Youtube Live/
® (onsider load:

= 500 hours of video uploaded to Youtube per minute (2019)

- Must support streaming to consumers with many different devices and networks (must
generate encoded versions assets at many resolutions and using different codecs)

Skylake
4xNvidia T4

8xVCU
20xVCU

[Ranganathan 2021]

vevo
P Ml o) 030/441 v @ & (=] O 5] I3

#LuisFonsi #Despacito #Imposible

Luis Fonsi - Despacito ft. Daddy Yankee

7,332,242,498 views * Jan 12,2017 iy 43 &Is5M P SHARE =i SAVE ...

Stanford C5348K, Spring 2021

Learning Compression Schemes

Stanford C5348K, Spring 2021

Learned compression schemes

JPG image compression and H.264/265/AV1 video compression are “lossy”
compression techniques that discard information is that is present in the
visual signal, but less likely to be noticed by the human eye

- Key principle: “Lossy, but still looks good enough to humans!”

Compression schemes described in this lecture involved manual choice /
engineering of good representations (features)

- Frequency domain representation, YUV representation, disregarding
color information, flow vectors, etc.

Increasing interest in learning good representations for a specific class of
images/videos, or for a specific task to perform on images/videos

Stanford C5348K, Spring 2021

DNN autoencoder

Input image Reconstructed image

- “Encoder”

4 Latent Space
Representation "

If this latent representation is compact,
thenitis a compressed representation
of the input image

https://medium.com/@birla.deepak26/autoencoders-series-daad78df9350 Stanford CS348K, Spring 2021

Learned compression schemes

m Many recent DNN-based approaches to compressing video
learn to compress the residual

Original Video X

P H.264 Module

Compressed VideoY

1 H.264 |
© | Encoder

» Channel

H.264
Decoder

L Binarizer -» itiian
Encoder Encoder

Residual R

[Tsai et al. 2018]

Huffman
Decoder

| H.264
Decoder
Residual |
- Decoder
Reconstructed

Residual R

Use standard video compression at low quality, then use an autoencoder to compress the residual.

(Learn to compress the residual)

Stanford C5348K, Spring 2021

Super-resolution-based reconstruction

bicubic SRResNet SRGAN original
- (21.55dB/0.6423) - (23.53dB/0.7832) (21.15dB/0.6868)

J Fins
4

]
’ o
- “’ &
%5 =
o L. ’

g
&5

.
-

*Nd

Ny e ;.
5 ZZIIION

m Single image superresolution: given a low-resolution image,
predict the corresponding high resolution image

[SRGAN, Ledig et al. CVPR 2017]

Stanford C5348K, Spring 2021

Super-resolution-based reconstruction

B Encode low-resolution video using standard video compression techniques

m Also transfer (as part of the video stream) a video-specific super-resolution
DNN to upsample the low resolution video to high res video.

- Assumption: training costs are amortized over many video downloads

Inventory SSIM =1 Inventory O 94 Irroectory 0.88 0.86
=E N = P 7U§T 2 FDEZFF
_ﬁrrrr Pﬁrrrr 2 rrhr

‘ ?
- v
»

. y
r 7
v)

NN Town Hall :

a\\ e
Sunrise, Florida Sunrise, Florida Sunnse. Florida Sunnse, Flonda

10:27 PMET { 10:27 PMET | 10:27 P ET : 10:27 PMET
(a) Original (1080p) (b) Content-aware DNN (c) Content-agnostic DNN (d) 240p

; Town Ha e Town Hans

[Yeo et al. 0SDI 2018]

Stanford C5348K, Spring 2021

Person specific compression

Input: video of professional ballerina performing a motion

Output: video of graduate student performing the same motion

Input video I Pose Detector | 2D | Pose-2-image | Output video

Frame DNN Pose DNN frame

\ Encode video as just a

set of 14 pose joints.

Video to Pose j s
> .// ‘\

Pose to Video

L

[Chan et al. 2019]

Stanford C5348K, Spring 2021

NVIDIA Maxine

GPU-accelerated video processing for video conferencing applications

I—._
A \
y -
o 'S >
“:'ﬁ ! |’
AT
SR A
1 k)

NVIDIA

Examples: avatar control, video superresolution, advanced background segmentation

Stanford C5348K, Spring 2021

Neural volumes

B Learn to encode multiple views of a person into a latency code (z) that is
decoded into a volume than can be rendered with conventional graphics
techniques from any viewpoint

Encoder '/, | Decoder

B Target |mag

Input Multi-view Video

m Motivated by VR applications

Stanford C5348K, Spring 2021

Summary

® JPGimage compression and H.264/265/AV1 video compression are “lossy”
compression techniques that discard information is that is present in the
visual signal, but less likely to be noticed by the human eye

- Key principle: “Lossy, but still looks good enough to humans!”

m Keyidea of video encoding is “searching” for a compact encoding of the
visual signal in a large space of possibilities

- Video encoder ASIC used to accelerate this search

B Growing interest in learning these encodings, but hard to beat extremely
well engineered features

- But promising if learned features are specialized to video stream contents

- Or to specific tasks (remember, increasing amount of video is not meant to be
consumed by human eyes)

Stanford C5348K, Spring 2021

