
Visual Computing Systems
Stanford CS348K, Spring 2021

Lecture 18:

Rendering for
Virtual Reality

Stanford CS348K, Spring 2021

VR headsets
Oculus Quest 2

HTC Vive

Sony Morpheus

Google
Cardboard

Google
Daydream

Valve Index

Stanford CS348K, Spring 2021

AR “passthrough” on VR headset

Stanford CS348K, Spring 2021

Oculus Quest 2 headset (2020)

Stanford CS348K, Spring 2021

Oculus Quest 2 headset (lens side view)

Stanford CS348K, Spring 2021

Oculus Quest 2 headset

Image credit: i!xit.com

Fan

Stanford CS348K, Spring 2021

Oculus Quest 2 headset

Image credit: i!xit.com

Qualcomm Snapdragon XR2 SoC

Stanford CS348K, Spring 2021

Oculus Quest 2 headset (Snapdragon SoC)

Image credit: i!xit.com

Qualcomm Snapdragon XR2 SoC

4 high-performance cores
4 low-performance (low energy) cores
Image processor + DSP
Multi-core graphics processor (GPU) — up to 3000 x 3000 display @ 90 Hz
Additional processor for sensors (IMU etc)
Can process inputs from up to seven simultaneous video camera streams

This diagram is from Snapdragon 865

Stanford CS348K, Spring 2021

Oculus Quest 2 headset

Image credit: i!xit.com

Four cameras

Stanford CS348K, Spring 2021

Oculus Quest 2 headset (lens assembly)

Image credit: i!xit.com

Stanford CS348K, Spring 2021

Oculus Quest 2 display + lens assembly

Image credit: i!xit.com

Left eye:
1832×1920

Right eye:
1832×1920

~ 7M total pixels

LCD display, up to 120 Hz refresh rate.

Stanford CS348K, Spring 2021

Consider projection of scene object on retina

Lens

Retina
PupilX

Here: object projects onto point X on back of eye (retina)

Stanford CS348K, Spring 2021

Eye focused at a distance
Red and yellow cups = in focus

teal cup = out of focus

Plane of
focus

Stanford CS348K, Spring 2021

Eye focused at a distance
teal cup = out of focus

Stanford CS348K, Spring 2021

Plane of
focus

Eye focused up close
teal cup = in focus

Stanford CS348K, Spring 2021

Role of lenses in VR headset
1. Create wide !eld of view
2. Place focal plane at several meters

away from eye (close to in!nity)

!eld of view

eye

Color LCD display

Lens diagram from Open Source VR Project (OSVR)
(Not the lens system from the Oculus Quest 2)
http://www.osvr.org/

Note: parallel lines reaching eye
converge to a single point on display
(eye accommodates to plane near
in!nity)

Stanford CS348K, Spring 2021

Accommodation and vergence
Accommodation: changing the optical power of the eye to focus at di#erent distances

Eye accommodated
at far distance

Eye accommodated
at near distance

Vergence: rotation of eye to ensure projection of object falls in center of retina

Stanford CS348K, Spring 2021

Accommodation/vergence con$ict
▪ Given design of current VR displays, consider what happens when

objects are up-close to eye in virtual scene
- Eyes must remain accommodated to near in!nity (otherwise image on screen

won’t be in focus)
- But eyes must converge in attempt to fuse stereoscopic images of object up close
- Brain receives con$icting depth clues… (discomfort, fatigue, nausea)

This problem stems from nature of display design. If you could just make a display that emits
the same rays of light that would be produced by a virtual scene, then you could avoid the
accommodation - vergence con$ict…

Stanford CS348K, Spring 2021

A better (future) display

Display

Note how this hypothetical display creates the same rays of light as what would be seen in the real
environment.

The same position on the display emits light with di!erent colors in di!erent directions. (Current LCD
displays emit same color in all directions from each pixel)

The display generates the same “light !eld” in front of the eye as present in the real scene.

Stanford CS348K, Spring 2021

Need for high resolution

Stanford CS348K, Spring 2021

Recall: Oculus Quest 2 display

Image credit: i!xit.com

Left eye:
1832×1920

Right eye:
1832×1920

~ 7M total pixels

LCD display, up to 120 Hz refresh rate.

Stanford CS348K, Spring 2021

Need for high resolution

iPhone 7: 4.7 in “retina” display:
1,334 x 750 (1 Mpixel)

326 ppi → 65 ppd

~5o
Human: ~160° view of !eld per eye (~200° overall)
(Note: this does not account for eye’s ability to rotate in socket)

Eyes designed by SuperAtic LABS from the thenounproject.com

160o

Future “retina” VR display:
~ 8K x 8K display per eye

= 128 MPixel

Stanford CS348K, Spring 2021

16K TVs!!!
15,360 x 8,640 resolution…

~ 132 Mpixel ! ! ! !

Stanford CS348K, Spring 2021

Consider bandwidth cost of getting pixels to display
▪ 132 Mpixel @ 120 Hz x 24 bpp = 354 Gbits/s

▪ Note: modern display compression technologies (such as Display Stream
Compression — DSC 1.2a) provide ~ 3:1 compression

- Reduces need to 118 Gbits/s bandwidth

▪ Now consider energy cost of transmitting pixels to display at this rate

▪ Rough estimate: ~ 100 pico-Joules per bit transferred *

▪ 100 Pj/bit x 118 Gbit/s = 11.8 J/s = 11.8 W

▪ Snapdragon SoC in Oculus Quest 2 designed for TDP of ~ 5W

* Signaling technologies undergo rapid improvement, feasible to see 1pJ/bit in the next decade

Stanford CS348K, Spring 2021

Display stream compression (DSC)
▪ Goal: high compression ratio but, but cheap to encode so compression can be

performed at high data rate.

▪ Example modes:
- MMAP (Modi!ed median-adaptive prediction)

- ICH (indexed history mode): Retain bu#er of the last 32 pixels and encoding is index into that bu#er.

▪ Encoding performed on luma/chroma representation

▪ YCgCo-R (see next slide)

Stanford CS348K, Spring 2021

YCgCo
▪ Luma, chrominance green, chrominance orange

▪ Conversation from RGB to luma/chroma representation
with minimal hardware (only additions and shifts)

▪ YCgCo-R is a slight modi!cation that supports lossless (bit
precise) conversation from and back to RGB

RGB

Y

Cg
(“chrominance green”)

Co
(“chrominance orange”)

Stanford CS348K, Spring 2021

Density of rod and cone cells in the retina

A Photon Accurate Model of the Human Eye

SIGGRAPH 2005 paper. page 6 October 2, 2005

cones are still migrating towards the center of the retina several
years after birth.

While this paper focus on cones, the retinal synthesizer has all the
connectivity information it needs to also generate receptive fields
of cones (and does so).

15 The Iris
The eye’s pupil is the hole in the iris. When the iris dilates, the pupil
changes in size. When the lens accommodates (changes focus), it
does so by bulging outward, and since the iris rests on the front sur-
face of the lens, the iris moves forward in the eye with changes in
accommodation (up to 0.4 mm). Our system includes this effect.

The pupils of real eyes are decentered relative to the optical axis es-
tablished by the cornea. The reason for the decentering is generally
believed to be to compensate for the center of the fovea being 5°
away from the center of this corneal optical axis. As with most other
anatomical features, the amount of decentering varies with the indi-
vidual. [Oyster 1999; Atchison and Smith 2000] state that most pu-
pils are decentered by ~0.5 mm, while [Wyatt 1995] measures de-
centering values for several eyes, and gives an average value of

0.25 mm. As described above, we found pupil decentering to be
necessary for our model, where a default value of 0.4 mm is used.

The center of the pupil actually moves by a small amount laterally
as the size of the pupil changes. [Wyatt 1995] measured an average
shift of 0.1 mm; extremes as large as 0.4 mm have been reported.
Real pupils are not only slightly elliptical in shape (~6%), but have
further irregular structure [Wyatt 1995]. The pupil is also not infi-
nitely thin; high incident angle rays will see an even more elliptical-
ly shaped pupil due to its finite thickness (~0.5 mm). In building our
system we considered these additional pupil shape details. Howev-
er, at the density that our system samples rays through the pupil,
none of these details other than the decentering make a significant
difference in our computation results, so they are not currently
model parameters. ([Wyatt 1995] comes to a similar conclusion.)

The range of pupil size changes is generally given as 2 to 8 mm. A
number of physiological factors can effect pupil size, but there are
simple models of predicted pupil diameter as a function illumina-
tion levels. To minimize optical aberrations, we generally used a
somewhat smaller pupil size than these formulas would predict for
the illumination levels of the video display devices being simulated
(usually a 2 mm or 3 mm entrance pupil).

The pupil sizes given above are actually the apparent size of the pu-
pil as viewed from outside the eye (through the cornea): the virtual
entrance pupil. The actual anatomical physical pupil size (as simu-
lated) is ~1.13 time smaller. The size and position of the pupil that
the cones see (through the lens) changes again: the virtual exit pu-
pil. The relative direction to the center of the virtual exit pupil from
a given point on the surface of the retina is an important value; this
is the maximal local light direction that the cones point in, and is in-
volved in the Stiles-Crawford Effect I below. The retinal synthesiz-
er models this tilt in cone cross-sections; within the plane of the ret-
inal sphere cones outlines are elongated (elliptical) and more spread
out density-wise by the reciprocal of the cosine of the angle be-
tween the direction to the center of the retinal sphere and the direc-
tion to the center of the exit pupil.

Figure 5: (a) Roorda Image (b) Our synthetic

Figure 4: 0.5° FOV centered on our synthesized fovea. Figure 6: Close up of our synthesized cones, ~3 µ diameter each.

Figure 1 continued.
7°

[Roorda 1999]

▪ Cones are color receptive cells
▪ Highest density of cones is in fovea

(best color vision at center of where human is looking)

▪ Implication: human eye has low spatial resolution away from fovea (opportunity
to reduce computation by computing less in these areas)

Stanford CS348K, Spring 2021

Reducing rendering cost via foveated rendering
Idea: track user’s gaze using an
eye tracker, render with
increasingly lower resolution
farther away from gaze point

high-res
image

med-res
image low-res

image

Three images blended into one
for display

VR headset with eye tracker:
HTC Vive Pro Eye

Stanford CS348K, Spring 2021

Eye tracking based solutions
▪ Given gaze information, many rendering-cost reducing strategies

- Use low resolution rendering away from point of gaze
- More practical: perform part of the rendering computation at lower

frequency (lower-rate shading, reduce texture LOD etc.) *

▪ Fundamental problem: accurate low-latency eye tracking is challenging
- Abnormal eyes, etc.

* We’ll come back to this in a second when we talk about lens matched shading

Stanford CS348K, Spring 2021

Accounting for distortion due to design
of head-mounted display

Stanford CS348K, Spring 2021

Lenses introduce distortion

Lenses introduce distortion
- Pincushion distortion
- Chromatic aberration (di#erent

wavelengths of light refract by
di#erent amount)

Image credit: Cass Everitt

View of checkerboard through Oculus Rift lens

Stanford CS348K, Spring 2021

Rendered output must compensate for
distortion of lens in front of display

Step 1: render scene using traditional graphics pipeline at full resolution for each eye
Step 2: warp images so rendering is viewed correctly when screen viewed under lens distortion

(Can apply di#erent distortion to R, G, B to approximate correction for chromatic aberration)

5 Getting Started

Your developer kit is unpacked and plugged in. You have installed the SDK, and you are ready to go. Where
is the best place to begin?

If you haven’t already, take a moment to adjust the Rift headset so that it’s comfortable for your head and
eyes. More detailed information about configuring the Rift can be found in the Oculus Rift Hardware Setup
section of this document.

After your hardware is fully configured, the next step is to test the development kit. The SDK comes with a
set of full-source C++ samples designed to help developers get started quickly. These include:

• OculusWorldDemo - A visually appealing Tuscany scene with on-screen text and controls.

• OculusRoomTiny - A minimal C++ sample showing sensor integration and rendering on the Rift
(only available for D3DX platforms as of 0.4. Support for GL platforms will be added in a future
release).

We recommend running the pre-built OculusWorldDemo as a first-step in exploring the SDK. You can find a
link to the executable file in the root of the Oculus SDK installation.

5.1 OculusWorldDemo

Figure 4: Screenshot of the OculusWorldDemo application.

12

Image credit: Oculus VR developer guide

Stanford CS348K, Spring 2021

Problem: rendering at higher resolution than needed at periphery

Performing unnecessary rendering work in the periphery due to:
1. Warp to reduce optical distortion (result: sample shading more densely in the

periphery than in center of screen)
2. Eye has less spatial resolution in periphery (assuming viewer’s gaze is toward

center of screen)
[Image credit: NVIDIA]

Stanford CS348K, Spring 2021

Modern solution: lens matched shading
▪ Render scene with four viewports, each has di#erent projection matrix
▪ “Compresses” scene in the periphery (fewer samples), while not a#ecting scene

near center of !eld of view

[Image credit: NVIDIA]

Note: lens matched shading results in more shading work toward the center of the screen
(since users typically look to center, yields many bene!ts of more advanced eye tracking)

Stanford CS348K, Spring 2021

Need for low latency
(End-to-end head motion to photon latency)

Stanford CS348K, Spring 2021

Need for low latency
▪ The goal of a VR graphics system is to achieve “presence”, tricking

the brain into thinking what it is seeing is real

▪ Achieving presence requires an exceptionally low-latency system
- What you see must change when you move your head!
- End-to-end latency: time from moving your head to the time new photons from

the display hit your eyes
- Measure user’s head movement
- Update scene/camera position
- Render new image
- Perform any distortion corrections
- Transfer image to display in headset
- Actually emit light from display (photons hit user’s eyes)

- Latency goal of VR: 10-25 ms
- Requires exceptionally low-latency head tracking
- Requires exceptionally low-latency rendering and display

Stanford CS348K, Spring 2021

Thought experiment: e#ect of latency

▪ Consider a 1,000 x 1,000 display spanning 100° !eld of view
- 10 pixels per degree

▪ Assume:
- You move your head 90° in 1 second (only modest speed)
- End-to-end latency of graphics system is 33 ms (1/30 sec)

- In other words, the time from you moving you head to the display emitting
light for a frame that re$ects that movement.

▪ Therefore:
- Displayed pixels are o# by 3° ~ 30 pixels from where they

would be in an ideal system with 0 latency

Example credit: Michael Abrash

Stanford CS348K, Spring 2021

“Outside in” tracking: Oculus CV1 IR camera and IR LEDs
(Early headset technology)

60Hz IR Camera
(measures absolute position
of headset 60 times a second)

Headset contains:
IR LEDs (tracked by camera)
Gyro + accelerometer (1000Hz). (rapid relative positioning)

Image credit: i!xit.com

Stanford CS348K, Spring 2021

Most modern systems use “inside out” tracking
▪ Wide-angle cameras look outward from headset

▪ Use computer vision (SLAM) to estimate 3D structure of world and position/
orientation of camera in the world

▪ These cameras also track the position/orientation of the controllers

▪ Quest 2 controllers have 15 infrared LEDs to aid tracking

View of controller through
infrared camera

(credit Adam Savage’s Testbed)

Stanford CS348K, Spring 2021

Frame life cycle
▪ Goal: maintain as low latency as possible under challenging

rendering conditions:
- Battery-powered device (not a high-end desktop CPU/GPU)
- High-resolution outputs (+ both left and right eye views)
- Implication: can take awhile to render a frame "

vsync vsync vsync

Main thread (frame 0)

Render Thread (frame 0)
(send GPU command)

Update game state (animation, physics, AI, etc)

Issue GPU
rendering commands

GPU processing (frame 0)
Compositor

(Frame 0)

Stanford CS348K, Spring 2021

Frame life cycle
▪ Goal: maintain as low latency as possible under challenging

rendering conditions:
- Battery-powered device (not a high-end desktop CPU/GPU)
- High-resolution outputs (+ both left and right eye views)
- Implication: can take awhile to render a frame "

vsync vsync vsync

Main thread (0)

Render Thread (0)

(GPU Processing 0)
Composite

(0)

Render Thread (1)

(GPU Processing 1)
Composite

(1)

Main thread (1)

Pipelined view:
Assume vsync !res at 90 Hz

Frame throughput = 90 fps, frame latency > 1/90th of a second

Stanford CS348K, Spring 2021

Frame life cycle

vsync vsync vsync

Main thread (0)

Render Thread (0)

(GPU Processing 0)
Composite

(0)

Render Thread (1)

(GPU Processing 1)
Composite

(1)

Main thread (1)

Get frame 0 predicted render time
Get frame 0 predicted tracking info

Get frame 0 predicted tracking info
(latest prediction)

Get frame 1 predicted render time
Get frame 1 predicted tracking info

Get frame 1 predicted tracking info
(latest prediction)

▪ Key ideas:
- Game stated updated on “predicted” tracking info
- Re-update head/controller tracking predictions right before drawing
- Start next frame (frame 1 in this example) at last possible moment that gives it time to !nish

before target display time

Stanford CS348K, Spring 2021

Reducing latency via reprojection

vsync vsync vsync

Main thread (0)

Render Thread (0)

(GPU Processing 0)
Composite

(0)

Render Thread (1)

(GPU Processing 1)
Composite

(1)

Main thread (1)

Get frame 0 predicted render time
Get frame 0 predicted tracking info

Get frame 0 predicted tracking info
(latest prediction)

Get frame 1 predicted render time
Get frame 1 predicted tracking info

Get frame 1 predicted tracking info
(latest prediction)

▪ Key idea (“time warp”): after rendering is complete, re-project rendered image to produce view of
scene from most recent head position

▪ Accurate re-projection requires both rendered image and its depth map

Get actual tracking info
Do reprojection

Stanford CS348K, Spring 2021

Oculus compositing pipeline

Frames come from multiple
Oculus applications

(Main app, Gaurdian, etc.)

CAC = chromatic
aberration correction

Stanford CS348K, Spring 2021

Increasing frame rate via reprojection

vsync vsync

▪ Store last rendered frame
▪ If new frame not ready at time of next display, warp that last completed frame

vsyncvsync

Main thread (0)

Render Thread (0)

(GPU Processing 0)
Composite

(0)

Main thread (1)

Render Thread (1)

vsync

Main thread (2)

Render Thread (2)

Composite
(1)

Composite
(0)

(GPU Processing 1) (GPU Proc 2)

Example: app with higher cost rendering
Per-frame GPU rendering time ~ 1.2x of time between display frames

Stanford CS348K, Spring 2021

Accounting for interaction of:
display update +

display attached to head

Stanford CS348K, Spring 2021

Consider projection of scene object on retina

Lens

Retina
PupilX

Here: object projects onto point X on back of eye (retina)

Stanford CS348K, Spring 2021

Consider object position relative to eye

time

X
(position of object relative to eye)

Case 1: object stationary relative to eye:
(eye still and red object still

OR
red object moving left-to-right and

eye rotating to track object
OR

red object stationary in world but head moving
and eye rotating to track object)

time

X
(position of object relative to eye)

Case 2: object moving relative to eye:
(red object moving from left to right but

eye stationary, i.e., it’s focused on a di#erent
stationary point in world)

X

Eyes designed by SuperAtic LABS from the thenounproject.com

NOTE: THESE GRAPHS PLOT OBJECT POSITION RELATIVE TO EYE
RAPID HEAD MOTION WITH EYES TRACKING A MOVING OBJECT IS A FORM OF CASE 1!!!

Spacetime diagrams adopted from presentations by Michael Abrash

Stanford CS348K, Spring 2021

E#ect of latency: judder
X

time

X

frame 0

frame 1

frame 2

frame 3

X

frame 0

frame 1

frame 2

frame 3

Case 2: object moving from left to
right, eye stationary

(eye stationary with respect to
display)

Continuous representation.

Case 2: object moving from left
to right, eye stationary

(eye stationary with respect to
display)

Light from display
(image is updated each frame)

Case 1: object moving from left to right,
eye moving continuously to track object

(eye moving relative to display!)

Light from display
(image is updated each frame)

Case 1 explanation: since eye is moving, object’s position is relatively constant relative to eye (as it should be since the
eye is tracking it). But due discrete frame rate, object falls behind eye, causing a smearing/strobing e#ect (“choppy”
motion blur). Recall from earlier slide: 90 degree motion, with 50 ms latency results in 4.5 degree smear

Spacetime diagrams adopted from presentations by Michael Abrash

Stanford CS348K, Spring 2021

Reducing judder: increase frame rate

time

X X

frame 0

frame 1

frame 2

frame 3

Case 1: continuous ground truth

red object moving left-to-right and
eye moving to track object

OR
red object stationary but head moving

and eye moving to track object

Light from display
(image is updated each frame)

X

frame 0
frame 1
frame 2
frame 3

Light from display
(image is updated each frame)

Higher frame rate results in closer
approximation to ground truth

frame 4
frame 5
frame 6
frame 7

Spacetime diagrams adopted from presentations by Michael Abrash

Stanford CS348K, Spring 2021

Reducing judder: low persistence display

time

X X

frame 0

frame 1

frame 2

frame 3

Case 1: continuous ground truth

red object moving left-to-right and
eye moving to track object

OR
red object stationary but head moving

and eye moving to track object

Light from full-persistence display

X

frame 0

frame 1

frame 2

frame 3

Light from low-persistence display

Full-persistence display: pixels emit light for entire frame
Low-persistence display: pixels emit light for small fraction of frame
Oculus Rift CV1 low-persistence display

- 90 Hz frame rate (~11 ms per frame)
- Pixel persistence = 2-3ms

Spacetime diagrams adopted from presentations by Michael Abrash

Stanford CS348K, Spring 2021

Artifacts due to rolling backlight
▪ Image rendered based on scene state at time t0

▪ Image sent to display, ready for output at time t0 + Δt

▪ “Rolling backlight” OLED display lights up rows of pixels in sequence
- Let r be amount of time to “scan out” a row
- Row 0 photons hit eye at t0 + Δt
- Row 1 photos hit eye at t0 + Δt + r
- Row 2 photos hit eye at t0 + Δt + 2r

▪ Implication: photons emitted from bottom rows of display are “more stale” than
photos from the top!

▪ Consider eye moving horizontally relative to display (e.g., due to head movement
while tracking square object that is stationary in world) X

(position of object relative to eye)

Y
di

sp
lay

 pi
xe

l r
ow

Result: perceived shear!
Similar to rolling shutter e#ects on modern digital cameras.

Stanford CS348K, Spring 2021

Compensating for rolling backlight
▪ Perform post-process shear on rendered image

- Similar to previously discussed barrel distortion and chromatic warps
- Predict head motion, assume !xation on static object in scene

- Only compensates for shear due to head motion, not object motion

▪ Render each row of image at a di#erent time (the predicted time
photons will hit eye)
- Suggests exploration of di#erent rendering algorithms that are more

amenable to !ne-grained temporal sampling, e.g., ray tracing? (each row
of camera rays samples scene at a di#erent time)

Stanford CS348K, Spring 2021

Reducing bulky form factor + AR

Stanford CS348K, Spring 2021

Glasses form factor (for AR applications)

Google Glass (2013)

Snap Spectacles v4 (2021)

Additional announcements (or rumors)
by Google, Apple, etc all suggesting they
are making AR glasses.

Qualcomm “AR smartviewer” glasses
(tethered to smartphone)

(Snap reports 30 minute battery life)

Stanford CS348K, Spring 2021

AR / VR summary
▪ Very di&cult technical challenge
▪ Interest in glasses form factor will place considerably more

pressure on system energy e&ciency

VS.

▪ Many new challenges of AR:
- Rendering to a display that “overlays” on the real world (how to draw black?)
- Intelligently interpreting the world to know what content to put on the display
- Ethical/privacy questions about applications

