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Theme of the next two lectures…
The pixels you see on screen are quite di!erent than the values recorded by the sensor in a modern 
digital camera. 
Computation is a fundamental aspect of producing high-quality pictures.

Computation

Sensor 
output 

(“RAW”)

Beautiful image that impresses 
your Instagram friends
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Part 1: image sensing hardware 

(how a digital camera measures light, and how physical limitations of these devices place 
challenges on software)
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Camera cross section

Image credit: Canon (EOS M)

Sensor

Canon 14 MP CMOS Sensor 
(14 bits per pixel)
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Camera cross section

Image credit: https://www.dpreview.com/news/3717128828/the-future-is-bright-technology-trends-in-mobile-photography

Sensor
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The Sensor
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Photoelectric e!ect

Incident photons

Ejected electrons

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics, and especially for his 
discovery of the law of the photoelectric e!ect"

Albert Einstein

Slide credit: Ren Ng
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CMOS sensor

Row select 
Register

ADCAmplify
Bits

…

Active pixel sensor 
(2D array of photo-diodes)

“Optically black” region 
(shielded from light)

Exposed region
Photodiode 

(a pixel)

Column select register

CMOS = complementary metal-oxide semiconductor
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CMOS APS (active pixel sensor) pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html) 
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CMOS response functions are linear
Photoelectric e!ect in silicon: 

- Response function from photons to 
electrons is linear 

(Some nonlinearity close to 0 due to noise 
and when close to pixel saturation)

Slide credit: Ren Ng
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Quantum e"ciency
Not all photons will produce an electron (depends on quantum e"ciency of the device) 

- Human vision:                       ~15% 

- Typical digital camera:      < 50% 

- Best back-thinned CCD:     > 90% 
(e.g., telescope)

QE =
# electrons
# photons

Slide credit: Ren Ng
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Sensing Color
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Electromagnetic spectrum
Describes distribution of power (energy/time) by wavelength

Figure credit:

Below: spectrum of various common light sources:
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Example: warm white vs. cool white

Image credit: (Oz Lighting: https://www.ozlighting.com.au/blog/what-is-warm-white-versus-cool-white/)
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Simple model of a light detector

Figure credit:  Steve Marschner
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Spectral response of cone cells in human eye
Three types of cells in eye responsible for color perception: S, M, and L cones (corresponding to peak 
response at short, medium, and long wavelengths) 

Implication: the space of human-perceivable colors is three dimensional 
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Response functions for S, M, and L cones
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Human eye cone cell mosaic

False color image: 
red = L cones 
green = M cones 
blue = R cones

Image Credit: Ramkumar Sabesan Lab
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Color #lter array (Bayer mosaic)
Color #lter array placed over sensor 
Result: di!erent pixels have di!erent spectral response (each pixel measures red, green, or blue light) 
50% of pixels are green pixels

Traditional Bayer mosaic
(other #lter patterns exist: e.g., Sony’s RGBE)

Pixel response curve: Canon 40D/50D

Image credit: 
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm)

f(�)
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Light incident on camera
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What sensor measures
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What sensor measures 
(zoomed view)

Defective pixel
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CMOS Pixel Structure
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Front-side-illuminated (FSI) CMOS
Building up the CMOS imager layers

Courtesy R. Motta, Pixim
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Pixel pitch: 
A few microns

Photodiodes 
~50% Fill Factor

Courtesy R. Motta, Pixim
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Polysilicon 
& Via 1

Courtesy R. Motta, Pixim
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Metal 1

Courtesy R. Motta, Pixim
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Metal 2

Courtesy R. Motta, Pixim
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Metal 3

Courtesy R. Motta, Pixim
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Metal 4

Courtesy R. Motta, Pixim
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Color #lter array

Courtesy R. Motta, Pixim
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Pixel #ll factor

Photodiode area Non photosensitive (circuitry)

Fraction of pixel area that integrates incoming light

Slide credit: Ren Ng
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CMOS sensor pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html) 

Color #lter attenuates light  

Microlens (a.k.a. lenslet) steers light toward photo-
sensitive region (increases light-gathering capability) 

Advanced question: Microlens also serves to reduce 
aliasing signal. Why?
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Using micro lenses to improve #ll factor

Leica M9

Shifted microlenses on M9 sensor.

Slide credit: Ren Ng
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Optical cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng
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Pixel optics for minimizing cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng
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Backside illumination sensor
▪ Traditional CMOS: electronics block light 
▪ Idea: move electronics underneath light gathering region 

- Increases #ll factor 
- Reduces cross-talk due since photodiode closer to microns 
- Implication 1: better light sensitivity at #xed sensor size 
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Illustration credit: Sony
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Pixel saturation and noise
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Saturated 
pixels

Photon count for pixels has 
saturated (no detail in image)
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Full-well capacity

Graph credit: clarkvision.com

Pixel saturates when photon capacity is exceeded

Saturated pixels
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Bigger sensors = bigger pixels (or more pixels?)
iPhone X (1.2 micron pixels, 12 MP) 

Nikon D7000 (APS-C) 
(4.8 micron pixels, 16 MP) 

Nikon D4 (full frame sensor) 
(7.3 micron pixels, 16 MP) 
Implication: very high pixel count sensors 
can be built with current CMOS technology  

-Full frame sensor with iPhone X pixel 
size ~ 600 MP sensor

24x16mm

36x24mm

Image credit: Wikipedia
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Measurement noise

We’ve all been frustrated by noise in 
low-light photographs 
(or in shadows in day time images)
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Measurement noise

Grand Teton National Park
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Measurement noise

Grand Teton National Park
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Sources of measurement noise
Photon shot noise: 
- Photon arrival rate takes on Poisson distribution 
- Standard deviation = sqrt(N)      (N = number of photon arrivals) 
- Signal-to-noise ratio (SNR) = N/sqrt(N) 
- Implication: brighter the signal, the higher the SNR 

Dark-shot noise 
- Due to leakage current in sensor 
- Electrons dislodged due to thermal activity (increases exponentially with sensor temperature) 

Non-uniformity of pixel sensitivity (due to manufacturing defects) 
Read noise 
- e.g., due to ampli#cation / ADC
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Dark shot noise / read noise
Black image examples: Nikon D7000, High ISO

1 sec exposure 
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Read noise

Image credit: clarkvision.com

Read noise is largely independent of pixel size 
Large pixels + bright scene = large N  
So, noise determined largely by photon shot noise
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Maximize light gathering capability
Goal: increase signal-to-noise ratio 
- Dynamic range of a pixel (ratio of brightest light measurable to dimmest light measurable) is determined by the 

noise $oor (minimum signal) and the pixel’s full-well capacity (maximum signal) 

Use big pixels 
- Nikon D4: 7.3 um 

- iPhone X: 1.2 um  

Manufacture sensitive pixels 
- Good materials 

- High #ll factor
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Artifacts arising from lenses



Stanford CS348K, Spring 2022

Vignetting
This is a photograph of a white wall 
(Note: I contrast-enhanced the image to show e!ect more prominently) 
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Types of vignetting

Image credit: Mark Butterworth

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens 

Pixel vignetting: light reaching pixel at an oblique 
angle is less likely to hit photosensitive region than 
light incident from straight above (e.g., obscured by 
electronics) 

- Microlens reduces pixel vignetting



Stanford CS348K, Spring 2022

Chromatic aberration

Image credit: Wikipedia

Di!erent wavelengths of light are refracted by di!erent amounts



Stanford CS348K, Spring 2022

More challenges
Chromatic shifts over sensor 
- Pixel light sensitivity changes over sensor due to interaction with microlens 

(Index of refraction depends on wavelength, so some wavelengths are more likely to su!er from cross-talk or re$ection. 
Ug!) 

Lens distortion

Pincushion distortion

Captured Image Corrected Image
Image credit: PCWorld
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The message so far
Physical constraints of image formation by a camera create artifacts in the 
recorded image 

We are going to rely on processing to reduce / correct for these artifacts
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A simple RAW image processing pipeline 

Given the physical reality of how a lens+sensor system works, now let’s look at how software 
transforms raw sensor output into a high-quality RGB image.

Adopting terminology from Texas Instruments OMAP Image Signal Processor pipeline 
(since public documentation exists) 

Assume: receiving 12 bits/pixel Bayer mosaiced data from sensor 
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Optical clamp: remove sensor o!set bias
output_pixel = input_pixel - [average of pixels from optically black region]

Remove bias due to sensor black level 
(from nearby sensor pixels at time of shot)
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Correct for defective pixels 
Store LUT with known defective pixels 
- e.g., determined on manufacturing line, during sensor calibration and test 

Example correction methods 
- Replace defective pixel with neighbor 

- Replace defective pixel with average of neighbors 

- Correct defect by subtracting known bias for the defect  

output_pixel = (isdefectpixel(current_pixel_xy)) ?  
                 average(previous_input_pixel, next_input_pixel) : 
                 input_pixel;
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“Hot pixel” suppression
float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

for (int j=0; j<HEIGHT; j++) { 
   for (int i=0; i<WIDTH; i++) { 
      float min_value = min( min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]), 
                             min(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) ); 
      float max_value = max( max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]), 
                             max(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) ); 
      output[j*WIDTH + i] = clamp(min_value, max_value, input[j*WIDTH + i]); 
    } 
}

This #lter clamps pixels to the min/max of its cardinal neighbors 
(e.g., hot-pixel suppression — no need for a lookup table) 
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Lens shading compensation
Correct for vignetting artifacts 
- Good implementations will consider wavelength-dependent vignetting 

(that creates chromatic shift over the image)  

Possible implementations: 
- Use “$at-#eld photo” stored in memory 

- e.g., lower resolution bu!er, upsampled on-the-$y 

- Use analytic function to model required correction   

gain = upsample_compensation_gain_buffer(current_pixel_xy); 
output_pixel = gain * input_pixel; 

Need to invert the 
vignetting e!ect
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Demosiac
Produce RGB image from mosaiced input image 
Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors) 
More advanced algorithms: 
- Bicubic interpolation (wider #lter support region… may overblur) 
- Good implementations attempt to #nd and preserve edges in photo 

Image credit: Mark Levoy
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Demosaicing errors

What will demosaiced 
result look like if this black 
and white signal was 
captured by the sensor?



Stanford CS348K, Spring 2022

Demosaicing errors

(Visualization of signal and 
Bayer pattern)
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Demosaicing errors

No red measured. 

Interpolation of green 
yields dark/light 
pattern.  
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Why color fringing? What will demosaiced result 
look like if this black and 
white signal was captured 
by the sensor?
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Why color fringing?

(Visualization of 
signal and Bayer 
pattern)
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Demosaicing errors
Common di"cult case: #ne diagonal black and white stripes 
Result: moire pattern color artifacts

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

RAW data 
from sensor

RGB result after 
demosaic



Stanford CS348K, Spring 2022

Y’ = luma: perceived luminance 
Cb = blue-yellow deviation from gray 
Cr = red-cyan deviation from grayY’

Cb

Cr

Image credit: Wikipedia

Conversion matrix from R’G’B’ to Y’CbCr:

“Gamma corrected” RGB 
(primed notation indicates perceptual (non-linear) space) 
We’ll describe what this means this later in the lecture.

Y’CbCr color space
Colors are represented as point in 3-space 
RGB is just one possible basis for representing color 
Y’CbCr separates luminance from hue in representation
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Example: compression in Y’CbCr

Original picture of Kayvon
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Contents of CbCr color channels downsampled by a factor of 20 in each dimension 
(400x reduction in number of samples)

Example: compression in Y’CbCr
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Full resolution sampling of luma (Y’)

Example: compression in Y’CbCr
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Reconstructed result 
(looks pretty good)

Example: compression in Y’CbCr
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Better demosaic
Convert demosaiced RGB value to YCbCr 
Low-pass #lter (blur) or median #lter CbCr channels 
Combine #ltered CbCr with full resolution Y from sensor to get RGB 

Trades o! spatial resolution of chroma information to avoid objectionable color fringing
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White balance
Adjust relative intensity of rgb values (goal: make neutral tones in scene appear neutral in image) 

The same “white” object will generate di!erent sensor response when illuminated by di!erent spectra.  Camera needs to 
infer what the lighting in the scene was.

output_pixel = white_balance_coeff * input_pixel 
// note: in this example, white_balance_coeff is vec3 
// (adjusts ratio of red-blue-green channels)

Image credit: basedigitalphotography.com
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White balance example
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White balance example
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White balance example
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White balance algorithms
White balance coe"cients depend on analysis of image contents 

- Calibration based: get value of pixel of “white” object: (rw, gw, bw) 
- Scale all pixels by (1/rw, 1/gw, 1/bw) 

- Heuristic based: camera must guesse which pixels correspond to white objects in scene  
- Gray world assumption: make average of all pixels in image gray 
- Brightest pixel assumption: #nd brightest region of image, make it white ([1,1,1])

▪ Modern white-balance algorithms are based on 
learning correct scaling from examples 
- Create database of images for which good white 

balance settings are known (e.g., manually set by 
human) 

- Learning mapping from image features to white 
balance settings 

- When new photo is taken, use learned model to 
predict good white balance settings

Scale r,g,b values so 
these pixels are close 
to (1,1,1)
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Denoising

Denoised

Original
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Low light conditions need long exposure… 
blur due to camera shake
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Low light photo: many regions underexposed 
(short exposure) to avoid blur + some regions 
overexposed 
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Brightened image to see detail in dark regions, 
notice noise in dark regions
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Attempt to denoise… splotchy e!ect remains
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Long exposure: walking people are blurred…
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Long exposure: walking people are blurred…
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Also: still signi#cant noise in 
dark regions
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Reduce noise via image processing: denoising via downsampling

Downsample via 
point sampling 

(noise remains)

Downsample via averaging 

Noise reduced 

Like a smaller number of 
bigger pixels!
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Discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image 
(the result of convolving f with input image I)

input image#lter

Consider a                         that is nonzero only when:  (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called:  “#lter weights”, “#lter kernel”)
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Simple 3x3 box blur in C code
float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9}; 

for (int j=0; j<HEIGHT; j++) { 
   for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<3; jj++) 
         for (int ii=0; ii<3; ii++) 
            tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 
      output[j*WIDTH + i] = tmp; 
  } 
}

For now: ignore boundary pixels and 
assume output image is smaller than 
input (makes convolution loop bounds 
much simpler to write) 
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7x7 box blur
Original

Blurred
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Gaussian blur
Obtain #lter coe"cients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

▪ Produces weighted sum of neighboring pixels (contribution 
falls o! with distance) 
- In practice: truncate #lter beyond certain distance for e"ciency

Note: this is a 5x5 truncated Gaussian #lter
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7x7 gaussian blur
Original

Blurred
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3x3 sharpen #lter
Original

Sharpened

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5
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Median #lter

uint8 input[(WIDTH+2) * (HEIGHT+2)]; 
uint8 output[WIDTH * HEIGHT]; 
for (int j=0; j<HEIGHT; j++) { 
   for (int i=0; i<WIDTH; i++) { 
      output[j*WIDTH + i] = 
           // compute median of pixels 
           // in surrounding 5x5 pixel window  
   } 
}

▪ Replace pixel with median of its neighbors 
- Useful noise reduction #lter: unlike gaussian blur, one bright pixel 

doesn’t drag up the average for entire region 

▪ Not linear: #lter weights are 1 or 0 (depending on image 
content)

▪ Basic algorithm for NxN support region: 
- Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel 
- Can you think of an O(N2) algorithm? What about O(N)?
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Bilateral #lter

Example use of bilateral #lter: removing noise while preserving image edges

Original Processed
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Bilateral #lter

The bilateral #lter is an “edge preserving” #lter: down-weight contribution of pixels on the “other side” of strong edges.  f 

(x) de#nes what “strong edge means” 

Spatial distance weight term f (x) could itself be a gaussian 

- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel 

But weight is combination of spatial distance and input image pixel intensity di!erence. (non-linear #lter: like the 
median #lter, the #lter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on di!erence 
in input image pixel values

For all pixels in support region 
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Wp =
X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Normalization
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Bilateral #lter: kernel depends on image content 

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral #lter
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Bilateral #lter
Visualization of bilateral #lter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with signi#cantly di!erent intensity 
as p contribute little to #ltered result (they 
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): In$uence of support region

G x f: #lter weights for pixel p Filtered output image
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Better denoising idea: merge sequence of captures

Long exposure: reduces noise (acquires more light), but introduces blur (camera shake or scene 
movement) 
Short exposure: sharper image, but lower signal/noise ratio 
Idea: take sequence of short full-resolution exposures, but align images in software, then 
merge them into a single sharp image with high signal to noise ratio

Algorithm used in Google Pixel Phones [Hasino! 16]
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Align and merge algorithm
For each image in burst, align to reference frame (use sharpest photo as reference 
frame) 
-Compute optical $ow #eld aligning image pair 

Simple merge algorithm: warp images according to $ow, and sum 
More sophisticated techniques only merge pixels where con#dence in alignment is 
high (tolerate noisy reference pixels when alignment fails) 

Image pair

Reference

Frame to align

Visualization of $ow

[Image credit: Hasino! 16] 



Stanford CS348K, Spring 2022

Results of align and merge [Hasino! 16] 

[Image credit: Hasino! 16] 

Reference frame Temporal mean of 
images in burst 

(blurry)

Temporal mean 
with alignment

Robust merge with 
alignment
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Summary: simpli#ed image processing pipeline

Correct pixel defects 
Align and merge (to create high signal to noise ration RAW image)  
Correct for sensor bias (using measurements of optically black pixels) 
Vignetting compensation 
White balance  
Demosaic 
Denoise 
Gamma Correction (non-linear mapping) 
Local tone mapping 
Final adjustments sharpen, #x chromatic aberrations, 

       hue adjust, etc.

(10-12 bits per pixel) 
1 intensity value per pixel 
Pixel values linear in energy

3x10 bits per pixel 
RGB intensity per pixel 
Pixel values linear in energy

3x8-bits per pixel 
Pixel values perceptually linear

Next time
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