
Visual Computing Systems
Stanford CS348K, Spring 2022

Lecture 2:

The Camera Image
Processing Pipeline

Stanford CS348K, Spring 2022

Theme of the next two lectures…
The pixels you see on screen are quite di!erent than the values recorded by the sensor in a modern
digital camera.
Computation is a fundamental aspect of producing high-quality pictures.

Computation

Sensor
output

(“RAW”)

Beautiful image that impresses
your Instagram friends

Stanford CS348K, Spring 2022

Part 1: image sensing hardware

(how a digital camera measures light, and how physical limitations of these devices place
challenges on software)

Stanford CS348K, Spring 2022

Camera cross section

Image credit: Canon (EOS M)

Sensor

Canon 14 MP CMOS Sensor
(14 bits per pixel)

Stanford CS348K, Spring 2022

Camera cross section

Image credit: https://www.dpreview.com/news/3717128828/the-future-is-bright-technology-trends-in-mobile-photography

Sensor

Stanford CS348K, Spring 2022

The Sensor

Stanford CS348K, Spring 2022

Photoelectric e!ect

Incident photons

Ejected electrons

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics, and especially for his
discovery of the law of the photoelectric e!ect"

Albert Einstein

Slide credit: Ren Ng

Stanford CS348K, Spring 2022

CMOS sensor

Row select
Register

ADCAmplify
Bits

…

Active pixel sensor
(2D array of photo-diodes)

“Optically black” region
(shielded from light)

Exposed region
Photodiode

(a pixel)

Column select register

CMOS = complementary metal-oxide semiconductor

Stanford CS348K, Spring 2022

CMOS APS (active pixel sensor) pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

Stanford CS348K, Spring 2022

CMOS response functions are linear
Photoelectric e!ect in silicon:

- Response function from photons to
electrons is linear

(Some nonlinearity close to 0 due to noise
and when close to pixel saturation)

Slide credit: Ren Ng

Stanford CS348K, Spring 2022

Quantum e"ciency
Not all photons will produce an electron (depends on quantum e"ciency of the device)

- Human vision: ~15%

- Typical digital camera: < 50%

- Best back-thinned CCD: > 90%
(e.g., telescope)

QE =
electrons
photons

Slide credit: Ren Ng

Stanford CS348K, Spring 2022

Sensing Color

Stanford CS348K, Spring 2022

Electromagnetic spectrum
Describes distribution of power (energy/time) by wavelength

Figure credit:

Below: spectrum of various common light sources:

Stanford CS348K, Spring 2022

Example: warm white vs. cool white

Image credit: (Oz Lighting: https://www.ozlighting.com.au/blog/what-is-warm-white-versus-cool-white/)

Stanford CS348K, Spring 2022

Simple model of a light detector

Figure credit: Steve Marschner

R =

Z

�
�(�)r(�)d�

�(�)

r(�)
spectral response function

(overall response)

incoming spectrum

Stanford CS348K, Spring 2022

Spectral response of cone cells in human eye
Three types of cells in eye responsible for color perception: S, M, and L cones (corresponding to peak
response at short, medium, and long wavelengths)

Implication: the space of human-perceivable colors is three dimensional

S =

Z

�
�(�)S(�)d�

M =

Z

�
�(�)M(�)d�

L =

Z

�
�(�)L(�)d�

wavelength (nm)
No

rm
al

ize
d r

es
po

ns
e

Response functions for S, M, and L cones

Stanford CS348K, Spring 2022

Human eye cone cell mosaic

False color image:
red = L cones
green = M cones
blue = R cones

Image Credit: Ramkumar Sabesan Lab

Stanford CS348K, Spring 2022

Color #lter array (Bayer mosaic)
Color #lter array placed over sensor
Result: di!erent pixels have di!erent spectral response (each pixel measures red, green, or blue light)
50% of pixels are green pixels

Traditional Bayer mosaic
(other #lter patterns exist: e.g., Sony’s RGBE)

Pixel response curve: Canon 40D/50D

Image credit:
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm)

f(�)

Stanford CS348K, Spring 2022

Light incident on camera

Stanford CS348K, Spring 2022

What sensor measures

Stanford CS348K, Spring 2022

What sensor measures
(zoomed view)

Defective pixel

Stanford CS348K, Spring 2022

CMOS Pixel Structure

Stanford CS348K, Spring 2022

Front-side-illuminated (FSI) CMOS
Building up the CMOS imager layers

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2022

Pixel pitch:
A few microns

Photodiodes
~50% Fill Factor

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2022

Polysilicon
& Via 1

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2022

Metal 1

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2022

Metal 2

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2022

Metal 3

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2022

Metal 4

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2022

Color #lter array

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2022

Pixel #ll factor

Photodiode area Non photosensitive (circuitry)

Fraction of pixel area that integrates incoming light

Slide credit: Ren Ng

Stanford CS348K, Spring 2022

CMOS sensor pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

Color #lter attenuates light

Microlens (a.k.a. lenslet) steers light toward photo-
sensitive region (increases light-gathering capability)

Advanced question: Microlens also serves to reduce
aliasing signal. Why?

Stanford CS348K, Spring 2022

Using micro lenses to improve #ll factor

Leica M9

Shifted microlenses on M9 sensor.

Slide credit: Ren Ng

Stanford CS348K, Spring 2022

Optical cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng

Stanford CS348K, Spring 2022

Pixel optics for minimizing cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng

Stanford CS348K, Spring 2022

Backside illumination sensor
▪ Traditional CMOS: electronics block light
▪ Idea: move electronics underneath light gathering region

- Increases #ll factor
- Reduces cross-talk due since photodiode closer to microns
- Implication 1: better light sensitivity at #xed sensor size
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Illustration credit: Sony

Stanford CS348K, Spring 2022

Pixel saturation and noise

Stanford CS348K, Spring 2022

Saturated
pixels

Photon count for pixels has
saturated (no detail in image)

Stanford CS348K, Spring 2022

Full-well capacity

Graph credit: clarkvision.com

Pixel saturates when photon capacity is exceeded

Saturated pixels

Stanford CS348K, Spring 2022

Bigger sensors = bigger pixels (or more pixels?)
iPhone X (1.2 micron pixels, 12 MP)

Nikon D7000 (APS-C)
(4.8 micron pixels, 16 MP)

Nikon D4 (full frame sensor)
(7.3 micron pixels, 16 MP)
Implication: very high pixel count sensors
can be built with current CMOS technology

-Full frame sensor with iPhone X pixel
size ~ 600 MP sensor

24x16mm

36x24mm

Image credit: Wikipedia

Stanford CS348K, Spring 2022

Measurement noise

We’ve all been frustrated by noise in
low-light photographs
(or in shadows in day time images)

Stanford CS348K, Spring 2022

Measurement noise

Grand Teton National Park

Stanford CS348K, Spring 2022

Measurement noise

Grand Teton National Park

Stanford CS348K, Spring 2022

Sources of measurement noise
Photon shot noise:
- Photon arrival rate takes on Poisson distribution
- Standard deviation = sqrt(N) (N = number of photon arrivals)
- Signal-to-noise ratio (SNR) = N/sqrt(N)
- Implication: brighter the signal, the higher the SNR

Dark-shot noise
- Due to leakage current in sensor
- Electrons dislodged due to thermal activity (increases exponentially with sensor temperature)

Non-uniformity of pixel sensitivity (due to manufacturing defects)
Read noise
- e.g., due to ampli#cation / ADC

Stanford CS348K, Spring 2022

Dark shot noise / read noise
Black image examples: Nikon D7000, High ISO

1 sec exposure

Stanford CS348K, Spring 2022

Read noise

Image credit: clarkvision.com

Read noise is largely independent of pixel size
Large pixels + bright scene = large N
So, noise determined largely by photon shot noise

Stanford CS348K, Spring 2022

Maximize light gathering capability
Goal: increase signal-to-noise ratio
- Dynamic range of a pixel (ratio of brightest light measurable to dimmest light measurable) is determined by the

noise $oor (minimum signal) and the pixel’s full-well capacity (maximum signal)

Use big pixels
- Nikon D4: 7.3 um

- iPhone X: 1.2 um

Manufacture sensitive pixels
- Good materials

- High #ll factor

Stanford CS348K, Spring 2022

Artifacts arising from lenses

Stanford CS348K, Spring 2022

Vignetting
This is a photograph of a white wall
(Note: I contrast-enhanced the image to show e!ect more prominently)

Stanford CS348K, Spring 2022

Types of vignetting

Image credit: Mark Butterworth

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens

Pixel vignetting: light reaching pixel at an oblique
angle is less likely to hit photosensitive region than
light incident from straight above (e.g., obscured by
electronics)

- Microlens reduces pixel vignetting

Stanford CS348K, Spring 2022

Chromatic aberration

Image credit: Wikipedia

Di!erent wavelengths of light are refracted by di!erent amounts

Stanford CS348K, Spring 2022

More challenges
Chromatic shifts over sensor
- Pixel light sensitivity changes over sensor due to interaction with microlens

(Index of refraction depends on wavelength, so some wavelengths are more likely to su!er from cross-talk or re$ection.
Ug!)

Lens distortion

Pincushion distortion

Captured Image Corrected Image
Image credit: PCWorld

Stanford CS348K, Spring 2022

The message so far
Physical constraints of image formation by a camera create artifacts in the
recorded image

We are going to rely on processing to reduce / correct for these artifacts

Stanford CS348K, Spring 2022

A simple RAW image processing pipeline

Given the physical reality of how a lens+sensor system works, now let’s look at how software
transforms raw sensor output into a high-quality RGB image.

Adopting terminology from Texas Instruments OMAP Image Signal Processor pipeline
(since public documentation exists)

Assume: receiving 12 bits/pixel Bayer mosaiced data from sensor

Stanford CS348K, Spring 2022

Optical clamp: remove sensor o!set bias
output_pixel = input_pixel - [average of pixels from optically black region]

Remove bias due to sensor black level
(from nearby sensor pixels at time of shot)

Stanford CS348K, Spring 2022

Correct for defective pixels
Store LUT with known defective pixels
- e.g., determined on manufacturing line, during sensor calibration and test

Example correction methods
- Replace defective pixel with neighbor

- Replace defective pixel with average of neighbors

- Correct defect by subtracting known bias for the defect

output_pixel = (isdefectpixel(current_pixel_xy)) ?
 average(previous_input_pixel, next_input_pixel) :
 input_pixel;

Stanford CS348K, Spring 2022

“Hot pixel” suppression
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float min_value = min(min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
 min(input[j*WIDTH + i-1], input[j*WIDTH + i+1]));
 float max_value = max(max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
 max(input[j*WIDTH + i-1], input[j*WIDTH + i+1]));
 output[j*WIDTH + i] = clamp(min_value, max_value, input[j*WIDTH + i]);
 }
}

This #lter clamps pixels to the min/max of its cardinal neighbors
(e.g., hot-pixel suppression — no need for a lookup table)

Stanford CS348K, Spring 2022

Lens shading compensation
Correct for vignetting artifacts
- Good implementations will consider wavelength-dependent vignetting

(that creates chromatic shift over the image)

Possible implementations:
- Use “$at-#eld photo” stored in memory

- e.g., lower resolution bu!er, upsampled on-the-$y

- Use analytic function to model required correction

gain = upsample_compensation_gain_buffer(current_pixel_xy);
output_pixel = gain * input_pixel;

Need to invert the
vignetting e!ect

Stanford CS348K, Spring 2022

Demosiac
Produce RGB image from mosaiced input image
Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors)
More advanced algorithms:
- Bicubic interpolation (wider #lter support region… may overblur)
- Good implementations attempt to #nd and preserve edges in photo

Image credit: Mark Levoy

Stanford CS348K, Spring 2022

Demosaicing errors

What will demosaiced
result look like if this black
and white signal was
captured by the sensor?

Stanford CS348K, Spring 2022

Demosaicing errors

(Visualization of signal and
Bayer pattern)

Stanford CS348K, Spring 2022

Demosaicing errors

No red measured.

Interpolation of green
yields dark/light
pattern.

Stanford CS348K, Spring 2022

Why color fringing? What will demosaiced result
look like if this black and
white signal was captured
by the sensor?

Stanford CS348K, Spring 2022

Why color fringing?

(Visualization of
signal and Bayer
pattern)

Stanford CS348K, Spring 2022

Demosaicing errors
Common di"cult case: #ne diagonal black and white stripes
Result: moire pattern color artifacts

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

RAW data
from sensor

RGB result after
demosaic

Stanford CS348K, Spring 2022

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from grayY’

Cb

Cr

Image credit: Wikipedia

Conversion matrix from R’G’B’ to Y’CbCr:

“Gamma corrected” RGB
(primed notation indicates perceptual (non-linear) space)
We’ll describe what this means this later in the lecture.

Y’CbCr color space
Colors are represented as point in 3-space
RGB is just one possible basis for representing color
Y’CbCr separates luminance from hue in representation

Stanford CS348K, Spring 2022

Example: compression in Y’CbCr

Original picture of Kayvon

Stanford CS348K, Spring 2022

Contents of CbCr color channels downsampled by a factor of 20 in each dimension
(400x reduction in number of samples)

Example: compression in Y’CbCr

Stanford CS348K, Spring 2022

Full resolution sampling of luma (Y’)

Example: compression in Y’CbCr

Stanford CS348K, Spring 2022

Reconstructed result
(looks pretty good)

Example: compression in Y’CbCr

Stanford CS348K, Spring 2022

Better demosaic
Convert demosaiced RGB value to YCbCr
Low-pass #lter (blur) or median #lter CbCr channels
Combine #ltered CbCr with full resolution Y from sensor to get RGB

Trades o! spatial resolution of chroma information to avoid objectionable color fringing

Stanford CS348K, Spring 2022

White balance
Adjust relative intensity of rgb values (goal: make neutral tones in scene appear neutral in image)

The same “white” object will generate di!erent sensor response when illuminated by di!erent spectra. Camera needs to
infer what the lighting in the scene was.

output_pixel = white_balance_coeff * input_pixel
// note: in this example, white_balance_coeff is vec3
// (adjusts ratio of red-blue-green channels)

Image credit: basedigitalphotography.com

Stanford CS348K, Spring 2022

White balance example

Stanford CS348K, Spring 2022

White balance example

Stanford CS348K, Spring 2022

White balance example

Stanford CS348K, Spring 2022

White balance algorithms
White balance coe"cients depend on analysis of image contents

- Calibration based: get value of pixel of “white” object: (rw, gw, bw)
- Scale all pixels by (1/rw, 1/gw, 1/bw)

- Heuristic based: camera must guesse which pixels correspond to white objects in scene
- Gray world assumption: make average of all pixels in image gray
- Brightest pixel assumption: #nd brightest region of image, make it white ([1,1,1])

▪ Modern white-balance algorithms are based on
learning correct scaling from examples
- Create database of images for which good white

balance settings are known (e.g., manually set by
human)

- Learning mapping from image features to white
balance settings

- When new photo is taken, use learned model to
predict good white balance settings

Scale r,g,b values so
these pixels are close
to (1,1,1)

Stanford CS348K, Spring 2022

Denoising

Denoised

Original

Stanford CS348K, Spring 2022Image credit: https://www.colorexpertsbd.com/blog/how-to-#x-blurry-photos-induced-by-camera-shake-in-photoshop

Low light conditions need long exposure…
blur due to camera shake

Stanford CS348K, Spring 2022

Low light photo: many regions underexposed
(short exposure) to avoid blur + some regions
overexposed

Stanford CS348K, Spring 2022

Brightened image to see detail in dark regions,
notice noise in dark regions

Stanford CS348K, Spring 2022

Attempt to denoise… splotchy e!ect remains

Stanford CS348K, Spring 2022

Long exposure: walking people are blurred…

Stanford CS348K, Spring 2022

Long exposure: walking people are blurred…

Stanford CS348K, Spring 2022

Also: still signi#cant noise in
dark regions

Stanford CS348K, Spring 2022

Reduce noise via image processing: denoising via downsampling

Downsample via
point sampling

(noise remains)

Downsample via averaging

Noise reduced

Like a smaller number of
bigger pixels!

Stanford CS348K, Spring 2022

Discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image
(the result of convolving f with input image I)

input image#lter

Consider a that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “#lter weights”, “#lter kernel”)

Stanford CS348K, Spring 2022

Simple 3x3 box blur in C code
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

For now: ignore boundary pixels and
assume output image is smaller than
input (makes convolution loop bounds
much simpler to write)

Stanford CS348K, Spring 2022

7x7 box blur
Original

Blurred

Stanford CS348K, Spring 2022

Gaussian blur
Obtain #lter coe"cients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

▪ Produces weighted sum of neighboring pixels (contribution
falls o! with distance)
- In practice: truncate #lter beyond certain distance for e"ciency

Note: this is a 5x5 truncated Gaussian #lter

Stanford CS348K, Spring 2022

7x7 gaussian blur
Original

Blurred

Stanford CS348K, Spring 2022

3x3 sharpen #lter
Original

Sharpened

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Stanford CS348K, Spring 2022

Median #lter

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 output[j*WIDTH + i] =
 // compute median of pixels
 // in surrounding 5x5 pixel window
 }
}

▪ Replace pixel with median of its neighbors
- Useful noise reduction #lter: unlike gaussian blur, one bright pixel

doesn’t drag up the average for entire region

▪ Not linear: #lter weights are 1 or 0 (depending on image
content)

▪ Basic algorithm for NxN support region:
- Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel
- Can you think of an O(N2) algorithm? What about O(N)?

Stanford CS348K, Spring 2022

Bilateral #lter

Example use of bilateral #lter: removing noise while preserving image edges

Original Processed

Stanford CS348K, Spring 2022

Bilateral #lter

The bilateral #lter is an “edge preserving” #lter: down-weight contribution of pixels on the “other side” of strong edges. f

(x) de#nes what “strong edge means”

Spatial distance weight term f (x) could itself be a gaussian

- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity di!erence. (non-linear #lter: like the
median #lter, the #lter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on di!erence
in input image pixel values

For all pixels in support region
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Wp =
X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Normalization

Stanford CS348K, Spring 2022

Bilateral #lter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral #lter

Stanford CS348K, Spring 2022

Bilateral #lter
Visualization of bilateral #lter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with signi#cantly di!erent intensity
as p contribute little to #ltered result (they
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): In$uence of support region

G x f: #lter weights for pixel p Filtered output image

Stanford CS348K, Spring 2022

Better denoising idea: merge sequence of captures

Long exposure: reduces noise (acquires more light), but introduces blur (camera shake or scene
movement)
Short exposure: sharper image, but lower signal/noise ratio
Idea: take sequence of short full-resolution exposures, but align images in software, then
merge them into a single sharp image with high signal to noise ratio

Algorithm used in Google Pixel Phones [Hasino! 16]

Stanford CS348K, Spring 2022

Align and merge algorithm
For each image in burst, align to reference frame (use sharpest photo as reference
frame)
-Compute optical $ow #eld aligning image pair

Simple merge algorithm: warp images according to $ow, and sum
More sophisticated techniques only merge pixels where con#dence in alignment is
high (tolerate noisy reference pixels when alignment fails)

Image pair

Reference

Frame to align

Visualization of $ow

[Image credit: Hasino! 16]

Stanford CS348K, Spring 2022

Results of align and merge [Hasino! 16]

[Image credit: Hasino! 16]

Reference frame Temporal mean of
images in burst

(blurry)

Temporal mean
with alignment

Robust merge with
alignment

Fu
ll i

m
ag

e
Su

cc
es

sfu
l a

lig
nm

en
t

Al
ig

nm
en

t f
ai

lu
re

Stanford CS348K, Spring 2022

Summary: simpli#ed image processing pipeline

Correct pixel defects
Align and merge (to create high signal to noise ration RAW image)
Correct for sensor bias (using measurements of optically black pixels)
Vignetting compensation
White balance
Demosaic
Denoise
Gamma Correction (non-linear mapping)
Local tone mapping
Final adjustments sharpen, #x chromatic aberrations,

 hue adjust, etc.

(10-12 bits per pixel)
1 intensity value per pixel
Pixel values linear in energy

3x10 bits per pixel
RGB intensity per pixel
Pixel values linear in energy

3x8-bits per pixel
Pixel values perceptually linear

Next time

Stanford CS348K, Spring 2022

Acknowledgements
Thanks and credit for slides to Ren Ng and Marc Levoy

