Lecture 3:

The Camera Image

Processing Pipeline
(part 2)

Visual Computing Systems
Stanford C5348K, Spring 2022



Previous class and today...

The pixels you see on screen are quite different than the values recorded by the sensorina
modern digital camera.

Computation is now a fundamental aspect of producing high-quality pictures.
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Beautiful image that impresses your friends
on Instagram
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Summary: simplified image processing pipeline

m Correct pixel defects
m Align and merge (to create high signal to noise ration RAW image)  act ti '
m Correct for sensor bias (using measurements of optically black pixels) ast time:
m Vignetting compensation
. (10-12 bits per pixel)

m White balance 1intensity value per pixel

. Pixel values linear in energy
m Demosaic
m Denoise 3 x (10-12) bits per pixel
m Gamma Correction (non-linear mapping) RGB intensity per pixel

. Pixel values linear in energy

m Local tone mapping
N

Final adjustments sharpen, fix chromatic aberrations, hue adjust, etc. _ ,
3x8-bits per pixel

Pixel values perceptually linear
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Denoising

Denoised
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Reduce noise via image processing: denoising via downsampling
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Downsample via averaging

Downsample via point sampling 2x2 block of pixels

noise remains :
( ) Noise reduced

Like a smaller number of
bigger pixels!
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Discrete 2D convolution

(f *I)(z,y) = Z fli, )@ i,y —j)

N T 1T

output image filter input image
(the result of convolving f with input image )

Considera f (z 9 ) that is nonzero onlywhen: —1 < 7,9 < 1
Then:

(f Z fZ] ZC—Z,y—])
2,)=—1

And we can represent f(i,j) as a 3x3 matrix of values where:

f (iv 7 ) — Fi, 7 (often called: “filter weights”, “filter kernel”)
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Simple 3x3 box blur in Ccode

float input[(WIDTH+2) x (HEIGHT+2)];
float output[WIDTH x HEIGHT];

For now: ignore boundary pixels and assume output

image is smaller than input (makes convolution loop
float weights[] = {1./9, 1./9, 1./9, bounds much simpler to write)

1./9, 1./9, 1./9,
1./9, 1./9, 1./9};

for (int j=0; jj<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.°T;
for (int jj=0; jj<3; jj++)
for (int 11=0; 1i<3; 1ii++)
tmp += input[(j+jj)*x(WIDTH+2) + (i+ii)] * weights[jjx3 + ii];
output[j*WIDTH + 1] = tmp;
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7x7 hox blur

Original
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Gaussian blur

m Obtain filter coefficients from sampling 2D Gaussian

1 i2 4 52

f(Z7J) — 27_‘_0_26 202

m Produces weighted sum of neighboring pixels (contribution
falls off with distance)

— In practice: truncate filter beyond certain distance for efficiency

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6

4 16 24 16 4
1 4 6 4 1 Note: this is a 5x5 truncated Gaussian filter

256
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7X7 gaussian blur

Original

=l

Blurred
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3x3 sharpen filter

Original
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Median filter

B Replace pixel with median of its neighbors

—  Useful noise reduction filter: unlike gaussian blur, one bright pixel
doesn’t drag up the average for entire region

B Not linear: filter weights are 1 or 0 (depending on image
content)

1pX médian fiﬁer

uint8 input[ (WIDTH+2) x (HEIGHT+2)];
uint8 output[WIDTH *x HEIGHT];
for (int j=0; jJ<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
output[j*WIDTH + 1] =
// compute median of pixels
// 1n surrounding 5x5 pixel window

3pX médian filter 10px median filter
m  Basicalgorithm for NxN support region:

— Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel
— (an you think of an O(N2) algorithm? What about O(N)?
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Bilateral filter
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Example use of bilateral filter: removing noise while preserving image edges
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Bi Iate I'd I ﬁ Ite I Gaussian blur kernel Input image

N,

Zf Iz —i,y—j) — 1(z,y)])Go(i,j)I(x — i,y — )

W
Normalization / f <

Re-weight based on difference

For all pixels in support region
P PP | in input image pixel values

of Gaussian kernel

Wy = Zf(\l(:v — i,y —4) — I(z,y)])Go (i, j)

m The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels on the “other side” of strong edges. f
(x) defines what “stronqg edge means”

m Spatial distance weight term f(x) could itself be a gaussian

= Orverysimple: f(x) =0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference. (non-linear filter: like the
median filter, the filter’s weights depend on input image content)
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Bilateral filter: kernel depends on image content

k B

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. Stanford (5348K, Spring 2022




Bilateral filter

m Visualization of bilateral filter

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input pixel p

Input image G(): gaussian about input pixelp  f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002 Stanford (S348K, Spring 2022



Auto Exposure and Tone Mapping
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Global tone mapping

m Measured image values (by sensor): 10-12 bits / pixel, but common image formats are 8-bits/pixel
m  How to convert 12 bit number to 8 bit number?

4

255 4

.‘.,. °
— _ —
i 5 '©
.' R —
D “ :‘" I ‘Is °
NG *3' Allow many pixels to “blow
i‘ | o out” (detail in dark regions)
o
b il . >
0 input value 312
255 4
Allow many pixels to
§ clamp to black (detail
o in bright regions)
S
=
S
Q
>
0 input value 2
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Global tone mapping

255 4

output value

out(x,y) = f(in(x,y))

Allow many pixels to
clamp to black (detail
in bright regions)

input value

255 ¢
D
-
©
-
4 low resolution
= throughout entire
range
- >
0 input value 212
255 ¢
D
=
S
-
3 clamp darkest darks and
'§ brightest brights to reserve
resolution in midtowns
> . >
212 0 lnput value 212

255 4

Allow many pixels to “blow
out” (detail in dark regions)

output value

- >
0 Input value 212
255 1

(V)
=
(L")
—
H
3

- >

0 input value 312
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Lightness (perceived brightness) aka luma

Lightness (L*) <«—— Luminance(Y) = R /\j\

(Perceived by brain) (Response of eye) e
Spectral sensitivity of eye Radiance
A (eye’s response curve) (energy spectrum
from scene)

Darkadaptedeye: L F o Y 04
Bright adapted eye: L* C Y0-5

In a dark room, you turn on a light with luminance: Y;
You turn on a second light that is identical to the first. Total output is now: Y, = 2Y;

Total output appears 2°-* = 1.319 times brighter to dark-adapted human

Note: Lightness (L*) is often referred to as luma (Y’)
Stanford C5348K, Spring 2022



Consider an image with pixel values encoding luminance
(linear in energy hitting sensor)

A

: __L*=Y45
T Consider 12-bit sensor pixel:
7T Can represent 4096 unique luminance values in output image
* 0.75
é | ’/ ° ° ° °
S 3 Values are ~ linear in luminance since they represent the
= 4
‘= Sensor’s response
=2 057 #
o 7
= /
= |
e
025 /
|
ey ¢ a— — >
0 | 0.25 0.5 0.75 1

Luminance (Y)
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Problem: quantization error

Many common image formats store 8 bits per channel (256 unique values)
Insufficient precision to represent brightness in darker regions of image

A

1 | * = Y.45
/
< = Bright regions of image: perceived difference between pixels that differ by one step
1 in luminance is small! (human may not even be able to perceive difference hetween
x 079 pixels that differ by one step in luminance!)
P
s | /
5 0.5T Dark regions of image: perceived difference between pixels that differ by one step
2| in luminance is large!
§ [ {,/ (quantization error: gradients in luminance will not appear smooth.)
0.28f
“ e S S ——— —
0 0.25 0.5 0.75 1

Luminance (Y)

Rule of thumb: human eye cannot differentiate <1% differences in luminance
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Store lightness in 8-bit value, not luminance

Idea: distribute representable pixel values evenly with respect to perceived brightness,
not evenly in luminance (make more efficient use of available bits)

]

0.751

Perceived brightness: L*

0.28f /

—/

/

"""""""""""

Luminance (Y)

Solution: pixel stores Y0-45
Must compute (pixel_value)22 prior to display on LCD

Warning: must take caution with subsequent pixel processing operations
once pixels are encoded in a space that is not linear in luminance.

e.g., When adding images should you add pixel values that are encoded as

lightness or as luminance?

Stanford C5348K, Spring 2022



Y'ChCr color space

Recall: colors are represented as point in 3-space
RGB is just one possible basis for representing color
Y'ChCr separates luminance from hue in representation

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr =red-cyan deviation from gray

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

“Gamma corrected” RGB
(primed notation indicates
perceptual (non-linear) space)

We'll describe what this means
/ this later in the lecture.

Conversion matrix from R'G'B" to Y'Ch(Cr:

65.738 - R, 129.057 - G, 25.064 - B,

S
=16 056 056 256
_37.045. R 74404 G 112.439. B!
el 6 ois. 56
112.439- R..  94.154.C" 18.285 - B!
Cr= 128 D_ D _ D
R= Lac+ 256 256 256

Image credit: Wikipedia Stanford (S348K, Spring 2022



Local tone mapping

m Different regions of the image undergo different tone mapping curves (preserve detail in both
dark and bright regions)

Stanford C5348K, Spring 2022



Local tone adjustment

Improve picture’s aesthetics by locally adjusting contrast, boosting dark regions, decreasing bright regions
(no physical basis)

Stanford C5348K, Spring 2022



Local tone adjustment

Short Exposure -

ey
. . etk J)ﬁ 2
Pixel values Y x 1. -

Weights

Improve picture’s aesthetics by locally adjusting
contrast, boosting dark regions, decreasing bright

regions
(no physical basis)

Combined image
(unique weights per pixel)
Image credit: Mertens 2007 Stanford CS348K, Spring 2022




High exposure image
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Challenge of merging images

o P 'J.h“‘ e ""”‘

- |

Wil ‘s'%iﬁ‘n

Merged result (based on weight masks) Merged result
Notice heavy “banding” since absolute intensity (after blurring weight mask)
of different exposures is different Notice “halos” near edges
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Review:
Frequency interpretation of images

Stanford C5348K, Spring 2022



Representing sound as a superposition of frequencies

o=\ /NSNS NSNS

f2(x) = sin(2xx)

f4(x) = sin(4rx)

£x) = fi(x) + 075 fo(x) + 0.5 fx) [ v A |\ / ;
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Audio spectrum analyzer: representing sound as a sum of its
constituent frequencies
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Intensity of Intensity of
low-frequencies (bass) high frequencies

Image credit: ONYX Apps Stanford (5348K, Spring 2022



Fourier transform

m Convert representation of signal from spatial/temporal domain to frequency domain by
projecting signal into its component frequencies

1€ = [ r@emetaa

— /_OO f(x)(cos(2méx) — isin(2n&x))dx

m 2D form:

F(u, 0) = / / F (2, y)e o) dpgy

Stanford C5348K, Spring 2022



Visualizing the frequency content of images

Spatial domain result Spectrum

Stanford C5348K, Spring 2022



Low frequencies only (smooth gradients)

Spatial domain result Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude
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Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)
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Mid-range frequencies

Spatial domain result Spectrum (after band-pass filter)
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High frequencies (edges)

Spatial domain result Spectrum (after high-pass filter)
(strongest edges) All frequencies below threshold
have 0 magnitude

Stanford C5348K, Spring 2022



An image as a sum of its frequency components

Stanford C5348K, Spring 2022



But what if we wish to localize image edits
both in space and in frequency?

(Adjust certain frequency content of image,
in a particular region of the image)

Stanford C5348K, Spring 2022



Downsample

m Step 1: Remove high frequencies (aka blur)
m Step 2: Sparsely sample pixels (in this example: every other pixel)

A2 IV
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Downsample

m Step 1: Remove high frequencies
m Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) x (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];

float weights[] = {1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)
3/64, 9/64, 9/64, 3/64,
3/64, 9/64, 9/64, 3/64,
1/64, 3/64, 3/64, 1/64};

for (int j=0; j<HEIGHT/2; j++) {
for (int i=0; i<WIDTH/2; i++) {
float tmp = 0.°;
for (int jj=0; jj<4; jj++)
for (int 11=0; 1i1<4; 1i++)
tmp += input[(2%j+jj)*(WIDTH+2) + (2xi+ii)] * weights[jj*3 + ii];
output[j*WIDTH/2 + 1] = tmp;

Stanford C5348K, Spring 2022



Upsample

Via bilinear interpolation of samples from low resolution image

Stanford (S348K, Spring 2022



Upsample

Via bilinear interpolation of samples from low resolution image

float input[WIDTH x HEIGHT];
float output[2xWIDTH * 2*%HEIGHT];

for (int j=0; j<2*HEIGHT; j++) {
for (int 1=0; 1<2xWIDTH; i++) {
int row = j/2;

int col = 1i/2:
float wl = (1%2) ? .75f : .25f:
float w2 = (j%2) ? .75f : .25f;

output[j*2xWIDTH + 1] = wl *x w2 *x input[rowxWIDTH + col] +
(1.0-wl) *x w2 * input[rowxWIDTH + col+l] +
wl % (1-w2) % input[(row+1)*WIDTH + col] +
(1.0-wl)*(1.0-w2) x input[(row+l)*WIDTH + col+1l];

Stanford C5348K, Spring 2022



Gaussian pyramid

Go = image

Each image in pyramid contains increasingly low-pass filtered signal

down() = downsample operation
Stanford (5348K, Spring 2022



Gaussian pyramid

Stanford (5348K, Spring 2022



Gaussian py
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Gaussian pyramid

Stanford (5348K, Spring 2022



Gaussian pyramid

Stanford (5348K, Spring 2022



Gaussian pyramid

Stanford (5348K, Spring 2022



Gaussian pyramid

Stanford (5348K, Spring 2022



Each (increasingly numbered) level in
Laplacian pyramid represents a band
of (increasingly lower) frequency
information in the image

Lo= Go- up(G1)

[Burt and Adelson 83] Stanford (348K, Spring 2022



Laplacian pyramid

Stanford (S348K, Spring 2022



Laplacian pyramid

L= G2- up(Gs)

Question: how do you
reconstruct original image
from its Laplacian pyramid?

Stanford (S348K, Spring 2022



Laplacian pyramid

Lo= Go- up(G1)

Stanford (S348K, Spring 2022



Laplacian pyramid

L1= G- up(Gy)

Stanford (S348K, Spring 2022



Laplacian pyramid

L, = Gz - up(Gs)

Stanford (S348K, Spring 2022



Laplacian pyramid

Stanford (S348K, Spring 2022



Laplacian pyramid

Ls= G4- up(Gs)

Stanford (S348K, Spring 2022



Laplacian pyramid

Stanford (5348K, Spring 2022



Summary

m Gaussian and Laplacian pyramids are image representations where each pixel maintains
information about frequency content in a region of the image

m Gi(x,y) — frequencies up to limit given by /
m Li(x,y) — frequencies added to Gi.1 to get G;

m Notice: to boost the band of frequencies in image around pixel (x,y), increase coefficient
Li(x,y) in Laplacian pyramid

Stanford C5348K, Spring 2022



Use of Laplacian pyramid in tone mapping

m Compute weights for all Laplacian pyramid levels
m Merge pyramids (image features) not image pixels
m Then“flatten” merged pyramid to get final image

Input Images Image - Laplacian Pyramid Weight Map - Gaussian Pyramid

DR, -
g " S v.‘~ y
iF g .
R e Ry g 3 D-
= v

Final Image

Fused Pyramid

Stanford (5348K, Spring 2022



Challenges of merging images

Merged result Merged result

(after blurring weight mask) (based on multi-resolution pyramid merge)
Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?

Stanford (5348K, Spring 2022



Consider low and high exposures of an edge

Low Exposure High Exposure Weight (for Low Exposure) Merged
Laplacian Pyramid Laplacian Pyramid Gaussian Pyramid (after flatten)

clipped

:

. AN
clipped
d itud
e L T
remains on both sides

13 —\\ 13 \/\ G3 —/— ———

/ G4 G4
G4
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Consider low and high exposures of flat image region

Low Exposure High Exposure Weight (for Low Exposure) Merged
Laplacian Pyramid Laplacian Pyramid Gaussian Pyramid (after flatten)
/\/\’\N\WW\/\’\ (using hard weight
/\/\’\N\«NW\/\,\ change as an
example)
W smooth transition
10~ MWW L0 A A GO / despite sharp
weight change
—
11 N — ‘A /
—
L2 L2 ) /
—
13 13 63 _/—
—
G4
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Summary: simplified image processing pipeline

Correct pixel defects
Align and merge (to create high signal to noise ration RAW image)
Correct for sensor bias (using measurements of optically black pixels)
Vignetting compensation
. (10-12 bits per pixel)
White balance 1intensity value per pixel

. Pixel values linear in ener
Demosaic W

Denoise 3 X (10-12) bits per pixel

Gamma Correction (non-linear mapping) RGB intensity per pixel
Pixel values linear in energy

Local tone mapping

Final adjustments sharpen, fix chromatic aberrations, hue adjust, etc. , _
3x8-bits per pixel

Pixel values perceptually linear

Stanford C5348K, Spring 2022



