
Visual Computing Systems
Stanford CS348K, Spring 2022

Lecture 3:

The Camera Image
Processing Pipeline

(part 2)

Stanford CS348K, Spring 2022

Previous class and today…
The pixels you see on screen are quite di!erent than the values recorded by the sensor in a
modern digital camera.

Computation is now a fundamental aspect of producing high-quality pictures.

Computation
Sensor output

(“RAW”)

Beautiful image that impresses your friends
on Instagram

Stanford CS348K, Spring 2022

Summary: simpli"ed image processing pipeline
Correct pixel defects
Align and merge (to create high signal to noise ration RAW image)
Correct for sensor bias (using measurements of optically black pixels)
Vignetting compensation
White balance
Demosaic
Denoise
Gamma Correction (non-linear mapping)
Local tone mapping
Final adjustments sharpen, "x chromatic aberrations, hue adjust, etc.

(10-12 bits per pixel)
1 intensity value per pixel
Pixel values linear in energy

3 x (10-12) bits per pixel
RGB intensity per pixel
Pixel values linear in energy

3x8-bits per pixel
Pixel values perceptually linear

Last time!

Stanford CS348K, Spring 2022

Denoising

Denoised

Original

Stanford CS348K, Spring 2022

Reduce noise via image processing: denoising via downsampling

Downsample via point sampling

(noise remains)

Downsample via averaging
2x2 block of pixels

Noise reduced

Like a smaller number of
bigger pixels!

Stanford CS348K, Spring 2022

Discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image
(the result of convolving f with input image I)

input image"lter

Consider a that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1 i, j 1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “"lter weights”, “"lter kernel”)

Stanford CS348K, Spring 2022

Simple 3x3 box blur in C code
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

For now: ignore boundary pixels and assume output
image is smaller than input (makes convolution loop
bounds much simpler to write)

Stanford CS348K, Spring 2022

7x7 box blur
Original

Blurred

Stanford CS348K, Spring 2022

Gaussian blur
Obtain "lter coe#cients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

▪ Produces weighted sum of neighboring pixels (contribution
falls o! with distance)
- In practice: truncate "lter beyond certain distance for e#ciency

Note: this is a 5x5 truncated Gaussian "lter

Stanford CS348K, Spring 2022

7x7 gaussian blur
Original

Blurred

Stanford CS348K, Spring 2022

3x3 sharpen "lter
Original

Sharpened

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Stanford CS348K, Spring 2022

Median "lter

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 output[j*WIDTH + i] =
 // compute median of pixels
 // in surrounding 5x5 pixel window
 }
}

▪ Replace pixel with median of its neighbors
- Useful noise reduction "lter: unlike gaussian blur, one bright pixel

doesn’t drag up the average for entire region

▪ Not linear: "lter weights are 1 or 0 (depending on image
content)

▪ Basic algorithm for NxN support region:
- Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel
- Can you think of an O(N2) algorithm? What about O(N)?

Stanford CS348K, Spring 2022

Bilateral "lter

Example use of bilateral "lter: removing noise while preserving image edges

Original Processed

Stanford CS348K, Spring 2022

Bilateral "lter

The bilateral "lter is an “edge preserving” "lter: down-weight contribution of pixels on the “other side” of strong edges. f

(x) de"nes what “strong edge means”

Spatial distance weight term f (x) could itself be a gaussian

- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity di!erence. (non-linear "lter: like the
median "lter, the "lter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on di!erence
in input image pixel values

For all pixels in support region
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Wp =
X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Normalization

Stanford CS348K, Spring 2022

Bilateral "lter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral "lter

Stanford CS348K, Spring 2022

Bilateral "lter
Visualization of bilateral "lter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with signi"cantly di!erent intensity
as p contribute little to "ltered result (they
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): In$uence of support region

G x f: "lter weights for pixel p Filtered output image

Stanford CS348K, Spring 2022

Auto Exposure and Tone Mapping

Stanford CS348K, Spring 2022

Global tone mapping
Measured image values (by sensor): 10-12 bits / pixel, but common image formats are 8-bits/pixel
How to convert 12 bit number to 8 bit number?

0

255

212

Allow many pixels to “blow
out” (detail in dark regions)

0

255

212

Allow many pixels to
clamp to black (detail

in bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Green

(a) (b)

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Blue

ï5 ï4 ï3 ï2 ï1 0 1 2
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red (dashed), Green (solid), and Blue (dashïdotted) curves

(c) (d)

Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

7

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Green

(a) (b)

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Blue

ï5 ï4 ï3 ï2 ï1 0 1 2
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red (dashed), Green (solid), and Blue (dashïdotted) curves

(c) (d)

Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

7

input value
ou

tp
ut

 va
lu

e

input value

ou
tp

ut
 va

lu
e

Stanford CS348K, Spring 2022

Global tone mapping

0

255

212
0

255

212

0

255

212
0

255

212

Allow many pixels to “blow
out” (detail in dark regions)

clamp darkest darks and
brightest brights to reserve

resolution in midtowns

low resolution
throughout entire

range

0

255

212

Allow many pixels to
clamp to black (detail

in bright regions)

out(x,y) = f(in(x,y))

input value input value

input valueinput value input value

ou
tp

ut
 va

lu
e

ou
tp

ut
 va

lu
e

ou
tp

ut
 va

lu
e

ou
tp

ut
 va

lu
e

ou
tp

ut
 va

lu
e

Stanford CS348K, Spring 2022

Lightness (perceived brightness) aka luma

Radiance
(energy spectrum

from scene)

∫=Luminance (Y)Lightness (L)
?

Spectral sensitivity of eye
(eye’s response curve)

Dark adapted eye: L* ∝ Y 0.4
Bright adapted eye: L* ∝ Y 0.5

In a dark room, you turn on a light with luminance: Y1

You turn on a second light that is identical to the "rst. Total output is now: Y2 = 2Y1

Total output appears times brighter to dark-adapted human20.4 = 1.319

Note: Lightness (L*) is often referred to as luma (Y’)

(Response of eye)(Perceived by brain)

Stanford CS348K, Spring 2022

Consider an image with pixel values encoding luminance
(linear in energy hitting sensor)

Luminance (Y)

Pe
rce

ive
d b

rig
ht

ne
ss

: L
*

Consider 12-bit sensor pixel:
Can represent 4096 unique luminance values in output image

Values are ~ linear in luminance since they represent the
sensor’s response

L* = Y.45

Stanford CS348K, Spring 2022

Problem: quantization error

Luminance (Y)

Pe
rce

ive
d b

rig
ht

ne
ss

: L
*

Many common image formats store 8 bits per channel (256 unique values)
Insu#cient precision to represent brightness in darker regions of image

Dark regions of image: perceived di!erence between pixels that di!er by one step
in luminance is large!
(quantization error: gradients in luminance will not appear smooth.)

Bright regions of image: perceived di!erence between pixels that di!er by one step
in luminance is small! (human may not even be able to perceive di!erence between
pixels that di!er by one step in luminance!)

L* = Y.45

Rule of thumb: human eye cannot di!erentiate <1% di!erences in luminance

Stanford CS348K, Spring 2022

Store lightness in 8-bit value, not luminance

Luminance (Y)

Pe
rce

ive
d b

rig
ht

ne
ss

: L
*

Solution: pixel stores Y0.45

Must compute (pixel_value)2.2 prior to display on LCD

Idea: distribute representable pixel values evenly with respect to perceived brightness,
not evenly in luminance (make more e#cient use of available bits)

Warning: must take caution with subsequent pixel processing operations
once pixels are encoded in a space that is not linear in luminance.

e.g., When adding images should you add pixel values that are encoded as
lightness or as luminance?

Stanford CS348K, Spring 2022

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from grayY’

Cb

Cr

Image credit: Wikipedia

Conversion matrix from R’G’B’ to Y’CbCr:

“Gamma corrected” RGB
(primed notation indicates
perceptual (non-linear) space)
We’ll describe what this means
this later in the lecture.

Y’CbCr color space
Recall: colors are represented as point in 3-space
RGB is just one possible basis for representing color
Y’CbCr separates luminance from hue in representation

Stanford CS348K, Spring 2022

Local tone mapping
Di!erent regions of the image undergo di!erent tone mapping curves (preserve detail in both
dark and bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

(a) (b) (c)

(d) (e) (f)

Figure 8: (a) An actual photograph, taken with conventional print film at two seconds and scanned to PhotoCD. (b) The high dynamic range
radiance map, displayed by linearly mapping its entire dynamic range into the dynamic range of the display device. (c) The radiance map,
displayed by linearly mapping the lower of its dynamic range to the display device. (d) A false-color image showing relative radiance
values for a grayscale version of the radiance map, indicating that the map contains over five orders of magnitude of useful dynamic range.
(e) A rendering of the radiance map using adaptive histogram compression. (f) A rendering of the radiance map using histogram compression
and also simulating various properties of the human visual system, such as glare, contrast sensitivity, and scotopic retinal response. Images
(e) and (f) were generated by a method described in [23]. Images (d-f) courtesy of Gregory Ward Larson.

8

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Green

(a) (b)

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Blue

ï5 ï4 ï3 ï2 ï1 0 1 2
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red (dashed), Green (solid), and Blue (dashïdotted) curves

(c) (d)

Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

7

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Green

(a) (b)

ï10 ï5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Blue

ï5 ï4 ï3 ï2 ï1 0 1 2
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red (dashed), Green (solid), and Blue (dashïdotted) curves

(c) (d)

Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

7

Stanford CS348K, Spring 2022

Local tone adjustment
Improve picture’s aesthetics by locally adjusting contrast, boosting dark regions, decreasing bright regions
(no physical basis)

Stanford CS348K, Spring 2022

Local tone adjustment

Improve picture’s aesthetics by locally adjusting
contrast, boosting dark regions, decreasing bright
regions
(no physical basis)

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

Weights

Combined image
(unique weights per pixel)

Image credit: Mertens 2007

Pixel values

Short Exposure Medium Exposure Long Exposure

Stanford CS348K, Spring 2022

High exposure image

Stanford CS348K, Spring 2022

High exposure weight

Stanford CS348K, Spring 2022

Low exposure image

Stanford CS348K, Spring 2022

Low exposure weight

Stanford CS348K, Spring 2022

Combined result

Stanford CS348K, Spring 2022

Combined result
Local tone mapping was performed on lightness (luma).

Now I added back in chrominance channels.

Stanford CS348K, Spring 2022

Challenge of merging images

Four exposures (weights not shown)

Merged result (based on weight masks)
Notice heavy “banding” since absolute intensity

of di!erent exposures is di!erent

Merged result
(after blurring weight mask)

Notice “halos” near edges

Stanford CS348K, Spring 2022

Review:
Frequency interpretation of images

Stanford CS348K, Spring 2022

Representing sound as a superposition of frequencies

f1(x) = sin(!x)

f2(x) = sin(2!x)

f4(x) = sin(4!x)

f(x) = f1(x) + 0.75 f2(x) + 0.5 f4(x)

Stanford CS348K, Spring 2022

Audio spectrum analyzer: representing sound as a sum of its
constituent frequencies

Intensity of
low-frequencies (bass)

Image credit: ONYX Apps

Intensity of
high frequencies

Stanford CS348K, Spring 2022

Fourier transform
Convert representation of signal from spatial/temporal domain to frequency domain by
projecting signal into its component frequencies

▪ 2D form:

f(u, v) =

Z Z
f(x, y)e�2⇡i(ux+vy)dxdy

f(⇠) =

Z 1

�1
f(x)e�2⇡ix⇠dx

=

Z 1

�1
f(x)(cos(2⇡⇠x)� isin(2⇡⇠x))dx

Stanford CS348K, Spring 2022

Visualizing the frequency content of images

SpectrumSpatial domain result

Stanford CS348K, Spring 2022

Low frequencies only (smooth gradients)

Spectrum (after low-pass "lter)
All frequencies above cuto! have 0 magnitude

Spatial domain result

Stanford CS348K, Spring 2022

Mid-range frequencies

Spatial domain result Spectrum (after band-pass "lter)

Stanford CS348K, Spring 2022

Mid-range frequencies

Spatial domain result Spectrum (after band-pass "lter)

Stanford CS348K, Spring 2022

High frequencies (edges)

Spatial domain result
(strongest edges)

Spectrum (after high-pass "lter)
All frequencies below threshold

have 0 magnitude

Stanford CS348K, Spring 2022

An image as a sum of its frequency components

+ + +

=

Stanford CS348K, Spring 2022

But what if we wish to localize image edits
both in space and in frequency?

(Adjust certain frequency content of image,
in a particular region of the image)

Stanford CS348K, Spring 2022

Downsample
Step 1: Remove high frequencies (aka blur)
Step 2: Sparsely sample pixels (in this example: every other pixel)

Stanford CS348K, Spring 2022

Downsample
Step 1: Remove high frequencies
Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];

float weights[] = {1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)
 3/64, 9/64, 9/64, 3/64,
 3/64, 9/64, 9/64, 3/64,
 1/64, 3/64, 3/64, 1/64};

for (int j=0; j<HEIGHT/2; j++) {
 for (int i=0; i<WIDTH/2; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<4; jj++)
 for (int ii=0; ii<4; ii++)
 tmp += input[(2*j+jj)*(WIDTH+2) + (2*i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH/2 + i] = tmp;
 }
}

Stanford CS348K, Spring 2022

Upsample
Via bilinear interpolation of samples from low resolution image

Stanford CS348K, Spring 2022

Upsample
Via bilinear interpolation of samples from low resolution image

float input[WIDTH * HEIGHT];
float output[2*WIDTH * 2*HEIGHT];

for (int j=0; j<2*HEIGHT; j++) {
 for (int i=0; i<2*WIDTH; i++) {
 int row = j/2;
 int col = i/2;
 float w1 = (i%2) ? .75f : .25f;
 float w2 = (j%2) ? .75f : .25f;

 output[j*2*WIDTH + i] = w1 * w2 * input[row*WIDTH + col] +
 (1.0-w1) * w2 * input[row*WIDTH + col+1] +
 w1 * (1-w2) * input[(row+1)*WIDTH + col] +
 (1.0-w1)*(1.0-w2) * input[(row+1)*WIDTH + col+1];
 }
}

Stanford CS348K, Spring 2022

Gaussian pyramid

G0 = image

G1 = down(G0)

G2 = down(G1)

Each image in pyramid contains increasingly low-pass "ltered signal

down() = downsample operation

Stanford CS348K, Spring 2022

Gaussian pyramid

G0

Stanford CS348K, Spring 2022

Gaussian pyramid

G1

Stanford CS348K, Spring 2022

G2

Gaussian pyramid

Stanford CS348K, Spring 2022

Gaussian pyramid

G3

Stanford CS348K, Spring 2022

Gaussian pyramid

G4

Stanford CS348K, Spring 2022

Gaussian pyramid

G5

Stanford CS348K, Spring 2022

Laplacian pyramid

G0

G1 = down(G0)

L0 = G0 - up(G1)
[Burt and Adelson 83]

Each (increasingly numbered) level in
Laplacian pyramid represents a band
of (increasingly lower) frequency
information in the image

Stanford CS348K, Spring 2022

Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

Stanford CS348K, Spring 2022

Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

L2 = G2 - up(G3)

L3 = G3 - up(G4)
L4 = G4

Question: how do you
reconstruct original image
from its Laplacian pyramid?

Stanford CS348K, Spring 2022

L0 = G0 - up(G1)

Laplacian pyramid

Stanford CS348K, Spring 2022

L1 = G1 - up(G2)

Laplacian pyramid

Stanford CS348K, Spring 2022

L2 = G2 - up(G3)

Laplacian pyramid

Stanford CS348K, Spring 2022

L3 = G3 - up(G4)

Laplacian pyramid

Stanford CS348K, Spring 2022

L4 = G4 - up(G5)

Laplacian pyramid

Stanford CS348K, Spring 2022

L5 = G5

Laplacian pyramid

Stanford CS348K, Spring 2022

Summary
Gaussian and Laplacian pyramids are image representations where each pixel maintains
information about frequency content in a region of the image

Gi(x,y) — frequencies up to limit given by i

Li(x,y) — frequencies added to Gi+1 to get Gi

Notice: to boost the band of frequencies in image around pixel (x,y), increase coe#cient
Li(x,y) in Laplacian pyramid

Stanford CS348K, Spring 2022

Use of Laplacian pyramid in tone mapping
Compute weights for all Laplacian pyramid levels
Merge pyramids (image features) not image pixels
Then “$atten” merged pyramid to get "nal image

Stanford CS348K, Spring 2022

Challenges of merging images

Four exposures (weights not shown)

Merged result
(based on multi-resolution pyramid merge)

Merged result
(after blurring weight mask)

Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?

Stanford CS348K, Spring 2022

Consider low and high exposures of an edge
Low Exposure

Laplacian Pyramid
High Exposure

Laplacian Pyramid
Weight (for Low Exposure)

Gaussian Pyramid
Merged

(after $atten)

L3

G4

L2

L1

L0

L3

L2

L1

L0

G4 G4

G3

G2

G1

G0

clipped

clipped

edge magnitude
reduced, but detail

remains on both sides

Stanford CS348K, Spring 2022

Consider low and high exposures of $at image region
Low Exposure

Laplacian Pyramid
High Exposure

Laplacian Pyramid
Weight (for Low Exposure)

Gaussian Pyramid
Merged

(after $atten)

L3

G4

L2

L1

L0

L3

L2

L1

L0

G4 G4

G3

G2

G1

G0
smooth transition

despite sharp
weight change

(using hard weight
change as an

example)

Stanford CS348K, Spring 2022

Summary: simpli"ed image processing pipeline
Correct pixel defects
Align and merge (to create high signal to noise ration RAW image)
Correct for sensor bias (using measurements of optically black pixels)
Vignetting compensation
White balance
Demosaic
Denoise
Gamma Correction (non-linear mapping)
Local tone mapping
Final adjustments sharpen, "x chromatic aberrations, hue adjust, etc.

(10-12 bits per pixel)
1 intensity value per pixel
Pixel values linear in energy

3 x (10-12) bits per pixel
RGB intensity per pixel
Pixel values linear in energy

3x8-bits per pixel
Pixel values perceptually linear

