Lecture 3:
The Camera Image Processing Pipeline (part 2)

Visual Computing Systems
Stanford CS348K, Spring 2022
The pixels you see on screen are quite different than the values recorded by the sensor in a modern digital camera.

Computation is now a fundamental aspect of producing high-quality pictures.
Summary: simplified image processing pipeline

- Correct pixel defects
- Align and merge (to create high signal to noise ratio RAW image)
- Correct for sensor bias (using measurements of optically black pixels)
- Vignetting compensation
- White balance
- Demosaic

Last time!

(10-12 bits per pixel)
1 intensity value per pixel
Pixel values linear in energy

- Denoise
- Gamma Correction (non-linear mapping)
- Local tone mapping

3 x (10-12) bits per pixel
RGB intensity per pixel
Pixel values linear in energy

- Final adjustments sharpen, fix chromatic aberrations, hue adjust, etc.

3x8-bits per pixel
Pixel values perceptually linear
Denoising
Reduce noise via image processing: denoising via downsampling

- **Downsample via point sampling**: (noise remains)
- **Downsample via averaging**: 2x2 block of pixels
 - Noise reduced
 - Like a smaller number of bigger pixels!
Discrete 2D convolution

$$(f \ast I)(x, y) = \sum_{i,j=-\infty}^{\infty} f(i, j)I(x-i, y-j)$$

(output image)

Consider a $f(i, j)$ that is nonzero only when: $-1 \leq i, j \leq 1$

Then:

$$(f \ast g)(x, y) = \sum_{i,j=-1}^{1} f(i, j)I(x-i, y-j)$$

And we can represent $f(i,j)$ as a 3x3 matrix of values where:

$$f(i, j) = F_{i,j}$$

(often called: “filter weights”, “filter kernel”)
Simple 3x3 box blur in C code

```c
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
                   1./9, 1./9, 1./9,
                   1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
    for (int i=0; i<WIDTH; i++) {
        float tmp = 0.f;
        for (int jj=0; jj<3; jj++)
            for (int ii=0; ii<3; ii++)
                tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
        output[j*WIDTH + i] = tmp;
    }
}
```

For now: ignore boundary pixels and assume output image is smaller than input (makes convolution loop bounds much simpler to write)
7x7 box blur

Original

Blurred
Gaussian blur

- Obtain filter coefficients from sampling 2D Gaussian

\[f(i, j) = \frac{1}{2\pi\sigma^2} e^{-\frac{i^2 + j^2}{2\sigma^2}} \]

- Produces weighted sum of neighboring pixels (contribution falls off with distance)

 - In practice: truncate filter beyond certain distance for efficiency

Note: this is a 5x5 truncated Gaussian filter
7x7 gaussian blur

Original

Blurred
3x3 sharpen filter

Original

Sharpened

\[
\begin{bmatrix}
0 & -1 & 0 \\
-1 & 5 & -1 \\
0 & -1 & 0 \\
\end{bmatrix}
\]
Median filter

- Replace pixel with median of its neighbors
 - Useful noise reduction filter: unlike gaussian blur, one bright pixel doesn’t drag up the average for entire region

- Not linear: filter weights are 1 or 0 (depending on image content)

```
uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++) {
  for (int i=0; i<WIDTH; i++) {
    output[j*WIDTH + i] =
      // compute median of pixels
      // in surrounding 5x5 pixel window
  }
}
```

- Basic algorithm for NxN support region:
 - Sort N^2 elements in support region, then pick median: $O(N^2\log(N^2))$ work per pixel
 - Can you think of an $O(N^2)$ algorithm? What about $O(N)$?
Bilateral filter

Example use of bilateral filter: removing noise while preserving image edges
Bilateral filter

\[
BF[I](p) = \frac{1}{W_p} \sum_{i,j} f(|I(x - i, y - j) - I(x, y)|) G_\sigma(i, j) I(x - i, y - j)
\]

- The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels on the “other side” of strong edges. \(f(x) \) defines what “strong edge means”
- Spatial distance weight term \(f(x) \) could itself be a gaussian
 - Or very simple: \(f(x) = 0 \) if \(x > \text{threshold} \), 1 otherwise

Value of output pixel \((x,y)\) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference. (non-linear filter: like the median filter, the filter’s weights depend on input image content)
Bilateral filter: kernel depends on image content

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.
Bilateral filter

- Visualization of bilateral filter

Pixels with significantly different intensity as \(p \) contribute little to filtered result (they are “on the “other side of the edge”)

Input image

\(G() \): gaussian about input pixel \(p \)

\(f() \): Influence of support region

\(G \times f \): filter weights for pixel \(p \)

Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002
Auto Exposure and Tone Mapping
Global tone mapping

- Measured image values (by sensor): 10-12 bits / pixel, but common image formats are 8-bits/pixel
- How to convert 12 bit number to 8 bit number?

- Allow many pixels to “blow out” (detail in dark regions)
- Allow many pixels to clamp to black (detail in bright regions)
Global tone mapping

\[\text{out}(x,y) = f(\text{in}(x,y)) \]

- **Low resolution throughout entire range**
- **Allow many pixels to “blow out” (detail in dark regions)**
- **Allow many pixels to clamp to black (detail in bright regions)**
- **Clamp darkest darks and brightest brights to reserve resolution in midtens**
Lightness (perceived brightness) aka luma

Lightness (L^*) \(\overset{?}{\rightarrow}\) Luminance (Y) = \(\int \, \lambda \) \(\ast\) Spectral sensitivity of eye (eye's response curve) Radiance (energy spectrum from scene)

Dark adapted eye: \(L^* \propto Y^{0.4}\)

Bright adapted eye: \(L^* \propto Y^{0.5}\)

In a dark room, you turn on a light with luminance: \(Y_1\)
You turn on a second light that is identical to the first. Total output is now: \(Y_2 = 2Y_1\)

Total output appears \(2^{0.4} = 1.319\) times brighter to dark-adapted human

Note: Lightness (L^*) is often referred to as luma (Y')
Consider an image with pixel values encoding luminance (linear in energy hitting sensor)

Luminance (Y)

Perceived brightness: \(L^* \)

Consider 12-bit sensor pixel:
Can represent 4096 unique luminance values in output image

Values are \(\sim \) linear in luminance since they represent the sensor’s response
Problem: quantization error

Many common image formats store 8 bits per channel (256 unique values)

Insufficient precision to represent brightness in darker regions of image

Luminance (Y)

L* = Y^0.45

Bright regions of image: perceived difference between pixels that differ by one step in luminance is small! (human may not even be able to perceive difference between pixels that differ by one step in luminance!)

Dark regions of image: perceived difference between pixels that differ by one step in luminance is large! (quantization error: gradients in luminance will not appear smooth.)

Rule of thumb: human eye cannot differentiate <1% differences in luminance
Store lightness in 8-bit value, not luminance

Idea: distribute representable pixel values evenly with respect to perceived brightness, not evenly in luminance (make more efficient use of available bits)

Solution: pixel stores $Y^{0.45}$

Must compute $(pixel_value)^{2.2}$ prior to display on LCD

Warning: must take caution with subsequent pixel processing operations once pixels are encoded in a space that is not linear in luminance.

e.g., When adding images should you add pixel values that are encoded as lightness or as luminance?
Y’CbCr color space

Recall: colors are represented as point in 3-space
RGB is just one possible basis for representing color
Y’CbCr separates luminance from hue in representation

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from gray

Conversion matrix from R’G’B’ to Y’CbCr:

\[
\begin{align*}
Y' &= 16 + \frac{65.738 \cdot R_D'}{256} + \frac{129.057 \cdot G_D'}{256} + \frac{25.064 \cdot B_D'}{256} \\
C_B &= 128 + \frac{-37.945 \cdot R_D'}{256} - \frac{74.494 \cdot G_D'}{256} + \frac{112.439 \cdot B_D'}{256} \\
C_R &= 128 + \frac{112.439 \cdot R_D'}{256} - \frac{94.144 \cdot G_D'}{256} + \frac{18.285 \cdot B_D'}{256}
\end{align*}
\]

“Gamma corrected” RGB (primed notation indicates perceptual (non-linear) space)
We’ll describe what this means this later in the lecture.

Local tone mapping

- Different regions of the image undergo different tone mapping curves (preserve detail in both dark and bright regions)
Local tone adjustment

Improve picture’s aesthetics by locally adjusting contrast, boosting dark regions, decreasing bright regions (no physical basis)
Local tone adjustment

Improve picture’s aesthetics by locally adjusting contrast, boosting dark regions, decreasing bright regions (no physical basis)
High exposure weight
Low exposure weight
Combined result

Local tone mapping was performed on lightness (luma).
Now I added back in chrominance channels.
Challenge of merging images

Four exposures (weights not shown)

Merged result (based on weight masks)
Notice heavy “banding” since absolute intensity of different exposures is different

Merged result (after blurring weight mask)
Notice “halos” near edges
Review:
Frequency interpretation of images
Representing sound as a superposition of frequencies

\[f_1(x) = \sin(\pi x) \]
\[f_2(x) = \sin(2\pi x) \]
\[f_4(x) = \sin(4\pi x) \]
\[f(x) = f_1(x) + 0.75 f_2(x) + 0.5 f_4(x) \]
Audio spectrum analyzer: representing sound as a sum of its constituent frequencies

Intensity of low-frequencies (bass)

Intensity of high frequencies

Image credit: ONYX Apps
Fourier transform

- Convert representation of signal from spatial/temporal domain to frequency domain by projecting signal into its component frequencies

\[
\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} \, dx
\]

\[
= \int_{-\infty}^{\infty} f(x) (\cos(2\pi \xi x) - i \sin(2\pi \xi x)) \, dx
\]

- 2D form:

\[
f(u, v) = \int \int f(x, y) e^{-2\pi i (ux+vy)} \, dx \, dy
\]
Visualizing the frequency content of images

Spatial domain result

Spectrum
Low frequencies only (smooth gradients)

Spatial domain result

Spectrum (after low-pass filter)
All frequencies above cutoff have 0 magnitude
Mid-range frequencies

Spatial domain result

Spectrum (after band-pass filter)
Mid-range frequencies

Spatial domain result

Spectrum (after band-pass filter)
High frequencies (edges)

Spatial domain result (strongest edges)

Spectrum (after high-pass filter)
All frequencies below threshold have 0 magnitude
An image as a sum of its frequency components
But what if we wish to localize image edits both in space and in frequency?

(Adjust certain frequency content of image, in a particular region of the image)
Downsample

- Step 1: Remove high frequencies (aka blur)
- Step 2: Sparsely sample pixels (in this example: every other pixel)
Downsample

- Step 1: Remove high frequencies
- Step 2: Sparsely sample pixels (in this example: every other pixel)

```c
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];

float weights[] = {1/64, 3/64, 3/64, 1/64,       // 4x4 blur (approx Gaussian)
                  3/64, 9/64, 9/64, 3/64,
                  3/64, 9/64, 9/64, 3/64,
                  1/64, 3/64, 3/64, 1/64};

for (int j=0; j<HEIGHT/2; j++) {
    for (int i=0; i<WIDTH/2; i++) {
        float tmp = 0.f;
        for (int jj=0; jj<4; jj++)
            for (int ii=0; ii<4; ii++)
                tmp += input[(2*j+jj)*(WIDTH+2) + (2*i+ii)] * weights[jj*3 + ii];
        output[j*WIDTH/2 + i] = tmp;
    }
}
```
Upsample

Via bilinear interpolation of samples from low resolution image
Upsample

Via bilinear interpolation of samples from low resolution image

```c
float input[WIDTH * HEIGHT];
float output[2*WIDTH * 2*HEIGHT];

for (int j=0; j<2*HEIGHT; j++) {
    for (int i=0; i<2*WIDTH; i++) {
        int row = j/2;
        int col = i/2;
        float w1 = (i%2) ? .75f : .25f;
        float w2 = (j%2) ? .75f : .25f;

        output[j*2*WIDTH + i] = w1 * w2 * input[row*WIDTH + col] +
                               (1.0-w1) * w2 * input[row*WIDTH + col+1] +
                               w1 * (1-w2) * input[(row+1)*WIDTH + col] +
                               (1.0-w1)*(1.0-w2) * input[(row+1)*WIDTH + col+1];
    }
}
```
Gaussian pyramid

$G_0 = \text{image}$

Each image in pyramid contains increasingly low-pass filtered signal

$G_1 = \text{down}(G_0)$

$G_2 = \text{down}(G_1)$

$\text{down}() = \text{downsample operation}$
Gaussian pyramid

G_0
Gaussian pyramid

G_1
Gaussian pyramid

G_2
Gaussian pyramid

G_3
Gaussian pyramid

G₄
Gaussian pyramid

G_5
Laplacian pyramid

Each (increasingly numbered) level in Laplacian pyramid represents a band of (increasingly lower) frequency information in the image.

\[L_0 = G_0 - \text{up}(G_1) \]

[Burt and Adelson 83]

\[G_1 = \text{down}(G_0) \]
Laplacian pyramid

\[L_0 = G_0 - \text{up}(G_1) \]

\[L_1 = G_1 - \text{up}(G_2) \]
Laplacian pyramid

$L_0 = G_0 - \text{up}(G_1)$

$L_1 = G_1 - \text{up}(G_2)$

$L_2 = G_2 - \text{up}(G_3)$

$L_3 = G_3 - \text{up}(G_4)$

$L_4 = G_4$

Question: how do you reconstruct original image from its Laplacian pyramid?
Laplacean pyramid

\[L_0 = G_0 - up(G_1) \]
Laplacian pyramid

\[L_1 = G_1 - \text{up}(G_2) \]
Laplacian pyramid

\[L_2 = G_2 - \text{up}(G_3) \]
Laplacian pyramid

\[L_3 = G_3 - \text{up}(G_4) \]
Laplacian pyramid

\[L_4 = G_4 - \text{up}(G_5) \]
Laplacian pyramid

$L_5 = G_5$
Summary

- Gaussian and Laplacian pyramids are image representations where each pixel maintains information about frequency content in a region of the image.

- $G_i(x,y)$ — frequencies up to limit given by i.

- $L_i(x,y)$ — frequencies added to G_{i+1} to get G_i.

- Notice: to boost the band of frequencies in image around pixel (x,y), increase coefficient $L_i(x,y)$ in Laplacian pyramid.
Use of Laplacian pyramid in tone mapping

- Compute weights for all Laplacian pyramid levels
- Merge pyramids (image features) not image pixels
- Then “flatten” merged pyramid to get final image
Challenges of merging images

Four exposures (weights not shown)

Merged result (after blurring weight mask)
Notice "halos" near edges

Merged result (based on multi-resolution pyramid merge)

Why does merging Laplacian pyramids work better than merging image pixels?
Consider low and high exposures of an edge

<table>
<thead>
<tr>
<th>Low Exposure Laplacian Pyramid</th>
<th>High Exposure Laplacian Pyramid</th>
<th>Weight (for Low Exposure) Gaussian Pyramid</th>
<th>Merged (after flatten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>clipped</td>
<td>clipped</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G4</td>
<td>G4</td>
<td>G4</td>
<td>edge magnitude reduced, but detail remains on both sides</td>
</tr>
</tbody>
</table>

- L0
- L1
- L2
- L3
- G0
- G1
- G2
- G3
- G4
Consider low and high exposures of flat image region

<table>
<thead>
<tr>
<th>Low Exposure Laplacian Pyramid</th>
<th>High Exposure Laplacian Pyramid</th>
<th>Weight (for Low Exposure) Gaussian Pyramid</th>
<th>Merged (after flatten)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

smooth transition despite sharp weight change

(Using hard weight change as an example)
Summary: simplified image processing pipeline

- Correct pixel defects
- Align and merge (to create high signal to noise ratio RAW image)
- Correct for sensor bias (using measurements of optically black pixels)
- Vignetting compensation
- White balance
- Demosaic

Notes:
- (10-12 bits per pixel)
- 1 intensity value per pixel
- Pixel values linear in energy

- Denoise
- Gamma Correction (non-linear mapping)
- Local tone mapping

Notes:
- 3 x (10-12) bits per pixel
- RGB intensity per pixel
- Pixel values linear in energy

- Final adjustments sharpen, fix chromatic aberrations, hue adjust, etc.

Notes:
- 3x8-bits per pixel
- Pixel values perceptually linear