
Visual Computing Systems
Stanford CS348K, Spring 2022

Lecture 4:

Frankencamera +
Finishing up the Camera Pipeline

Stanford CS348K, Spring 2022

Local tone adjustment

Improve picture’s aesthetics by locally adjusting
contrast, boosting dark regions, decreasing bright
regions
(no physical basis)

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

Weights

Combined image
(unique weights per pixel)

Image credit: Mertens 2007

Pixel values

Short Exposure Medium Exposure Long Exposure

Stanford CS348K, Spring 2022

Challenge of merging images

Four exposures (weights not shown)

Merged result (based on weight masks)
Notice heavy “banding” since absolute intensity

of di!erent exposures is di!erent

Merged result
(after blurring weight mask)

Notice “halos” near edges

Stanford CS348K, Spring 2022

Gaussian pyramid

G0 = image

G1 = down(G0)

G2 = down(G1)

Each image in pyramid contains increasingly low-pass "ltered signal

down() = downsample operation

Stanford CS348K, Spring 2022

Gaussian pyramid

G0

Stanford CS348K, Spring 2022

Gaussian pyramid

G1

Stanford CS348K, Spring 2022

G2

Gaussian pyramid

Stanford CS348K, Spring 2022

Gaussian pyramid

G3

Stanford CS348K, Spring 2022

Gaussian pyramid

G4

Stanford CS348K, Spring 2022

Gaussian pyramid

G5

Stanford CS348K, Spring 2022

Laplacian pyramid

G0

G1 = down(G0)

L0 = G0 - up(G1)
[Burt and Adelson 83]

Each (increasingly numbered) level in
Laplacian pyramid represents a band
of (increasingly lower) frequency
information in the image

Stanford CS348K, Spring 2022

Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

Stanford CS348K, Spring 2022

Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

L2 = G2 - up(G3)

L3 = G3 - up(G4)
L4 = G4

Question: how do you
reconstruct original image
from its Laplacian pyramid?

Stanford CS348K, Spring 2022

L0 = G0 - up(G1)

Laplacian pyramid

Stanford CS348K, Spring 2022

L1 = G1 - up(G2)

Laplacian pyramid

Stanford CS348K, Spring 2022

L2 = G2 - up(G3)

Laplacian pyramid

Stanford CS348K, Spring 2022

L3 = G3 - up(G4)

Laplacian pyramid

Stanford CS348K, Spring 2022

L4 = G4 - up(G5)

Laplacian pyramid

Stanford CS348K, Spring 2022

L5 = G5

Laplacian pyramid

Stanford CS348K, Spring 2022

Summary
Gaussian and Laplacian pyramids are image representations where each pixel maintains
information about frequency content in a region of the image

Gi(x,y) — frequencies up to limit given by i

Li(x,y) — frequencies added to Gi+1 to get Gi

Notice: to boost the band of frequencies in image around pixel (x,y), increase coe#cient
Li(x,y) in Laplacian pyramid

Stanford CS348K, Spring 2022

Use of Laplacian pyramid in tone mapping
Compute weights for all Laplacian pyramid levels
Merge pyramids (image features) not image pixels
Then “$atten” merged pyramid to get "nal image

Stanford CS348K, Spring 2022

Challenges of merging images

Four exposures (weights not shown)

Merged result
(based on multi-resolution pyramid merge)

Merged result
(after blurring weight mask)

Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?

Stanford CS348K, Spring 2022

Consider low and high exposures of an edge
Low Exposure

Laplacian Pyramid
High Exposure

Laplacian Pyramid
Weight (for Low Exposure)

Gaussian Pyramid
Merged

(after $atten)

L3

G4

L2

L1

L0

L3

L2

L1

L0

G4 G4

G3

G2

G1

G0

clipped

clipped

edge magnitude
reduced, but detail

remains on both sides

Stanford CS348K, Spring 2022

Frankencamera
(Discussion)

Stanford CS348K, Spring 2022

Choosing the “right” representation for the job
Good representations are productive to use:
- They embody the natural way of thinking about a problem

Good representations enable the system to provide the application developer useful
services:
- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities, type

checking)
- Performance optimizations (parallelization, vectorization, use of specialized hardware)
- Implementations of common, di#cult-to-implement functionality (texture mapping and rasterization in

3D graphics, auto-di!erentiation in ML frameworks)

Stanford CS348K, Spring 2022

Frankencamera: some 2010 context
Cameras: becoming increasingly cheap and ubiquitous
Signi"cant processing capability available on cameras
Many techniques for combining multiple photos to overcome de"ciencies of traditional camera
systems

Stanford CS348K, Spring 2022

Multi-shot photography example:
high dynamic range (HDR) images

Source photographs: each photograph has di!erent exposure Tone mapped HDR image

Credit: Debevec and Malik

Stanford CS348K, Spring 2022

More multi-shot photography examples

Flash-no-$ash photography [Eisemann and Durand]
(use $ash image for sharp, colored image, infer room lighting from no-$ash image)

“Lucky” imaging

Take several photos in rapid succession:
likely to "nd one without camera shake

Stanford CS348K, Spring 2022

More multi-shot photography examples
Panorama capture

Stanford CS348K, Spring 2022

Frankencamera: some 2010 context
Cameras are cheap and ubiquitous
Signi"cant processing capability available on cameras
Many emerging techniques for combining multiple photos to overcome de"ciencies in
traditional camera systems

Problem: the ability to implement multi-shot techniques on cameras was limited by camera
system programming abstractions
- Programmable interface to camera was very basic

- In$uenced by physical button interface to a point-and-shoot camera:
- take_photograph(parameters, output_jpg_buffer)

- Result: on most implementations, latency between two photos was high, mitigating utility of multi-shot
techniques (large scene movement, camera shake, between shots)

Stanford CS348K, Spring 2022

Frankencamera goals
1. Create open, handheld computational camera platform for researchers

2. De"ne system architecture for computational photography applications
- Motivated by impact of OpenGL on graphics application and graphics hardware development (portable apps despite

highly optimized GPU implementations)
- Motivated by proliferation of smart-phone apps

Nokia N900 Smartphone ImplementationF2 Reference Implementation

[Adams et al. 2010]

Note: Apple was not involved in
Frankencamera’s industrial design. ;-)

Stanford CS348K, Spring 2022

F-cam scope
F-cam provides a set of abstractions that allow for manipulating con"gurable camera
components
- Timeline-based speci"cation of actions

- Feed-forward system: no feedback loops

F-cam architecture performs image processing, but...
- This functionality as presented by the architecture is not programmable

- Hence, F-cam does not provide an image processing language (it’s like "xed-function OpenGL)

- Other than work performed by the image processing stage, F-cam applications perform their own image processing
(e.g., on smartphone/camera’s CPU or GPU resources)

Stanford CS348K, Spring 2022

Android Camera2 API
Take a look at the documentation of the Android Camera2 API, and you’ll see in$uence of
F-Cam.

Stanford CS348K, Spring 2022

Auto Focus

Stanford CS348K, Spring 2022

Pinhole camera (no lens)

Sensor plane: (X,Y)

Pixel P1

Pixel P2

Pinhole

Scene object 2

Scene object 1

Pinhole

Stanford CS348K, Spring 2022

What does a lens do?

Scene
focal planeCamera’s

"eld of view

A lens refracts light.

Camera with lens: every pixel accumulates all
rays of light that pass through lens aperture and
refract toward that pixel

In-focus camera: all rays of light from a point in
the scene arrive at a point on sensor plane

Sensor plane: (X,Y)

Pixel P1

Pixel P2

Lens

Scene
object 2

Scene
object 1

Stanford CS348K, Spring 2022

Out of focus camera

Circle of
confusion

Previous sensor
plane location

Out of focus camera: rays of light from one point
in scene do not converge to the same point on
the sensor

Sensor plane
(X,Y)

Lens

Scene
object 2

Scene
object 1

Stanford CS348K, Spring 2022

What does a lens do?

Sensor plane: (X,Y)
Pixel P1 Pixel P2

Pinhole

Scene object 2Scene object 1

Recall: pinhole camera you may have made in
science class
(every pixel measures ray of light passing
through pinhole and arriving at pixel)

Pinhole

Stanford CS348K, Spring 2022

Bokeh

Stanford CS348K, Spring 2022

Sharp foreground,
defocused background

Common technique to emphasize
subject in a photo

Stanford CS348K, Spring 2022

Cell phone camera lens(es)
(small aperture)

Stanford CS348K, Spring 2022

Synthetic Depth-of-Field with a Single-Camera Mobile Phone

NEALWADHWA, RAHULGARG, DAVID E. JACOBS, BRYAN E. FELDMAN, NORI KANAZAWA, ROBERT
CARROLL, YAIR MOVSHOVITZ-ATTIAS, JONATHAN T. BARRON, YAEL PRITCH, and MARC LEVOY,
Google Research

(a) Input image with detected face (d) Our output synthetic shallow depth-of-!eld image

(b) Person segmentation mask

(c) Mask + disparity from DP

Fig. 1. We present a system that uses a person segmentation mask (b) and a noisy depth map computed using the camera’s dual-pixel (DP) auto-focus
hardware (c) to produce a synthetic shallow depth-of-field image (d) with a depth-dependent blur on a mobile phone. Our system is marketed as “Portrait
Mode” on several Google-branded phones.

Shallow depth-of-�eld is commonly used by photographers to isolate a sub-
ject from a distracting background. However, standard cell phone cameras
cannot produce such images optically, as their short focal lengths and small
apertures capture nearly all-in-focus images. We present a system to com-
putationally synthesize shallow depth-of-�eld images with a single mobile
camera and a single button press. If the image is of a person, we use a person
segmentation network to separate the person and their accessories from the
background. If available, we also use dense dual-pixel auto-focus hardware,
e�ectively a 2-sample light �eld with an approximately 1millimeter baseline,
to compute a dense depth map. These two signals are combined and used to
render a defocused image. Our system can process a 5.4 megapixel image in
4 seconds on a mobile phone, is fully automatic, and is robust enough to be
used by non-experts. The modular nature of our system allows it to degrade
naturally in the absence of a dual-pixel sensor or a human subject.

CCS Concepts: • Computing methodologies → Computational pho-
tography; Image processing;

Additional Key Words and Phrases: depth-of-�eld, defocus, stereo, segmen-
tation

Authors’ address: Neal Wadhwa; Rahul Garg; David E. Jacobs; Bryan E. Feldman; Nori
Kanazawa; Robert Carroll; Yair Movshovitz-Attias; Jonathan T. Barron; Yael Pritch;
Marc Levoy Google Research, 1600 Amphitheater Parkway, Mountain View, CA, 94043.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
0730-0301/2018/8-ART64
https://doi.org/10.1145/3197517.3201329

ACM Reference Format:
NealWadhwa, Rahul Garg, David E. Jacobs, Bryan E. Feldman, Nori Kanazawa,
Robert Carroll, Yair Movshovitz-Attias, Jonathan T. Barron, Yael Pritch,
and Marc Levoy. 2018. Synthetic Depth-of-Field with a Single-Camera Mo-
bile Phone. ACM Trans. Graph. 37, 4, Article 64 (August 2018), 13 pages.
https://doi.org/10.1145/3197517.3201329

1 INTRODUCTION
Depth-of-�eld is an important aesthetic quality of photographs. It
refers to the range of depths in a scene that are imaged sharply in
focus. This range is determined primarily by the aperture of the
capturing camera’s lens: a wide aperture produces a shallow (small)
depth-of-�eld, while a narrow aperture produces a wide (large)
depth-of-�eld. Professional photographers frequently use depth-of-
�eld as a compositional tool. In portraiture, for instance, a strong
background blur and shallow depth-of-�eld allows the photographer
to isolate a subject from a cluttered, distracting background. The
hardware used by DSLR-style cameras to accomplish this e�ect also
makes these cameras expensive, inconvenient, and often di�cult
to use. Therefore, the compelling images they produce are largely
limited to professionals. Mobile phone cameras are ubiquitous, but
their lenses have apertures too small to produce the same kinds of
images optically.

Recently, mobile phone manufacturers have started computation-
ally producing shallow depth-of-�eld images. The most common
technique is to include two cameras instead of one and to apply
stereo algorithms to captured image pairs to compute a depth map.
One of the images is then blurred according to this depthmap. How-
ever, adding a second camera raises manufacturing costs, increases

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

ar
X

iv
:1

80
6.

04
17

1v
1

 [c
s.C

V
]

11
 Ju

n
20

18
Portrait mode in modern smartphones

Smart phone cameras have small apertures
- Good: thin. lightweight lenses, often fast focus
- Bad: cannot physically create aesthetically please photographs with nice bokeh, blurred background

Answer: simulate behavior of large aperture lens (hallucinate image formed by large aperture lens)

Input image /w detected face

Segmentation

Scene Depth
Estimate

Generated image
(note blurred background.
Blur increases with depth)

Image credit: [Wadha 2018]

Stanford CS348K, Spring 2022

What part of image should be in focus?

Image credit: DPReview:
https://www.dpreview.com/articles/9174241280/con"guring-your-5d-mark-iii-af-for-fast-action

Heuristics:
Focus on closest scene region
Put center of image in focus
Detect faces and focus on closest/largest face

Stanford CS348K, Spring 2022

Split pixel sensor

Now two pixels under each microlens (not one)

Image credit: Nikon

When both pixels have the same response,
camera is in focus, why?

Stanford CS348K, Spring 2022

Additional sensing devices and modalities
Apple’s TrueDepth camera
(infrared dots projected by phone,
captured by infrared camera)

Multiple RGB cameras

Stanford CS348K, Spring 2022

Additional sensing modalities

iPhone Xr depth estimate
with lights ON in room

iPhone Xr depth estimate
with lights OFF in room

(No help from RGB)

Fuse information from all modalities to obtain best estimate of depth

Image credit: https://blog.halide.cam/iphone-xr-a-deep-dive-into-depth-47d36ae69a81

Stanford CS348K, Spring 2022

Summary

Stanford CS348K, Spring 2022

Summary

Computation
Sensor output

(“RAW”)

Beautiful image that
impresses your friends

on Instagram

Computation now a fundamental part of producing a pleasing photograph
Used to compensate for physical constraints (demosaic, denoise, lens corrections)
Used to analyze image to guess system parameters (focus, exposure), or scene contents (white balance, portrait
mode)
Used to make non-physically plausible images that have aesthetic merit

Stanford CS348K, Spring 2022

Image processing workload characteristics
“Pointwise" operations
- output_pixel = f(input_pixel)

“Stencil” computations (e.g., convolution, demosaic, etc.)
- Output pixel (x,y) depends on "xed-size local region of input around (x,y)
Lookup tables
- e.g., contrast s-curve

Multi-resolution operations (upsampling/downsampling)
Fast-fourier transform
- We didn’t talk about Fourier domain techniques in class (but Hasino! 16 reading has many examples)

Long pipelines of these operations

Upcoming classes: e#ciently mapping these
workloads to modern processors

Stanford CS348K, Spring 2022

Abstractions for authoring image processing pipelines

Stanford CS348K, Spring 2022

Reminder: choosing the “right” representation for the job
This was the theme of our Frankencamera discussion

Good representations are productive to use:
- They embody the natural way of thinking about a problem

Good representations enable the system to provide the application developer useful
services:
- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,

type checking)
- Performance optimizations (parallelization, vectorization, use of specialized hardware)
- Implementations of common, di#cult-to-implement functionality (texture mapping and

rasterization in 3D graphics, auto-di!erentiation in ML frameworks)

Stanford CS348K, Spring 2022

Goals
Expressive: facilitate intuitive expression of a broad class of image processing applications
- e.g., all the components of a modern camera RAW pipeline

High performance: want to generate code that e#ciently utilizes the multi-core and SIMD
processing resources of modern CPUs and GPUs, and is memory bandwidth e#cient

Stanford CS348K, Spring 2022

What does this code do? !"#$
mystery output

output

I’ll tell you next class.

Stanford CS348K, Spring 2022

Consider a single task: sharpen an image
Example: sharpen an image

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5F=

Input Output

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {0., -1., 0.,
 -1., 5, -1.,
 0., -1., 0.};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)]
 * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

Stanford CS348K, Spring 2022

Four di!erent representations of sharpen

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5F=

Image input;
Image output = convolve(input, F);

Image input;
Image output;
output[i][j]
 = F[0][0] * input[i-1][j-1] +
 F[0][1] * input[i-1][j] +
 F[0][2] * input[i-1][j+1] +
 F[1][0] * input[i][j-1] +
 F[1][1] * input[i][j] +
 …

Image input;
Image output = sharpen(input);

1

2

3

4

Stanford CS348K, Spring 2022

Image processing tasks from previous lectures

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

Gx
2 +Gy

2

float f(image input) {
 float min_value = min(min(input[x-1][y], input[x+1][y]),
 min(input[x][y-1], input[x][y+1]));
 float max_value = max(max(input[x-1][y], input[x+1][y]),
 max(input[x][y-1], input[x][y+1]));
output[x][y] = clamp(min_value, max_value, input[x][y]);
output[x][y] = f(input);

Sobel Edge Detection

Local Pixel Clamp

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5F=

3x3 Gaussian blur

Gamma Correction
output[x][y] = pow(input[x][y], 0.5f);

Histogram
bin[input[x][y]]++;

2x2 downsample (via averaging)
output[x][y] = (input[2x][2y] + input[2x+1][2y] +
 input[2x][2y+1] + input[2x+1][2y+1]) / 4.f;

output[x][y] = lookup_table[input[x][y]];
LUT-based correction

