Lecture 7:

Hardware Acceleration of DNNs

Visual Computing Systems
Stanford CS348K, Spring 2022

Hardware acceleration of DNN inference/training

GraphCore IPU

SambaNova Cardinal SN10

Investment in Al hardware

Al chipmaker Graphcore raises $\mathbf{\$ 2 2 2 M}$ at a $\mathbf{\$ 2 . 7 7 B}$ valuation and puts an IPO in its sights

SambaNova Systems Raises $\$ 676$ M in Series D, Surpasses $\$ 5 B$ Valuation and Becomes World's Best-Funded AI Startup

```
```

 and backing breakhhrough plattorm that deliv
    ```
```

```
```

 and backing breakhhrough plattorm that deliv
    ```
```

oril 13,2021 09:00 AM Eastem Dayilight Time

neged by BlackRock, Intel Capital, GV flomenery Googie Ventures, Walden Intemational and WRVL-
We're here to revolutionze the A market,
Tweet this

This Series D brings SambaNovas total funding
and rockets its yulual Now the best fill Now the best-tunded Al systems and sericess p
wordd S Sambanova will l se tis

 lions tor private and public sectors more acd Supercomputing conference in Denver last week after raising more than \$200 million in funding from investors, most recently with an $\$ 88$ million Series D round that was raised in November 2018, according to Andrew Feldman, the founder and CEO of Cerebras who was previously an executive at AMD that comes with 400,000 compute cores.

The Los Altos, Calif.-based startup introduced its CS-1 system at the

Artificial intelligence chip startup Cerebras Systems claims it has the "world's fastest AI supercomputer," thanks to its large Wafer Scale Engine processor

We'te here to revolutioniz the Al maket, and this rounc greaty accelenestir solve humanity's greatest technology chalenges, a new approach is needed. We've figured out that os

Applications based on artificial intelligence - whether they are systems running autonomous senvices, platforms being used in drug development or to predict the spread of a virus, traficic management for $5 G$ networks or something else altogetherrequire an unprecedented amount of computing power to tun. And today, one of the big names in the world of designing and

Intel Acquires Artificial Intelligence Chipmaker Habana Labs

Combination Advances Intel's AI Strategy, Strengthens Portfolio of AI Accelerators for the Data Center

SANTA CLARA Calif., Dec. 16, 2019 - Intel Corporation today announced that it has acquired Habana Labs, an Israel-based developer of programmable deep learning accelerators for the data center for approximately $\$ 2$ billion. The combination strengthens Intel's artificial intelligence (AI) portfolio and accelerates its efforts in the nascent, fast-growing Al silicon market, which Intel expects to be greater than $\$ 25$ billion by 2024^{1}
"This acquisition advances our Al strategy, which is to provide customers with solutions to fit every performance need - from the intelligent edge to the data center," said Navin Shenoy, executive vice president and general manager of the Data Platforms Group at Intel. "More specifically, Habana turbo-charges our Al offerings for the data center with a high-performance training processor family and a standards-based programming environment to address evolving Al workloads."

Two computer architecture reminders
 (review, one more time)

Compute specialization = energy efficiency

■ Rules of thumb: compared to high-quality C code on CPU...

■ Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

■ Fixed-function ASIC ("application-specific integrated circuit")

- Can approach 100-1000x or greater improvement in perf/watt
- Assuming code is compute bound and and is not floating-point math

Data movement has high energy cost

- Rule of thumb in modern system design: always seek to reduce amount of data movement in a computer
- "Ballpark" numbers
- Integer op: ~ 1 pJ *
- Floating point op: $\sim 20 \mathrm{pJ}$ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

- Implications

- Reading $10 \mathrm{~GB} /$ sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~ 1 watt (remember phone is also running CPU, display, radios, etc.)
- iPhone 6 battery: ~ 7 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

[^0]
On-chip caches locate data near processing

Processors run efficiently when data is resident in caches
Caches reduce memory access latency *
Caches reduce the energy cost of data access

* Caches also provide high bandwidth data transfer to CPU

Memory stacking locates memory near chip

Example:
NVIDIA A100 GPU

Up to 80 GB HMB2 stacked memory 2 TB/sec memory bandwidth

Also note: A100 has 40 MB L2 cache (increased from 6.1 MB on V100)

Improving hardware efficiency for DNN operations

Efficiency estimates*

- Estimated overhead of programmability (instruction stream, control, etc.)
- Half-precision FMA (fused multiply-add) 2000\%
- Half-precision DP4 (vec4 dot product) 500\%
- Half-precision 4x4 MMA (matrix-matrix multiply + accumulate)

NVIDIA Xavier (SoC for automotive domain)
Features a Computer Vision Accelerator (CVA), a custom module for deep learning acceleration (large matrix multiply unit)
~ 2x more efficient than NVIDIA V100 MMA instruction despite being highly specialized component. (includes optimization of gating multipliers if either operand is zero)

Ampere GPU SM (A100)

Each SM core has:
64 fp32 ALUs (mul-add)
32 int32 ALUs
4 "tensor cores"
Execute $8 \times 4 \times 4 \times 8$ matrix mul-add instr
$A \times B+C$ for matrices A, B, C
A, B stored as $f p 16$, accumulation with $f p 32 C$

There are 108 SM cores in the GA100 GPU:
6,912 fp32 mul-add ALUs
432 tensor cores
1.4 GHz max clock
= 19.5 TFLOPs fp32

+ 312 TFLOPs (fp16/32 mixed) in tensor cores

Tex

Single instruction to perform $2 \times 8 \times 4 \times 8$ FP16 $+8 \times 8$ TF32 ops

The NVIDIA tensor core approach is an evolutionary design: add DNNspecific instructions to a traditional programmable processor ("evolve, don't replace")

Google TPU
 (version 1)

Google's TPU (v1)

TPU area proportionality

Arithmetic units $\mathbf{\sim} \mathbf{3 0 \%}$ of chip

Note low area footprint of control

Key instructions:
read host memory
write host memory
read weights
matrix_multiply / convolve activate

Systolic array

(matrix vector multiplication example: $y=W \boldsymbol{x}$)

Systolic array

(matrix vector multiplication example: $\boldsymbol{y}=\boldsymbol{W} \boldsymbol{x}$)

Systolic array

(matrix vector multiplication example: $\boldsymbol{y}=\boldsymbol{W} \boldsymbol{x}$)

Systolic array

(matrix vector multiplication example: $\boldsymbol{y}=\boldsymbol{W} \boldsymbol{x}$)

Systolic array

(matrix vector multiplication example: $y=W x$)

Systolic array

(matrix vector multiplication example: $y=W x$)

Systolic array

Building larger matrix-matrix multiplies

Example: $\mathrm{A}=8 \times 8, \mathrm{~B}=8 \times 4096, \mathrm{C}=8 \times 4096$

Assume 4096 accumulators

Building larger matrix-matrix multiplies

Example: $\mathrm{A}=8 \times 8, \mathrm{~B}=8 \times 4096, \mathrm{C}=8 \times 4096$

Assume 4096 accumulators

Building larger matrix-matrix multiplies

Example: $\mathrm{A}=8 \times 8, \mathrm{~B}=8 \times 4096, \mathrm{C}=8 \times 4096$

Assume 4096 accumulators

Building larger matrix-matrix multiplies

Example: $\mathrm{A}=8 \times 8, \mathrm{~B}=8 \times 4096, \mathrm{C}=8 \times 4096$

Assume 4096 accumulators

TPU Performance/Watt

Alternative scheduling strategies

(a) Weight Stationary

(b) Output Stationary

TPU (v1) was "weight stationary": weights kept in register at PE
each PE gets different pixel partial sum pushed through array (array has one output)
"Output stationary": each PE computes one output push input pixel through array each PE gets different weight each PE accumulates locally into output

Takeaway: many DNN accelerators can be characterized by the data flow of input activations, weights, and outputs through the machine. (Just different "schedules"!)
(c) No Local Reuse

Input stationary design (dense 1D conv example)

(matrix vector multiplication example: $y=W x$)

Scaling up (for training big models)

Example: GPT-3 language model

TPU v3 supercomputer

TPU v3 board
4 TPU3 chips

One TPU v3 board
TPUs connected by 2D Torus interconnect

TPU supercomputer (1024 TPU v3 chips)

Additional examples of "Al chips"

Key ideas:

1. Huge numbers of compute units
2. Huge amounts of on-chip storage to maintain input weights and intermediate values

GraphCore MK2 GC200 IPU

(59B transistors

Cerebras Wafer-Scale Engine (WSE)

Tightly interconnected tile of chips (entire wafer) Many more transistors (1.2T) than largest single chips (Example: NVIDIA A100 GPU has 54B)

	Cerebras WSE
Chip size	$46,225 \mathrm{~mm}^{2}$
Cores	400,000
On chip memory	18 Gigabytes
Memory bandwidth	9 Petabytes/S
Fabric bandwidth	100 Petabits/S

Compilation of DNN to platform involves "laying out" DNN layers in space on processing grid.

Neural network

SambaNova reconfigurable dataflow unit

Again, notice tight integration of storage and compute

PMU
Pattern Memory Unit

Another example of spatial layout

Notice: inter-layer communication occurs through on-chip interconnect, not through off-chip memory.

Exploiting sparsity

Architectural tricks for optimizing for sparsity

- Consider operation: result $+=x^{*} y$
- If hardware determines the contents of register x or register y is zero...
- Don't fire ALU (save energy)
- Don't move data from register file to ALU (save energy)
- But ALU is idle (computation doesn't run faster, optimization only saves energy)

Model compression

- Step 1: sparsify weights by truncating weights with small values to zero
- Step 2: compress surviving non-zeros
- Cluster weights via k-means clustering
- Compress weights by only storing index of assigned cluster (lg(k) bits)

[Han et al.]

Sparse, weight-sharing fully-connected layer

$$
b_{i}=\operatorname{Re} L U\left(\sum_{j=0}^{n-1} W_{i j} a_{j}\right)
$$

Fully-connected layer:
Matrix-vector multiplication of activation vector a against weight matrix W

$$
b_{i}=\operatorname{Re} L U\left(\sum_{j \in X_{i} \cap Y} S\left[I_{i j}\right] a_{j}\right)
$$

Note: activations are sparse due to ReLU

Sparse-matrix, vector multiplication

Custom hardware for decode and evaluate sparse, compressed DNNs

Represent weight matrix in compressed sparse column (CSC) format to

 exploit sparsity in activation vector:```
for each nonzero a_j in a:
 for each nonzero M_ij in column M_j:
 b_i += M_ij * a_j
```

More detailed version (assumes CSC matrix):

```
int16* a_values; // dense for j=0 to length(a):
PTR* M_j_start; // column j if (a[j] == 0) continue; // scan to next nonzero
int4* M_j_values;
int4* M_j_indices;
int16* lookup; // lookup table for
 // cluster values (from
 // deep compression paper)
 col_values = M_j_values[M_j_start[j]]; // j-th col
 col_indices = M_j_indices[M_j_start[j]]; // row idx in col
 col_nonzeros = M_j_start[j+1] - M_j_start[j];
 for i=0, i_count=0 to col_nonzeros:
 i += col_indices[i_count];
 b[i] += lookup[col_values[i_count]] * a_values[j];
```


## Parallelization of sparse-matrix-vector product

Stride rows of matrix across processing elements
Output activations strided across processing elements


Weights stored local to PEs. Must broadcast non-zero a_j's to all PEs
Accumulation of each output b_i is local to PE

## Efficient Inference Engine (EIE) for quantized sparse/matrix vector product

## Custom hardware for decoding compressed-sparse representation

Tuple representing non-zero activation ( $\mathrm{a}_{\mathrm{j}}, \mathrm{j}$ ) arrives and is enqueued


## EIE efficiency



Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There is no batching in all cases.


```
CPU: Core i7 5930k (6 cores)
GPU: GTX Titan X
mGPU:Tegra K1
```

Warning: these are not end-to-end numbers: just results on fully connected layers!

Sources of energy savings:

- Compression allows all weights to be stored in SRAM (reduce DRAM Ioads)
- Low-precision 16-bit fixed-point math (5x more efficient than 32-bit fixed math)
- Skip math on input activations that are zero ( $65 \%$ less math)


## Reminder: input stationary design (dense 1D)



## Input stationary design (sparse example)

## Assume:

1D input/output
3-wide SPARSE filters
2 output channels ( $K=2$ )


## SCNN: accelerating sparse conv layers

- Like EIE: assume both activations and conv weights are sparse
- Weight stationary design:
- Each PE receives:
- A set of I input activations from an input channel: a list of I (value, $(x, y)$ ) pairs
- A list of $F$ non-zero weights
- Each PE computes: the cross-product of these values: $\mathrm{P} \times I$ values
- Then scatters PxI results to correct accumulator buffer cell
- Then repeat for new set of F weights (reuse I inputs)
- Then, after convolution:
- ReLU sparsifies output
- Compress outputs into sparse representation for use as input to next layer


## SCNN results (on GoogLeNet)



DCNN = dense CNN evaluation
DCNN-opt = includes ALU gating, and compression/decompression of activations

## Summary of hardware accelerators for efficient inference

- Specialized instructions for dense linear algebra computations
- Reduce overhead of control (compared to CPUs/GPUs)
- Reduced precision operations (cheaper computation + reduce bandwidth requirements)
- Systolic / dataflow architectures for efficient on-chip communication
- Different scheduling strategies: weight-stationary, input/output stationary, etc.
- Huge amounts of on-chip memory to avoid off-chip communication
- Exploit sparsity in activations and weights
- Skip computation involving zeros
- Hardware to accelerates decompression of sparse representations like compressed sparse row/column


[^0]:    [Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

