Lecture 14:

Scheduling the Graphics
Pipeline on a GPU

Visual Computing Systems
Stanford C5348K, Spring 2022



Simple OpenGL/Direct3D graphics pipeline

* Several stages of the modern OpenGL pipeline are omitted o3
°1
l— °4  Input: vertices in 3D space
)
Operations on ETTEX I TOCEsSINg
vertices P i
Vertex stream ; ° ; . . .. . .
l : © . Vertices in positioned in normalized

Operations on Primitive Processing ) coordinate space
primitives
(triangles, lines, etc,) Primitivestream .

Fragment Generation Triangles positioned on screen

(Rasterization)
Operations on Fragment streaml ----------------
fragments Fragments (one fragment per covered sample)
HragmentiErocessing E

Shaded fragment streaml

% ?- Shaded fragments
Operations on Screen sample operations

(depth and color) S :
screen samples : :

Output: image (pixels)

Stanford C5348K, Spring 2022



Sample coverage at pixel centers

Stanford C5348K, Spring 2022



Depth buffer (aka “Z buffef”)

e !

1 -
C— i
e —. \
.
!

Color buffer:
(stores color per sample... e.g., RGB)

Depth buffer:
(stores depth per sample)

Stores depth of closest surface drawn so far
black = close depth
white = far depth

. -

Stanford (5348K, Spring 2022



Stanford (S348K, Spring 2022

" i p—— uut'»‘
s cnllh Tl | el S

p—
2
o
&
S
(V)
p .
@
o
@
=
S
=
[a'a)
(G )
o

>
=)
Qv

Ty
S
o
&
S
v
p
@
o
vd
—
@
&
@
p .
=
v
i~
Qv
&
p .
=
<)
J
v
@
p .
<)
d
(¥ 4]
'
o
=
=
2
p
=
<)
J

Depth buffer (a better look)




Depth buffer (a better look) shrter she distancetothe osest abjct

.|

Corresponding depth buffer after rendering all triangles (stores closest scene depth per sample)
Stanford C5348K, Spring 2022



Occlusion using the depth buffer (opaque surfaces)

bool pass_depth test(dl, d2) {
return dl < d2;

}

depth_test(tri_d, tri_color, x, y) {

1f (pass_depth _test(tri_d, depth buffer[x]l[y]) {

depth_buffer[x][y] = tri_d; // update depth_buffer
color[x][y] = tri_color; // update color buffer

}
}

Stanford C5348K, Spring 2022



Early Z: one optimization you should know about

Stanford C5348K, Spring 2022



Depth testing as we've described it

m Implemented by all modern GPUs, not just mobile GPUs

m Application needs to sort geometry to make early Z most effective. Why?

[ ragment Processing ]
Frame-Buffer Ops <

Graphics pipeline

abstraction specifies
that depth test is
performed here!

Pipeline generates, shades, and depth
tests orange triangle fragments in this
region although they do not contribute

to final image. (they are occluded by
the blue triangle)

Stanford (5348K, Spring 2022



Early Z culling

m Implemented by all modern GPUs, not just mobile GPUs

m Application needs to sort geometry by depth to make early Z optimization most effective. Why?

Rasterization Rasterization

Optimization: reorder
pipeline operations:
perform depth test
immediately following

rasterization and before
Frame-Buffer Ops . TCCCLLLORR Graphics pipeline Frame-Buffer Ops fragment shading

specifies that depth
test is performed here!

|

{ Fragment Processing }

l

Key assumption: occlusion results do not depend on fragment shading

- Example operations that prevent use of this early Z optimization: enabling alpha test,
fragment shader modifies fragment’s Z value
Stanford C5348K, Spring 2022



Programming the graphics pipeline

m Issuedraw commands —— outputimage contents change

Command Type

Command

State change
Draw
State change
Draw
State change
Draw
State change
State change
Draw

Bind shaders, textures, uniforms
Draw using vertex buffer for object 1
Bind new uniforms

Draw using vertex buffer for object 2
Bind new shaders

Draw using vertex buffer for object 3
Change depth test function

Bind new shader

Draw using vertex buffer for object 4

Final rendered output should be consistent with the results of executing these commands in the

order they are issued to the graphics pipeline.

Stanford C5348K, Spring 2022



GPU: heterogeneous parallel processor

= e
Tessellate Tessellate

Py
Clip/Cull Clip/Culi
Rasterize Rasterize Memory
Clip/Cull Clip/Culi
Rasterize Rasterize
Scheduler / Work Distributor

We're now going to talk /

about this scheduler

Tessellate Tessellate

Stanford (S348K, Spring 2022



Graphics workload metrics

Stanford C5348K, Spring 2022



1l'ﬂ;

Let’s consider different workloads ekt il

Average triangle size ny

Havana

Image credit:
https://www.theverge.com/2013/11/29/5155726/next-
http://www.mobygames.com/game/android/ghostbusters-slime-city/screenshots/gameShotid,852293/ Stanford (S348K, Spring 2022




Low geometric detdil

ﬁ

Credit: Pro Evolution S r20
\\.ﬁ.




- .

-




Surface tessellation

Procedurally generate fine triangle mesh from coarse mesh representation

.—.‘f‘_‘ . .':_‘;._\
Fe |
M7 NENLAIENIRN
KNI NS

1N |

-

— M |

Post-Tessellation

(fine) geometry
[image credit: Loop et al. 2009] Stanford (5348K, Spring 2022

Coarse geometry



Graphics pipeline with tessellation Vertex Generation

Coarse Vertices
Five programmable stages 1in/1out Vertex Processing

(OpenGL 4, Direct3D 11)

Coarse Primitives Coarse Primitive Processing
1in/1out

Tin/N out Tessellation
\ 4

Vertex Generation

Vertices : :

Fine Vertices , ,
1in/1out Vertex Processing YA 1 ineVertexierocessing
3in/1out 3in/ 1(f°“t) Fine Primitive Generation

(for tris) or tris
Primitives Fine Primitives
1in/small N out Primitive Processing B L A tinelrmitiveerocessing
, Rasterization 1in/Nout Rasterization

1in/Nout (Fragment Generation) bl  (Fragment Generation)
Fragments l Fragments l

(T YA R @ EragmentiProcessing L VA KT @REragmentibrocessing
Pixels 1in/00r1out Frame-Buffer Ops Pixels 1in/00r1out Frame-Buffer Ops

Stanford (S348K, Spring 2022



https://thegamedev.guru/unity-gpu-performance/overdraw-optimization/

Rough approximation: 7A = SD

T = # triangles

A = average triangle area
S = pixels on screen

D = average depth complexity Stanford C5348K, Spring 2022




Amount of data generated
(size of stream between

consecutive stages) Compact geometric model

High-resolution
(post tessellation)
mesh

Frame buffer pixels

Fragments

Coarse Vertices
Tin/1out

Coarse Primitives
Tin/1out

Tin/N out Tessellation
\ 4

Fine Vertex Processing

Fine Vertices
Tin/1 out

3in/1out

(for tris)

Fine Primitives

1in/small N out

Tin/N out
Fragments

Tin/1 out

Pixels 1in/0or1out

Vertex Generation

Vertex Processing

Coarse Primitive Processing

l

Fine Primitive Generation

Fine Primitive’ Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Stanford (S348K, Spring 2022



Key 3D graphics workload metrics

m Data amplification from stage to stage
- Average triangle size (amplification in rasterizer: 1 triangle -> N pixels)
- Expansion during primitive processing (if enabled)
- Tessellation factor (if tessellation enabled)

m [Vertex/fragment/geometry] shader cost

- How many instructions?
- Ratio of math to data access instructions?

m Scene depth complexity

- Determines number of depth and color buffer writes

Stanford C5348K, Spring 2022



Graphics pipeline workload changes dramatically across draw
commands

m Triangle size is scene and frame dependent
- Move far away from an object, triangles get smaller
- Vary within a frame (characters are usually higher resolution meshes than buildings)

m Varying complexity of materials, different number of lights illuminating surfaces
- Tens to a few hundreds of instructions per shader

m Stages can be disabled
- Depth-only rendering = NULL fragment shader
- Post-processing effects = no vertex work

m Thousands of state changes and draw commands per frame

Stanford C5348K, Spring 2022



Parallelizing the graphics pipeline

Adopted from slides by Kurt Akeley and Pat Hanrahan (Stanford (5448 Spring 2007) Stanford (5348K, Spring 2022



Requirements + workload challenges

m Pipeline accepts sequence of commands

- Draw commands
- State modification commands

m Processing commands has sequential semantics
- Effects of command A must be visible before those of command B

m Relative cost of pipeline stages changes frequently and unpredictably (e.g., due to changing triangle
size, rendering mode)

m Ample opportunities for parallelism
- Many triangles, vertices, fragments, etc.

Stanford C5348K, Spring 2022



Simplified pipeline

[ Application ]

Geometry

Vertex Generation

S

l

For now: just consider all geometry processing work (vertex/primitive
processing, tessellation, etc.) as “geometry” processing.

(I'm drawing the pipeline this way to match the suggested readings
under this lecture)

o

Rasterization

l

[ Fragment Processing }

l

Frame-Buffer Ops

[ Output image ]

Stanford C5348K, Spring 2022



Simple parallelization (pipeline parallelism)

Separate hardware unit is responsible for |
executing work in each stage

What is my maximum speedup?

Stanford C5348K, Spring 2022



A cartoon GPU:

Assume we have four separate processing pipelines
Leverages data-parallelism present in rendering computation

Application

Geometry Processing Geometry Processing Geometry Processing Geometry Processing

ul

Rasterization Rasterization Rasterization Rasterization

I I I

I

Fragment Processing Fragment Processing Fragment Processing

I

Frame-Buffer Ops Frame-Buffer Ops

Fragment Processing

I

Frame-Buffer Ops Frame-Buffer Ops

Output image

Stanford (5348K, Spring 2022



More realistic GPU

m Asetof programmable cores (run vertex and fragment shader programs)

m Hardware for rasterization, texture mapping, and frame-buffer access

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Rasterizer
Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

Stanford C5348K, Spring 2022



Molnar’s “sorting” taxonomy

Implementations characterized by where inter-processor communication occurs in pipeline

[ Application ]
Sort first - -
Geometry Processing Geometry Processing Geometry Processing Geometry Processing
Sort middle
Rasterization Rasterization Rasterization Rasterization
Sort last fragment Fragment Processing Fragment Processing Fragment Processing Fragment Processing
Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops
Sort last image

composition

[ outputimage ]

Note: The term “sort” can be misleading for some. It may be helpful to instead consider the term “distribution” rather than
sort. The implementations are characterized by how and when they redistribute work onto processors. *

* The origin of the term sort was from “A Characterization of Ten Hidden-Surface Algorithms”. Sutherland et al. 1974 Stanford C5348K, Spring 2022



Sort first

Stanford C5348K, Spring 2022



Sort first

Application

ort!

Geometry Processing Geometry Processing Geometry Processing Geometry Processing

Rasterization Rasterization Rasterization Rasterization

I | I

Fragment Processing Fragment Processing Fragment Processing

I

Fragment Processing

Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops

Frame-Buffer Ops

Output image

Assign each replicated pipeline responsibility for a region of the output image
First do minimal amount of work (compute screen-space vertex positions of triangle) to determine which region(s)
each input primitive overlaps

Stanford (5348K, Spring 2022



Sort first work partitioning

(partition the primitives to parallel units based on screen overlap)

Stanford C5348K, Spring 2022



Sort first

Application

ort!

Geometry Processing Geometry Processing Geometry Processing Geometry Processing

Rasterization Rasterization Rasterization

l I

Fragment Processing Fragment Processing

Rasterization

l

Fragment Processing

l

Fragment Processing

Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops

Frame-Buffer Ops

il

Output image

m Good:
- Simple parallelization: just replicate rendering pipeline and operate independently in screen regions (order
maintained in each)
- More parallelism = more performance
- Small amount of sync/communication (communicate original triangles)

- Early fine occlusion cull (“early z”) just as easy as single pipeline
Stanford (5348K, Spring 2022



Sort first

m Bad:

Application

Geometry Processing

Rasterization

l

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

l

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

l

Fragment Processing

Frame-Buffer Ops

Geometry Processing

Rasterization

l

Fragment Processing

Frame-Buffer Ops

Output image

- Potential for workload imbalance (one part of screen contains most of scene)

- Extra cost of triangle “pre-transformation” (needed to sort)

- “Tile spread”: as screen tiles get smaller with more parallelism, primitives cover more tiles
(duplicate geometry processing across multiple parallel pipelines)

Stanford (5348K, Spring 2022



Sort first examples

B WireGL/Chromium* (parallel rendering with a cluster of GPUs)

— “Front-end” node sorts primitives to machines

— Each GPU is a full rendering pipeline
(responsible for part of screen)

® |nitial parallel versions of Pixar’s RenderMan o
PIXAR's

— Multi-core software renderer RenderMan

— Sort surfaces into screen tiles prior to tessellation

* Chromium can also be configured as a sort-last image composition system Stanford (S348K, Spring 2022



Sort middle

Stanford C5348K, Spring 2022



S 0 rt m i d d I e Application

Geometry Processing Geometry Processing

Fragment Processing Fragment Processing Fragment Processing Fragment Processing
Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops

Output image ]

Distribute primitives to pipelines (e.g., round-robin distribution)
Assign each rasterizer a region of the render target (aka the output image)
Sort after geometry processing based on screen space projection of primitive vertices

Stanford (5348K, Spring 2022



Interleaved mapping of screen

m Decrease chance that one rasterizer processes most of scene
m Most triangles overlap multiple screen regions (often overlap all)

Interleaved mapping Tiled mapping

Stanford C5348K, Spring 2022



Fragment interleaving in NVIDIA Fermi

Fine granularity interleaving Coarse granularity interleaving

ogo - OEo - @Eo - Eo  EEo - e 4
| | - b

N BEC B B
L EEEEEE

>

|

-
il

.- .- .- .- ; g ;

Question 1: what are the benefits/weaknesses of each interleaving?
Question 2: notice anything interesting about these patterns?

[Image source: NVIDIA] Stanford CS348K, Spring 2022



Sort middle interleaved

m Good:

- Workload balance: both for geometry work AND onto rasterizers (due to interleaving)

Application

Geometry Processing

Rasterization

l

Fragment Processing

Frame-Buffer Ops

Distribute

Geometry Processing Geometry Processing

ort! - BROADCAST

Rasterization Rasterization

l l

Fragment Processing Fragment Processing

Frame-Buffer Ops Frame-Buffer Ops

|

Geometry Processing

Rasterization

l

Fragment Processing

Frame-Buffer Ops

Output image

- Does not duplicate geometry processing for each overlapped screen region

Stanford (5348K, Spring 2022



Sort middle interleaved

m Bad:

Application

Geometry Processing

~
| |

Rasterization

l

Fragment Processing

Frame-Buffer Ops

Distribute

|

Geometry Processing Geometry Processing

ort! - BROADCAST

Rasterization Rasterization

I l

Fragment Processing Fragment Processing

Frame-Buffer Ops Frame-Buffer Ops

|

Geometry Processing

Rasterization

l

Fragment Processing

Frame-Buffer Ops

Output image

- Bandwidth scaling: sort is implemented as a broadcast

(each triangle goes to many/all rasterizers because of interleaved screen mapping)
- Iftessellation is enabled, must communicate many more primitives than sort first

- Duplicated per triangle work across rasterizers

Stanford (5348K, Spring 2022



5GI RealityEngine

[Akeley 93]

Sort-middle interleaved design

System Bus —*

Command geometry
——

Processor board

Geometry _
Engines

Triangle Bus —

Fragment
Generators

Image >
Engines

raster memory board raster memory board

I } » Video

Stanford C5348K, Spring 2022

display generator board



Step 1: parallel geometry processing

m Distribute triangles to the four processors (e.g., round robin)
m In parallel, processors perform vertex processing

Work queue of triangles in scene

Core 1 Core 2 Core3 Core 4

Stanford C5348K, Spring 2022



n i

Sort-middle tiled (a.k.a. “chunking’, “bucketing’, “binning”)
Step 1: sort triangles into bins

m Divide screen into tiles, one triangle list per “tile” of screen (called a “bin”)
m Core runs vertex processing, computes 2D triangle/screen-tile overlap, inserts triangle into appropriate bin(s)

List of scene triangles

/NN

Core 1 Core 2 Core3 Core 4

After processing first five
triangles:

Bin1list:1,2,3,4
Bin 2 list: 4,5

Stanford C5348K, Spring 2022



Sort-middle interleaved vs. binning

Processor 1 Processor 2

Processor 3 | | Processor 4

10]1/2]310 1] |eoen|ea|ea|ealss
2/3|041/2]3| |8 e7)es|6s rojert
0/1/2/3/0|1| [si2le1ziaialais|prciens
2| 3]0 |23 [siferslezoffxr|ezzies

Interleaved (static) assignment Assignment to bins
of screen tiles to processors , o ,
(Number above is the processor id that List of bins is a work queue. Bins are

processes each screen region) dynamically assigned to processors.

Stanford C5348K, Spring 2022



Step 2: per-tile processing

m Cores process bins in parallel, performing rasterization
fragment shading and frame buffer update

m While there are more bins to process:
- Assign bin to available core
- For all triangles:
- Rasterize
- Fragment shade
- Depth test
- Update frame buffer

List of triangles in bin:

v

Rasterizer

Depth Test

Shader
Processor Core

Texture

Data Cache

Render Target Blend

v

final pixels for NxN tile of
render target

Stanford C5348K, Spring 2022



Reminder: reading less data conserves power

m Goal: redesign algorithms so that they make good use of on-chip memory or processor
caches

- And therefore transfer less data from memory

m Afact you might not have heard:

— Itis far more costly (in energy) to load/store data from
memory, than it is to perform an arithmetic operation

“Ballpark” numbers
- Integerop: ~1pJ*
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 p)
Implications

- Reading 10 GB/sec from memory: ~1.6 watts [Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford (5348K, Spring 2022



What should the screen size of the bins be?

m  Small enough for a tile of the color buffer and depth
buffer (potentially supersampled) to fit in a shader
processor core’s on-chip storage (i.e., cache)

m Tilesizesinrange 16x16 to 64x64 pixels are
common

m  ARM Mali GPU: commonly uses 16x16 pixel tiles

Stanford C5348K, Spring 2022



Tiled rendering “sorts” the scene in 2D space to enable efficient
color/depth buffer access

Consider rendering without a sort: This sample updated three times,
(process triangles in order given) but may have fallen out of cache in
between accesses

Now consider step 2 of a tiled
renderer:

Initialize Z and color buffer for tile
for all triangles in tile:
for all each fragment:
shade fragment
update depth/color
write color tile to final image buffer

Q. Why doesn’t the renderer need to read color or depth buffer from memory?
Q. Why doesn’t the renderer need to write depth buffer in memory? *

* Assuming application does not need depth buffer for other purposes. Stanford (S348K, Spring 2022



Tile-based deferred rendering (TBDR)

Many mobile GPUs implement deferred shading in the hardware!

Divide step 2 of tiled pipeline into two phases:
Phase 1: compute what fragment is visible at every sample

Phase 2: perform shading of only the visible quad fragments

MB— [

T

12

13

Stanford C5348K, Spring 2022



Sort middle tiled (chunked)

m Good:

- Good load balance (distribute many buckets onto rasterizers)
- Low bandwidth requirements (why? when?)

- Challenge: “bucketing” sort has low contention (assuming each triangle only touches a small number of
buckets), but there still is contention

B Recent examples:
- Many mobile GPUs: Imagination PowerVR, ARM Mali, Qualcomm Adreno
- Parallel software rasterizers
- Intel Larrabee software rasterizer
- NVIDIA CUDA software rasterizer

Stanford C5348K, Spring 2022



Sort last

Stanford C5348K, Spring 2022



Sort last fragment

Application

Distribute

|

|
ﬁ

L}
Geometry Processing Geometry Processing Geometry Processing Geometry Processing

Rasterization Rasterization Rasterization
Fragment Processing Fragment Processing Fragment Processing Fragment Processing

ort! - point-to-point

~
|

Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops

sty |
|

I

Output image

Distribute primitives to top of pipelines (e.g., round robin)

Sort after fragment processing based on (x,y) position of fragment
Stanford (5348K, Spring 2022



Sort last fragment

Application

Distribute

| |

Geometry Processing Geometry Processing Geometry Processing

Fragment Processing Fragment Processing Fragment Processing

ort! - point-to-point

Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops

Geometry Processing

l

Rasterization

l

Fragment Processing

Frame-Buffer Ops

Output image

e l
|

I

m Good:

- No redundant geometry processing or rasterizeration (but early z-cull is a problem)

- Point-to-point communication during sort
- Interleaved pixel mapping results in good workload balance for frame-buffer ops

Stanford (5348K, Spring 2022



Sort last fragment

[ Application ]
Distribute
| | |

|
Geometry Processing Geometry Processing Geometry Processing Geometry Processing
Rasterization Rasterization Rasterization
Fragment Processing Fragment Processing Fragment Processing Fragment Processing

ort! - point-to-point

Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops

l

Output image

I

~

m Bad:
- Pipelines may stall due to primitives of varying size (due to order requirement)
- Bandwidth scaling: many more fragments than triangles
- Hard to implement early occlusion cull (more bandwidth challenges)

Stanford (5348K, Spring 2022



OpenGL 4 / Direct3D 11 pipeline

Five programmable stages

Vertex Generation

Coarse Vertices l

1in/1 out [ Vertex Processing ]

l
Coarse Primitives [@WM@&E&E@
|

T1in/1 out

Tin/N out Tessellation
\ /

Fine Vertices

1in/1out{ FineVertexFrocessing }
l

3in/ 1f°“t Fine Primitive Generation
(for tris)

Fine Primitives l

1in/small N out [ m]

, Rasterization
Tin/N out

(Fragment Generation)

Fragments l

Tin/ 1out[ ragment Processing ]
Pixels 1in/00r1out Frame-Buffer Ops

Stanford (5348K, Spring 2022



Modern GPU: programmable parts of pipeline virtualized on pool of
programmable cores

Programmable | | Programmable Programmable | | Programmable Frame Buffer Ops
Core Core Core Core
Frame Buffer Ops
P bl P bl P bl P bl
rogrammable rogrammable rogrammable rogrammable Frame Buffer Ops
Core Core Core Core
Rasterizer Rasterizer Frame Buffer Ops
High-speed interconnect
Texture Tessellation Texture Tessellation Work Distributor/Scheduler
Programmable Programmab|e Programmab|e Programmab|e e
Core Core Core Core Vertex Queue :
; Primitive Queue ;
Programmable Programmable Programmable Programmable b A i i A
Core Core Core Core | BN B

Hardware is a heterogeneous collection of resources (programmable and non-programmable)

Programmable resources are time-shared by vertex/primitive/fragment processing work
Must keep programmable cores busy: sort everywhere

Hardware work distributor assigns work to cores (based on contents of inter-stage queues)
Stanford C5348K, Spring 2022



Sort everywhere

(How modern high-end GPUs are scheduled)

Stanford C5348K, Spring 2022



[Eldridge 00]

Sort everywhere

[ Application ]
Distribute

l l l l

Geometry Processing Geometry Processing Geometry Processing Geometry Processing

Redistribute- point-to-point

Rasterization Rasterization Rasterization Rasterization

l l l l

Fragment Processing Fragment Processing Fragment Processing Fragment Processing

ort! - point-to-point

Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops Frame-Buffer Ops

[ Output image ]

Distribute primitives to top of pipelines
Redistribute after geometry processing (e.g, round robin)

Sort after fragment processing based on (x,y) position of fragment
Stanford (5348K, Spring 2022



Implementing sort everywhere

(Challenge: rebalancing work at multiple places in the
graphics pipeline to achieve efficient parallel execution,
while maintaining triangle draw order)

Stanford C5348K, Spring 2022



Starting state: draw commands enqueued for pipeline

Draw T3

Draw T2
Draw T1

Geometry

N

Input: three triangles to draw

(fragments to be generated for each
triangle by rasterization are shown below)

Rasterizer 0

Rasterizer 1

Frag Processing 0

[ >\

Frag Processing 1

Frame-buffer 0

T

Frame-buffer 1

1

Assume batch size is 2 for
assignment to rasterizers.

- O
S =

Interleaved
render target

Stanford C5348K, Spring 2022



After geometry processing, first two processed triangles assigned to rast 0

Draw T3

Geometry

11

N

Rasterizer 0

Input:

Rasterizer 1

Frag Processing 0

[ >\

Frag Processing 1

Frame-buffer 0

T

Frame-buffer 1

1

Assume batch size is 2 for
assignment to rasterizers.

- O
S =

Interleaved
render target

Stanford C5348K, Spring 2022



Assign next triangle to rast 1 (round robin policy, batch size = 2)

Q. What is the ‘next’ token for?

Geometry

/

Next
12
T1

Rasterizer 0

13

Input:

Rasterizer 1

Frag Processing 0

[ >\

Frag Processing 1

Frame-buffer 0

T

Frame-buffer 1

1

- O

S =

Interleaved
render target

Stanford C5348K, Spring 2022



Rast 0 and rast 1 can process T1 and T3 simultaneously

(Shaded fragments enqueued in frame-buffer unit input quepes)

Geometry

N

Next
T2

Rasterizer 0

Input:

Rasterizer 1

Frag Processing 0

11,4
11,2 13,3
11,1 13,1

Frag Processing 1

[\

Frame-buffer 0

11,3 13,2

T

Frame-buffer 1

1

- O

D -

Interleaved
render target

Stanford C5348K, Spring 2022



FB 0 and FB 1 can simultaneously process fragments from rast 0

(Notice updates to frame buffer)

Geometry

N

Next
T2

Rasterizer 0

Frag Processing 0

13,3

13,1

Input:

Rasterizer 1

Frag Processing 1

L

Frame-buffer 0

13,2

T

Frame-buffer 1

1

0 1
10 1,1
T,2T1,3
1,4

Interleaved
render target

Stanford C5348K, Spring 2022



Fragments from T3 cannot be processed yet. Why?

Geometry

N

Next
T2

Rasterizer 0

Rasterizer 1

Frag Processing 0

13,3

13,1

Frag Processing 1

L

Frame-buffer 0

13,2

T

Frame-buffer 1

1

0
1

1
0 1,1
T,2T1,3
1,4

Interleaved
render target

Stanford C5348K, Spring 2022



Rast 0 processes 12

(Shaded fragments enqueued in frame-buffer unit input quentes)—

Geometry

N

Next

Rasterizer 0

Rasterizer 1

Frag Processing 0

Frag Processing 1

/[ =><\

12,3 13,3
12,1 13,1

Frame-buffer 0

T

12,4

12,2 13,2

Frame-buffer 1

1

S =

11
1,2T1,3
1,4

Interleaved
render target

Stanford C5348K, Spring 2022



Rast 0 broadcasts ‘next’ token to all frame-buffer units

Geometry

N

Input:

Rasterizer 0

Rasterizer 1

Frag Processing 0

Frag Processing 1

/[ =><\

Switch
12,3 13,3
12,1 13,1

Frame-buffer 0

T

12,2 13,2

Frame-buffer 1

1

S =

11
1,2T1,3
1,4

Interleaved
render target

Stanford C5348K, Spring 2022



Rast 0 processes 12

(Shaded fragments enqueued in frame-buffer unit input queues)

Geometry

N

Rasterizer 0

Rasterizer 1

Frag Processing 0

13,3

Switch 13,1

Frag Processing 1

L

Frame-buffer 0

Switch 13,2

T

Frame-buffer 1

1

Draw A—» 1 314
Draw @—» 1 34
Draw &—» 1 3
0 1
1 0 ™
T,2T1,3
4 121 Interleaved
122123 render target

12,4

Stanford C5348K, Spring 2022



Switch token reached: frame-buffer units start processing

input from rast 1

Geometry

N

Rasterizer 0

Input:

Rasterizer 1

Frag Processing 0

13,3

13,1

Frag Processing 1

Frame-buffer 0

[\

13,2

T

Frame-buffer 1

1

Draw A—» 1 314
Draw @—» 1 34
Draw &—» 1 3
0 1
1 0 ™
T,2T1,3
4 121 Interleaved
122123 render target

12,4

Stanford C5348K, Spring 2022



FB 0 and FB 1 can simultaneously process fragments from rast 1

(Notice updates to frame buffer)

Geometry

N

Rasterizer 0

Input:

Rasterizer 1

Frag Processing 0

Frag Processing 1

[\

Frame-buffer 0

T

Frame-buffer 1

1

0
1

1
0 1,1
T27T1,3  T13,113,2
4 1217133
T2,212,3

12,4

Interleaved
render target

Stanford C5348K, Spring 2022



Extending to parallel geometry units

Stanford C5348K, Spring 2022



Starting state:
commands enqueued

Draw T4

Draw T3

Draw T2

Draw T1

Distrib

4/_\

Geometry 0

[ =><7\

Rasterizer 0

Frag Processing 0

Frame-buffer 0

T

P

Geometry 1

Rasterizer 1

Frag Processing 1

Frame-buffer 1

1

Assume batch size is 2 for
assignment to geom units
and to rasterizers.

- O
S =

Interleaved
render target

Stanford C5348K, Spring 2022



Distribute triangles to geometry units round-robin (batches of 2)

)K

Next Input:
T2 T4
T1 T3

Geometry 0 Geometry 1 511617

/X\ A
Draw A\ — [ 1i[ 23] 4

- - 5
Draw ﬁ —> [ 12
Rasterizer 0 Rasterizer 1
Frag Processing 0 Frag Processing 1
_ _ 0 1
— — 10
Interleaved
Frame-buffer 0 Frame-buffer 1 render target

T T T Stanford C5348K, Spring 2022




Geom 0 and geom 1 process triangles in parallel

(Triangles enqueued in rast input queues. Note big triangles broken into multiple work items. [Eldridge et al.])

)K

Input
Next
Draw zﬂftﬁ.""’ {23 4
Geometry 0 Geometry 1 511617
/X\ e i
Draw A3 — [ 1|23/ 4
Next Next 5
}1,b T3,b }z
1,a T3, 1,¢ T4
2 Draw A& — [1][2
Rasterizer 0 Rasterizer 1
Frag Processing 0 Frag Processing 1
_ - 0 1
— — 10
Interleaved
Frame-buffer 0 Frame-buffer 1 render target

T T T Stanford C5348K, Spring 2022




Geom 0 broadcasts ‘switch’ token to rasterizers

)K

Input
Draw A—b 1 2134
Geometry 0 Geometry 1 516 7
/X\ Drawﬁ_i A
— ({213 |4
Switch Draw
Next Next Switch 5
}1,b T3,b }z
1,a T3, 1,¢ T4
2 Draw AN — [1][2
Rasterizer 0 Rasterizer 1
Frag Processing 0 Frag Processing 1
_ B 0 1
— — 1 0
Interleaved
Frame-buffer 0 Frame-buffer 1 render target

T T T Stanford C5348K, Spring 2022




Rast 0 and rast 1 process triangles from geom 0 in parallel

(Shaded fragments enqueued in frame-buffer unit input queues)

)K

Input
Draw A—b 1 2134
Geometry 0 Geometry 1 516 7
/X\ e
Draw A3 — [ 1|23/ 4
Next 5
Switch 13,b
Next 13, Switch T4
2 wite Draw A& — [1][2
Rasterizer 0 Rasterizer 1
Frag Processing 0 Frag Processing 1
T1,5 T2,3 12,4 i
T1,3 2,1 T4 2.2 10
T1,1 T1,6 11,2 11,7
Interleaved
Frame-buffer 0 Frame-buffer 1 fender target

T T T Stanford C5348K, Spring 2022




Rast 0 broadcasts ‘switch’ token to FB units (end of geom 0, rast 0)

)K

Input
Draw A—b 1 2134
Geometry 0 Geometry 1 516 7
/X\ gt
Next 5
T3.b
Switch 13, Switch T4
witc a witc Draw fé —_— ] 2
Rasterizer 0 Rasterizer 1
Frag Processing 0 Frag Processing 1
SW|tch
12,3 Switch 12,4 i 1
T1,3 2.1 T4 12,2 10
T1,1 T1,6 11,2 11,7
Interleaved
Frame-buffer 0 Frame-buffer 1 fender target

T T T Stanford C5348K, Spring 2022




Frame-buffer units process frags from (geom 0, rast 0) in parallel

(Notice updates to frame buffer)
)kp

Input
Draw A—b 1 234
Geometry 0 Geometry 1 51617
/X\ oaw A — EHEH B
Draw A\ —> [ 1][2][ 3[4
Next 5
T3.b
Switch T3, Switch T4
a i Draw A& — [1][2
Rasterizer 0 Rasterizer 1
Frag Processing 0 Frag Processing 1
T2,3 12,4 i
2.1 12,2 170
Switch T1,6 Switch 1,7 T,1
2713 Interleaved
Frame-buffer 0 Frame-buffer 1 M,4T1,5 render target

T T T Stanford C5348K, Spring 2022




“End of rast 0” token reached by FB: FB units start processing input from rast 1
(fragments from geom 0, rast 1)

)K

Draw A—b 1 234
Geometry 0 Geometry 1 516117
/X\ oaw A — EH EH B
Draw A — [11[2][3][4
Next 5
T3,b
Switch T3, Switch T4
: - Draw ﬂ# T2
Rasterizer 0 Rasterizer 1
Frag Processing 0 Frag Processing 1
2,3 12,4 i
T2.1 2.2 170
T1,6 1,7 1,1
2113 Interleaved
Frame-buffer 0 Frame-buffer 1 M4TIS render target

T T T Stanford C5348K, Spring 2022




“End of geom 0" token reached by rast units: rast units start processing input from geom 1
(note “end of geom 0, rast 1” token sent to rast input queues)

»K

Draw A—b 11213 4
Geometry 0 Geometry 1 516117
/X\ o A — FH B B
Draw A — [11[2][3][4
Next 5
T3,b
T3, T4
: Draw ﬂ# T2
Rasterizer 0 Rasterizer 1
Frag Processing 0 Frag Processing 1
SW|tch Switch
12,4 i 1
T2,1 12,2 10
T1,6 1,7 1,1
2113 Interleaved
Frame-buffer 0 Frame-buffer 1 T,4T1,5 render target

T T T Stanford C5348K, Spring 2022




Rast 0 processes triangles from geom 1

(Note rast 1 has work to do, but cannot make progress because its output queues are full)

)K

Draw A—b {23 /4
Geometry 0 Geometry 1 516 7
-\ T

Draw A3 — [ 1|23/ 4

Next T4
Draw ﬁ —> [ 12
Rasterizer 0 Rasterizer 1
Frag Processing 0 Frag Processing 1

[ ><\

SW|tch

Switch

T3, T4 01
_TW' T2,1 13,4 12,2 10
13,1 11,6 13,2 T1,7 "1
M2T13 Intedrleatved t
render tar
Frame-buffer 0 Frame-buffer 1 T4T1S ender targe

T

1

T

Stanford C5348K, Spring 2022



Rast 0 broadcasts “end of geom 1, rast 0” token to frame-buffer units

)K

Draw A—b 11213 4
Geometry 0 Geometry 1 516117
/ ><\ b A — 0 0 B0
Draw A\ —> | 1|23 ][4
- - 5
— T4
Draw @# T2
Rasterizer 0 Rasterizer 1
Frag Processing 0 Frag Processing 1
Switch SW|tch Switch_ 0 1
13,5 Switch 12,4
133 | T2,1 T34 12,2 10
13,1 11,6 13,2 11,7 1,1
2113 Interleaved
Frame-buffer 0 Frame-buffer 1 M.4T1,5 render target

T T T Stanford C5348K, Spring 2022




Frame-buffer units process frags from (geom 0, rast 1) in parallel

(Notice updates to frame buffer. Also notice rast 1 can now make progress since space has become available)

)K

Draw A—b 11213 4
Geometry 0 Geometry 1 516117
/ ><\ oraw A — EH I H
Draw A — [11[2][3][4
- - 5
Draw ﬂ# T2
Rasterizer 0 Rasterizer 1
Frag Processing 0 Frag Processing 1
Switch
13,5 Switch L
B3| T2 13,4 4,1 |-
13,1 Switch 13,2 Switch M1 12,1122
T,2T71,3 12,3 12,4 Intedrleaved
Frame-buffer 0 Frame-buffer 1 T4T,5T1,6 rendertarget
1,7

T T T Stanford C5348K, Spring 2022




Switch token reached by FB: FB units start processing input from (geom 1, rast 0)

)k}

Geometry 0

Geometry 1

/) >\

Rasterizer 0

Rasterizer 1

Frag Processing 0

/[ =><\

Frag Processing 1

Switch

13,5

13,3

13,1 T4,2

Frame-buffer 0

Switch

13,4

13,2 T4,1

T

Frame-buffer 1

1

Input
Draw A—V ] 3 4
) 7
Draw jl —> |1 3|4
Draw &—» 1 34
5
Draw @—» 1
0 1
10
1 121122
M2T3  T23124 Interleaved
render target

T,4T1,5T1,6

1,7

Stanford C5348K, Spring 2022



Frame-buffer units process frags from (geom 1, rast 0) in parallel

(Notice updates to frame buffer)

)k}

Geometry 0

Geometry 1

/) >\

Rasterizer 0

Rasterizer 1

Frag Processing 0

Frag Processing 1

Y

Switch: T4,2

Frame-buffer 0

Switch 14,1

T

Frame-buffer 1

1

Input
Draw A—V ] 3 4
> 7
Draw jl —> |1 3|4
Draw &—» 1 34
5
Draw @—» 1
0 1 13,1713.2
1 0 133134
T1,173,5T2,1 12,2 |
M2T3 123724 nterleaved
render target

T,4T1,5T1,6
1,7

T

Stanford C5348K, Spring 2022



Switch token reached by FB: FB units start processing input from (geom 1, rast 1)

)k}

Geometry 0

Geometry 1

/) >\

Rasterizer 0

Rasterizer 1

Frag Processing 0

14,2

Frag Processing 1

[\

14,1

Frame-buffer 0

T

Frame-buffer 1

1

Input
Draw A—V ] 3 4
> 7
Draw jl —> |1 3|4
Draw &—» 1 34
5
Draw @—» 1
0 1 131132
1 0 1337134
T1,1 13,5T2,1 12,2
M2T3  T23124 Interleaved
render target

T,4T1,5T1,6

1,7

Stanford C5348K, Spring 2022



Frame-buffer units process frags from (geom 1, rast 1) in parallel

(Notice updates to frame buffer)

)K

Geometry 0

Geometry 1

/ >\

Rasterizer 0

Rasterizer 1

Frag Processing 0

Frag Processing 1

[\

Frame-buffer 0

T

Frame-buffer 1

1

Input
praw AN\ —> [ 1] [ 2][3][4
51617
Draw A\ — [1][2][3]]4
Draw &_. 1 21{}314
5
Draw ﬂ* 2
0 1 131132
1 0 133134 T4,1 14,2
T,113,5T2,1 12,2 |
27,3 T2,3T24 nterleaved
render target

T,4T1,5T1,6
1,7

T

Stanford C5348K, Spring 2022



Parallel scheduling with data amplification

Stanford C5348K, Spring 2022



Geometry amplification

m (Consider examples of one-to-many stage behavior during geometry processing in the graphics
pipeline:

- Clipping amplifies geometry (clipping can result in multiple output primitives)

- Tessellation: pipeline permits thousands of vertices to be generated from a single base
primitive (challenging to maintain highly parallel execution)

- Primitive processing (“geometry shader”) outputs up to 1024 floats worth of vertices per
input primitive

Stanford C5348K, Spring 2022



Thought experiment

Command Processor

Geometry Geometry Geometry Geometry
Amplifier Amplifier Amplifier Amplifier

o0 0 Rasterizer o0 0

Assume round-robin distribution of eight primitives to geometry pipelines, one rasterizer unit.

Stanford (5348K, Spring 2022



Consider case of large amplification when processing T1

/'

Command Processor

Geometry
Amplifier

11,6

Geometry
Amplifier

Geometry
Amplifier

Geometry
Amplifier

11,5

11,4

11,3

11,2

11,1

Notice: output from T1

processing fills output queue

Result: one geometry unit (the one producing outputs from T1) is feeding the entire downstream pipeline

- Serialization of geometry processing: other geometry units are stalled because their output queues are full (they cannot be drained
until all work from T1 is completed)
- Underutilization of rest of chip: unlikely that one geometry producer is fast enough to produce pipeline work at a rate that fills

resources of rest of GPU.

Stanford C5348K, Spring 2022



Thought experiment: design a scheduling strategy for this case

Command Processor

Geometry Geometry Geometry Geometry
Amplifier Amplifier Amplifier Amplifier

1. Design a solution that is performant when the expected amount of data amplification is low?
2. Design a solution this is performant when the expected amount of data amplification is high

3. What about a solution that works well for both?
The ideal solution always executes with maximum parallelism (no stalls), and with maximal locality (units read and write to fixed size, on-

chip inter-stage buffers), and (of course) preserves order. Stanford CS348K, Spring 2022




Implementation 1: fixed on-chip storage

Command Processor

Geometry Geometry Geometry Geometry
Amplifier Amplifier Amplifier Amplifier

Small, on-chip buffers seo * o

Approach 1: make on-chip buffers big enough to handle common cases, but tolerate stalls
- Run fast for low amplification (never move output queue data off chip)
- Runvery slow under high amplification (serialization of processing due to blocked units). Bad performance cliff.

Stanford (5348K, Spring 2022



Implementation 2: worst-case allocation

Command Processor

Geometry Geometry Geometry Geometry
Amplifier Amplifier Amplifier Amplifier

Large, in-memory buffers soe IO

Approach 2: never block geometry unit: allocate worst-case space in off-chip buffers (stored in DRAM)

- Run slower for low amplification (data goes off chip then read back in by rasterizers)

- No performance cliff for high amplification (still maximum parallelism, data still goes off chip)

- What is overall worst-case buffer allocation if the four geometry units above are Direct3D 11 geometry shaders?

Stanford C5348K, Spring 2022



Implementation 3: hybrid

Command Processor

On-chip Geometry Geometry Geometry Geometry
buffers Amplifier Amplifier Amplifier Amplifier
Off-chip
(spill) buffers
\ ]

Hybrid approach: allocate output buffers on chip, but spill to off-chip, worst-case size buffers under high amplification
- Run fast for low amplification (high parallelism, no memory traffic)

- Less of performance cliff for high amplification (high parallelism, but incurs more memory traffic)
Stanford C5348K, Spring 2022



Summary

m Graphics pipeline: abstract machine for executing graphics commands
- Draw triangles
- Change state

m Mapping execution of sequence of these commands to a parallel GPU is a complex
scheduling problem

- Scheduling done by “graphics mode” execution of the GPU

Stanford C5348K, Spring 2022



