Lecture 1:

Course Introduction +
Review of Throughput HW
Architecture

Visual Computing Systems
Stanford C5348K, Spring 2022

Hello from the course staff

Your instructor (me) our CA

Prof. Kayvon Brennan Shacklett

Stanford (S348K, Spring 2022

Visual computing applications
have always demanded some of the world’s most advanced
parallel computing systems

AW EN e

.QC- -
‘ - e T ., . -
> 5 U5 “’.V‘.M

lvan Sutherland’s Sketchpad on MIT TX-2 (1962)

Stanford (5348K, Spring 2022

T h e fra m e b Uffe r 16 2K shift registers (640 x 486 x 8 bits)

Shoup’s SuperPaint (PARC1972-73)

Stanford C5348K, Spring 2022

T h e fra m e b Uffe r 16 2K shift registers (640 x 486 x 8 bits)

Shoup’s SuperPaint (PARC1972-73)

-’.“'_‘\

\ 3 THEHE

gl !
macut |.

-
-
e

-
-

_ 000'."0’0o.0-v0
T e
5
%]
y W
- sTY e

4 MiuUlad
12 A
ary

sl

Sl

ot~ .\on
\

Stanford C5348K, Spring 2022

Xerox Alto (1973)

74181 AL

Stanford (5348K, Spring 2022

Bravo (WYSIWYG)

Clark’s geometry engine (1982)

ASIC for geometric transforms
used in real-time graphics

il

LM N 7
T

—.-:—-.T.--.-..—.a_!.._._......'...-.- Rl

(=]
&
(4]
3
B
r.
m
=]
o
5
B

kil

i S L S T B LB

:'E.p.

Stanford (5348K, Spring 2022

NVIDIA Titan RTX 3090 GPU

~ 40 TFLOPs fp32 *
4X flops of ASCI Q (top US supercomputer circa 2002) **

* doesn’t about 70 TFLOPS of ray tracing compute + 320 TFLOPS of DNN compute
** not apples to Apples since ASCI Q is double precision flops Stanford CS348K, Spring 2022

Cyberpunk 2077

GAMERSYDE

5
"
Mo
L Y

- W

V2 Lid FORZA

-

S ING ‘

|“¥:\‘\: '
‘a . -
v
L%
;"- \i" — —
; . - .m ; _ ::

[_‘ « a 5 !'
T Ty .:..‘
3 "'." w "2 ‘l'“‘

i.:,.‘x.u"nu:

VLAY SRS
LN R e s -
CMO'-A“‘)

M N

- T TTITYES
- CLMWA Y S YT

.
———
-— - -
- o g -
. » -

Tl
1l
1
5
.

Image/video analysis via deep learning

1L

I | BAdAAS
! B
,'l‘-llﬂ
Bl

i l

https://medium.com/analytics-vidhya/introduction-to-computer-vision-with-opencv-part-1-3dc948521deb Stanford C5348K, Spring 2022

ware acceleration of DNN inference/training

-
-
-

x
e

€ A11

AW

-

(bbbl

Google TPU3 GraphCore IPU -
DLIA < sembaNowa pple Neural Engine

CARDINAL
SN0

20N3-PROY
18X977 A2

1388
5 AHW3AW0100065 vy

Intel Deep Learning
Inference Accelerator

SambaNova
Cardinal SN10

Ampere GPU with
Tensor Cores

Cerebra af c Engine

Stanford C5348K, Spring 2022

.

&m‘ —— ...\‘.
e A\l
- R L = s['.\'.\
o RO Pt ho X \Wll‘\ Lo
: g -p—u—\—-—hﬁ— e e — 1 ¥ L . L _ r“ L L : n =
5 ~ f 1 ‘.!" .";!” i

5\

\ ‘\,‘\.
N\ :
A QRCETTTS

/
£Y

i

D))))))))) sn)) s ound

!
[

—

3 Sy S S
S ey —
—

=t

.
\
)

b et

Ly

l.'..IllJ »

\-%“‘ '!‘Q /42 5
et VM

s ftﬂ‘ﬁﬂiﬂ;‘ ‘!s;'!ww ‘;I

> aé

~*c~ ,

.7 "E\‘ alé"ﬁ%&_@&iﬁja ..£_L _I..J. —-[.nl ake) »“

DL YA

< - ® " 9 »

1961,

Youtube Transcode, stream, analyze...

',!n'v FEEec
"Hil
4 |

|

i

(1111

({1 f
s < S
=3 F}'rr:'r‘. SEETEETT

i |

L |
10 '\ |
G

Google VPU transcoding HW

P> Pl o) 3:34/441

#LuisFonsi #Despacito #Imposible

onsi - Despacito Tt Pe Yankee
D 36M &l 44M & SHARE =i SAVE Stanford C5348K, Spring 2022

6,703,305,990 views * Jan 12, 2017

Video conferencing |

Background blur

Richer environments

Add effects
Stanford C5348K, Spring 2022

Digital photography: major driver of compute capability
of modern smartphones

Portrait mode
(simulate effects of large aperture DSLR lens) High dynamic range (HDR) photography

" ;

@

Stanford C5348K, Spring 2022

Modern smartphones utilize multiple processing units to quickly
generate high-quality images

Apple A13 Bionic

Multi-core CPU (heterogeneous cores)
Multi-core GPU

Neural accelerator

Sensor processing accelerator

Video compression/decompression HW

Etc...

Image Credit: Anandtech / Techinsights Inc. Stanford C5348K, Spring 2022

Oculus Quest 2 headset (2020)

Stanford C5348K, Spring 2022

o
=
=
S
=
=
oc
=

Stanford C5348K, Spring 2022

Stanford (S348K, Spring 2022

48K, Spring 2(

What is this course about?

Accelerator hardware architecture?
Graphics/vision/digital photography algorithms?

Programming systems?

Stanford C5348K, Spring 2022

What we will be learning about

Visual Computing Workloads
Algorithms for image/video processing,
DNN evaluation, data compression, etc.

If you don’t understand key workload characteristics,
how can you design a “good” system?

Stanford C5348K, Spring 2022

What we will be learning about

Modern Hardware
Organization

High-throughput hardware designs
(parallel, heterogeneous, and specialized)
fundamental constraints like area and power

If you don’t understand key constraints of modern
hardware, how can you design algorithms that are
well suited to run on it efficiently?

Stanford C5348K, Spring 2022

What we will be learning about

Programming Model
Design

Choice of programming abstractions,
level of abstraction issues,

domain-specific vs. general purpose, etc.
Good programming abstractions enable productive

development of applications, while also providing system
implementors flexibility to explore highly efficient
implementations

Stanford C5348K, Spring 2022

This course is about architecting efficient and scalable
systems...

It is about the process of understanding the fundamental structure of problems in the visual
computing domain, and then leveraging that understanding to...

To design more efficient and more robust algorithms
To build the most efficient hardware to run these algorithms

To design programming systems to make developing new applications simpler, more
productive, and highly performant

Stanford C5348K, Spring 2022

2022 course topics

The digital camera photo processing pipeline in modern smartphones

Basic algorithms (the workload)
Programming abstractions for writing image processing apps

Mapping these algorithms to parallel hardware

Systems for creating fast and accurate deep learning models

Designing efficient DNN topologies, and scheduling them on modern CPUs/GPUs
Hardware for accelerating deep learning (why GPUs are not efficient enough!)

Raising level of abstraction when designing models
System support for automating data labeling

Processing and Transmitting Video

Efficient DNN inference on video
Trends in video compression (neural techniques)
How modern video conferencing systems work, and what new experiences are on the horizon

Recent advances in real-time (hardware accelerated) rendering + a few assorted topics. ..
Resigning renderers as simulation

engines for ML
A few guest speakers from industry

Advanced rasterization in energy-constrained mobile environments
Recent APl and hardware support for real-time ray tracing

How deep learning, combined with RT hardware, is making real time ray tracing possible
Stanford C5348K, Spring 2022

Logistics and Expectations

Stanford C5348K, Spring 2022

Logistics

m Course web site:

- http://cs348k.stanford.edu
- My goal is to post lecture slides the night before class

m All announcements will go out via Ed Discussion (not via Canvas)

Stanford C5348K, Spring 2022

My expectations of you

m 40% participation
- There will be ~1 assigned technical paper reading per class
- You will submit a response to each reading by 11am on class days via Gradescope
- We will start most classes with a 30-45 minute discussion of the reading ¥~

This is so important. You've got
to do the reasons and come to

m 20% two programming assignments (first 1/2 of course) dlass to make the course tick.
- Implement and optimize a simple HDR photography processing pipeline
- Understanding why “blocking” a conv layer in a DNN matters

m 40% self-selected term project
- | suggest you start thinking about projects now

Stanford C5348K, Spring 2022

Review (or crash course):

key principles of modern
throughput computing hardware

Concept #1:

The high cost of data communication
(Almost everything we talk about in this course starts from this concept)

Stanford C5348K, Spring 2022

A basic CPU that executes instructions

A processor executes instructions

Professor Kayvon'’s
Very Simple Processor

—

(Execution Unit) instruction, which may modify values in the processor’s

registers or the computer’s memory

Execution
Context

Register 0 (RO)

3:3:::::;) «—— Registers: maintain program state: store value of

Register 3 (R3) variables used as inputs and outputs to operations

Stanford C5348K, Spring 2022

But what is memory?

Memory

Stanford C5348K, Spring 2022

A program’s memory address space "

m A computer’s memory is organized as a array of bytes

Value

m Each byteis identified by its “address” in memory
(its position in this array)

(Today we’'ll assume memory is byte-addressable)

“The byte stored at address 0x8 has the value 32.”
“The byte stored at address 0x10 (16) has the value 128.”

In the illustration on the right, the program’s
memory address space is 32 bytes in size
(so valid addresses range from 0x0 to 0x1F)

Stanford C5348K, Spring 2022

Load: an instruction for accessing the contents of memory

Professor Kayvon's
Very Simple Processor

“Please load the four-byte value in memory starting from the

ALU address stored by register R2 and put this value into register R0.”

(Execution Unit)

Memory

2(1) ZZ Oxff68107c: 1024

R2: Oxff681080 oxff681080: 42

R3: 0x80486412 Oxff681084: 32

Oxff681088: ©

Stanford C5348K, Spring 2022

Terminology

m Memory access latency
- The amount of time it takes the memory system to provide data to the processor

- Example: 100 clock cycles, 100 nsec

Data request

Memory

Latency ~ 2 sec

Stanford C5348K, Spring 2022

Stalls

m Aprocessor “stalls” when it cannot run the next instruction in an instruction stream
because of a dependency on a previous instruction that is not yet complete.

m Accessing memory is a major source of stalls

1d r@ mem[r2] :il Dependency: cannot execute ‘add’ instruction until data from

mem(r2] and mem[r3] have been loaded from memory
1d rl mem[r3]

add re, ro, ri

m Memory access times ~ 100's of cycles
- Memory “access time” is a measure of latency

Stanford C5348K, Spring 2022

The implementation of the linear memory address space abstraction on
a modern computer is complex

Core1

Core 8

7

The instruction “load the value stored at address X into register R0” might involve a
complex sequence of operations by multiple data caches and access to DRAM

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

am
==

L2 cache
(256 KB)

L3 cache
(20 MB)

G il
(A ATHHE AP
-

DRAM
(32 GB)

Stanford C5348K, Spring 2022

Why do modern processors have data caches?

Core 1

CoreN

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L3 cache
(8 MB)

38 GB/sec

<)

Memory
DDR4 DRAM

(Gigabytes)

Stanford C5348K, Spring 2022

Caches reduce memory access latency *

L1 cache
(32 KB)

Core 1

L2 cache
(256 KB)

L1 cache
(32 KB)

CoreN

L2 cache
(256 KB)

L3 cache
(8 MB)

* Caches also provide high bandwidth data transfer to CPU

38 GB/sec

<)

Caches reduce length of stalls (reduce memory access latency)

Processors run efficiently when data is resident in caches

Memory
DDR4 DRAM

(Gigabytes)

Stanford C5348K, Spring 2022

Data access times
(Kaby Lake CPU)

Latency (number of cycles at 4 GHz)

Datain L1 cache 4 mj

Datain L2 cache 12

Datain L3 cache 38 m

Data in DRAM (best case) ~248 =

Stanford C5348K, Spring 2022

Cache review

/ad‘:)’ejs 0X0 4210 Oxic

/S

0x20 —/o © o oje o o o

0xi0 —>® © © o/l o © o @
® © ¢ ¢ ¢ & o o
® 6 & ¢ ¢ & o o
® © ¢ ¢ ¢ & o o
® 6 ¢ ¢ ¢ o o o
® 6 & ¢ ¢ & o o

8

Consider 4-byte elements

Consider a cache with 16-byte cache lines and a total
capacity of 32 bytes (2 lines fit in cache)

Least recently used (LRU) replacement policy

Address Cache state (after load is complete)
accessed
0x0 “cold miss”
0x4 hit
0x8 hit
OxC hit
0x10 cold miss
0x14 hit
0x18 hit
0xlc hit
0x20 cold miss (evict 0x0)
0x24 hit
0x28 hit
0x2¢ hit
0x30 cold miss (evict 0x10)
0x34 hit
0x38 hit
0x3c hit
0x40 cold miss (evict 0x20)

Stanford C5348K, Spring 2022

Data access in grid solver: row-major traversal

“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy

N .
® © © © ¢ ©© ¢ o o °o ‘l ® AssumerOW'majorgrid IaYOUt.
@ © 0 00 00 0 0 0.0 Assume cache line is 4 grid elements.
©:® © 6 0 0 0 0 0 0 0:0 (ihecapacityis24 grid elements (6 lines)
o;oooocooooogo
o0 0000000 0 0:0 , o
Recall grid solver application.
©:0 © 6 © 06 6 6 0 0 030 o
Blue elements show data that is in cache
o: 0 ¢ ¢ 6 ¢ ¢ 6 & o o o
after update to red element.
©:0 0 00 000 0 0 00
0 0000000 0 00
0o 00600000 0 00
oo 00000000 00

Stanford C5348K, Spring 2022

Data access in grid solver: row-major traversal

“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy

N .

®© ©6 0606006 00 0 0 0 0 o Assume row-major grid layout.
900000000006 Assume cache line is 4 grid elements.
©:0 © 0 0 6 0 0 0 0 0:% (;checapacityis24 grid elements (6 lines)
o;oooooooooogo
“ *eeeeeees ‘ Blue elements show data in cache at end
®o: 0 & 6 ¢ 6 6 6 & o o :° .

of processing first row.
CEQCQCQCQCQCEQ
0606000000 0 0:0
e 00000000 00
0o 006060000 0 00
oo 00000000 0i0

Stanford C5348K, Spring 2022

Problem with row-major traversal: long time between

accesses to same data

Assume row-major grid layout.
Assume cache line is 4 grid elements.

Cache capacity is 24 grid elements (6 lines)

Although elements (0,2) and (0,1) had been
accessed previously, they are no longer

present in cache at start of processing row 2.

This program loads three lines for every
four elements of output.

Stanford C5348K, Spring 2022

Improving temporal locality by changing grid traversal order

“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy

. N .
@ 00000000 00 Assume row-major grid layout.

r Assume cache line is 4 grid elements.
3 :® (Cache capacity is 24 grid elements (6 lines)
: @
> ° “Blocked” iteration order
: @
B ° (diagram shows state of cache after
- : @ finishing work from first row of first block)
= o
- °

o 00606006 0606e e e e Now load two cache lines for every six
elements of output

Stanford C5348K, Spring 2022

Improving temporal locality by “fusing” loops

void add(int n, float* A, float* B, float* C) {
for (int i=0; i<n; i++)
C[i] = A[i] + B[i];

Two loads, one store per math op

} (arithmetic intensity = 1/3)

void mul(int n, float* A, float* B, float* C) {
for (int i=0; i<n; i++)
C[i] = A[i] * B[i]; 4+——— Twoloads, one store per math op

(arithmeticintensity = 1/3)

float* A, *B, *C, *D, *E, *tmpl, *tmp2;
// assume arrays are allocated here

// compute E =D + ((A + B) * ()

add(n, A, B, tmpl); - P Ity —
mul(n, tmpl, C, tmp2); 4+———————— (Qverall arithmeticintensity =1/3

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * c[i]; <«—— Fourloads, one store per 3 math ops

} (arithmetic intensity = 3/5)

// compute E =D + (A + B) * C
fused(n, A, B, C, D, E);
Code on top is more modular (e.g, array-based math library like numPy in Python)

Code on bottom performs much better. Why?
Stanford C5348K, Spring 2022

Multi-threading reduces stalls

m l|dea: interleave processing of multiple threads on the same core to hide stalls
- [f you can’t make progress on the current thread... work on another one

Stanford C5348K, Spring 2022

Hiding stalls with multi-threading

Time

Thread 1
Elements (..

1 Core (1 thread)

ALUO

|

ALU1

ALU 2

ALU 3

ALU 4

ALUS5

ALU 6I

ALU 7

Stanford (5348K, Spring 2022

Hiding stalls with multi-threading

Time

Thread 1
Elements0...7

Wil

Thread 2
Elements8...15

Thread 3
Elements16... 23

(2)

(3)

Thread 4
Elements 24 ... 31

4

1 Core (4 hardware threads)

ALU 2

ALU3

ALU 6|

ALU 7

Stanford C5348K, Spring 2022

Hiding stalls with multi-threading

Thread 1 Thread 2 Thread 3 Thread 4
Elements0...7 Elements8...15 Elements16... 23 Elements 24 ... 31

(1, 2 3 4

Time

— Stall —

Runnable

1 Core (4 hardware threads)

ALU 2

ALU3

ALU 6|

ALU 7

Stanford C5348K, Spring 2022

Hiding stalls with multi-threading

Thread 1 Thread 2 Thread 3 Thread 4
Elements0...7 Elements8...15 Elements16... 23 Elements 24 ... 31

© © O

Time

1 Core (4 hardware threads)

A -
11/
ALUO ALU 1| |ALU 2| |ALU3
— Stall

-,/ [MI/ ALU 4| (ALUS5| (ALUG6
Runnable Stall M @

YN
Stall

Runnable ,\ /\[\
Done!

Runnable
i
= I

ALU 7

R —

o
=

Stanford (S348K, Spring 2022
™ Trrrrry pring

Throughput computing: a trade-off

Thread 1 Thread 2 Thread 3 Thread 4

Tima Elements0...7 Elements8...15 Elements16... 23 Elements 24 ... 31

I!II' I Key idea of throughput-oriented systems:

= 3 Potentially increase time to complete work by any one thread,
in order to increase overall system throughput when running
multiple threads.
Runnable

Note: during this time, this thread is runnable, but it is not being
executed by the processor core.

(The core is executing instructions from another thread.)

Done!

Stanford C5348K, Spring 2022

No free lunch: storing execution contexts

Consider on-chip storage of execution contexts as a finite resource

)]]]
]] []

ALU 4| [ALUS5| [ALUG6

ALU 7

Stanford (S348K, Spring 2022

Many small contexts (high latency hiding ability)

16 hardware threads: storage for small working set per thread

ALUO| ALU1| ALU2| ALU3|

wawa] [aws] [7]

ojlojo]fo
ojojefo
ojlojofo

HOE BOR BON HOR

Four large contexts (low latency hiding ability)

4 hardware threads: storage for large working set per thread

Stanford (S348K, Spring 2022

Exercise: consider a simple two threaded core

Memory

I

Data
Cache

ALU
(Execution unit)

Single core processor, multi-threaded core (2 threads).
Can run one scalar instruction per clock from
one of the hardware threads

Stanford (5348K, Spring 2022

What is the utilization of the core? (one thread)

Thread 0 - stall - stall - stall ...

3/15 =20%

Assume we are running a
program where threads perform
three arithmetic instructions,
followed by memory load

(with 12 cycle latency)

Stanford C5348K, Spring 2022

What is the utilization of the core? (two threads)

Thread 0 - -
teead1 [11

Assume we are running a 6/15 =40%

program where threads perform
three arithmetic instructions,
followed by memory load

(with 12 cycle latency)

Stanford C5348K, Spring 2022

How many threads are needed to achieve 100% utilization?

westo [1 i
a1 [

Assume we are running a
program where threads perform
three arithmetic instructions,
followed by memory load

(with 12 cycle latency)

Stanford C5348K, Spring 2022

Five threads needed to obtain 100% utilization

Thread 0 -
teead1 [
Thread 2 -

Thread 3 -
Thread 4 -

Five threads required
for 100% utilization

Stanfo

rd (S348K, Spring 2022

Additional threads yield no benefit (already 100% utilization)

Thread 0 -

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Thread 6

Thread 7

Still 100%

Stanford C5348K, Spring 2022

How many threads are needed to achieve 100% utilization?

Threads now perform six arithmetic instructions, followed by memory load (with 12 cycle latency)

How does a higher ratio of math instructions to memory latency affect the number of threads
needed for latency hiding?

Stanford C5348K, Spring 2022

Takeaway (point 1):

A processor with multiple hardware threads has the ability to avoid stalls by
performing instructions from other threads when one thread must wait for a long
latency operation to complete.

Note: the latency of the memory operation is not changed by multi-threading, it
just no longer causes reduced processor utilization.

Stanford C5348K, Spring 2022

Takeaway (point 2):

A multi-threaded processor hides memory latency by performing arithmetic from
other threads.

Programs that feature more arithmetic per memory access need fewer threads to
hide memory stalls.

Stanford C5348K, Spring 2022

Terminology
m Memory bandwidth

- The rate at which the memory system can provide data to a processor
- Example: 20 GB/s

Memory

Bandwidth ~ 4 items/sec

Latency of transferring any one item: ~2 sec

Stanford C5348K, Spring 2022

Terminology
m Memory bandwidth

- The rate at which the memory system can provide data to a processor
- Example: 20 GB/s

Memory

Bandwidth: ~ 8 items/sec

Latency of transferring any one item: ~2 sec

Stanford C5348K, Spring 2022

Consider a processor that can do one add per clock (+ can co-issue LD)

Add

= Math instruction

Add

= Load instruction

Load 64 bytes

= Occupancy of memory bus
Add (size of cache line / memory bus bandwidth)

Add

Load 64 bytes Assumptions (8 clocks to transfer data)
Add Up to 3 outstanding load requests.

Add
Load 64 bytes
Add
Add

Load 64 bytes i Stall!

Add
Add

Load 64 bytes Stall!

-
time Stanford (5348K, Spring 2022

Rate of math instructions limited by available bandwidth

Bandwidth-bound execution!

Convince yourself that the instruction
throughput is not impacted by memory
latency, number of outstanding memory
requests, etc.

Only the memory bandwidth!!!

(Note how the memory system is occupied
100% of the time)

= Math instruction

= Load instruction

= Occupancy of memory bus
(size of cache line / memory bus bandwidth)

_—m
time Stanford CS348K, Spring 2022

High bandwidth memories

m Modern GPUs leverage high bandwidth memories located near processor
m Example:
- V100 uses HBM2
- 900 GB/s

Stanford C5348K, Spring 2022

Thought experiment

Task: element-wise multiplication of two vectors A and B A
X

Assume vectors contain millions of elements .
= Load input A[i] =

= Load input BIi] C

= Compute A[i] x Bli]
- Store result into ([i]

Three memory operations (12 bytes) for every MUL
NVIDIA V100 GPU can do 5120 fp32 MULs per clock (@ 1.6 GHz)
Need ~98 TB/sec of bandwidth to keep functional units busy

<1% GPU efficiency... but still 12x faster than eight-core CPU!
(3.2 GHz Xeon E5v4 eight-core C(PU connected to 76 GB/sec memory bus: ~3% efficiency on this computation)

Stanford C5348K, Spring 2022

Bandwidth limited!
This computation is

bandwidth limited!

If processors request data at too high a rate,
the memory system cannot keep up.

Overcoming bandwidth limits is often the most important challenge facing
software developers targeting modern throughput-optimized systems.

Stanford C5348K, Spring 2022

Data movement has high energy cost

m Rule of thumb in mobile system design: always seek to reduce amount of data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance). Now, we wish to reduce communication to
reduce energy consumption

m “Ballpark” numbers

- Integerop:~1pJ* [Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 p) o __ Suggests that recomputing values,

rather than storing and reloading

N Implications them, is a better answer when

. optimizing code for energy efficiency!
- Reading 10 GB/sec from memory: ~1.6 watts PHmIzIng 9y Y

- Entire power budget for mobile GPU: ~1 watt

(remember phone is also running CPU, display, radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Machook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford CS348K, Spring 2022

In modern computing, bandwidth is the critical resource

Performant parallel programs will:

® (Organize computation to fetch data from memory less often

- Reuse data previously loaded by the same thread
(temporal locality optimizations)
- Share data across threads (inter-thread cooperation)

m Favor performing additional arithmetic to storing/reloading values (the math is “free”)

® Main point: programs must access memory infrequently to utilize modern processors efficiently

Stanford C5348K, Spring 2022

Concept #2:
The value of specializing computation

Stanford C5348K, Spring 2022

Mobile: benefits of increasing efficiency

m Run faster for a fixed period of time

- Run at higher clock, use more cores (reduce latency of critical task)

- Do more at once

m Run at a fixed level of performance for longer
- e.g., video playback, health apps

- Achieve “always-on” functionality that was previously impossible

Google Glass: ~40 min
Ty recording per charge
b = (nowhere near “always on”)

iPhone: Amazon Echo / Google Home
Siri activated by button press or holding Always listening
phone up to ear

Stanford C5348K, Spring 2022

Limits on chip power consumption

m General mobile processing rule: the longer a task runs the less power it can use

- Processor’s power consumption is limited by heat generated (efficiency is required for more than just
maximizing battery life)

A

€ Electrical limit: max power that can be supplied to chip

______ Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
""""" (chip can run at high power for short period of time until chip heats to Tj)
Case temp: mobile device gets too hot for user to comfortably hold
/(chip is at suitable operating temp, but heat is dissipating into case)

Power

> .- Battery life: chip and case are cool, but want to reduce power
consumption to sustain long battery life for given task

iPhone 6 battery: 7 watt-hours
9.7iniPad Pro battery: 28 watt-hours
15in Machook Pro: 99 watt-hours

Time

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote Stanford (5348K, Spring 2022

A basic CPU that executes instructions

Professor Kayvon'’s
Very Simple Processor

- <—— Determine what instruction to run next

ALU Execution unit: performs the operation described by an
(Execution Unit) | : : . : . /
instruction, which may modify values in the processor’s

registers or the computer’s memory

Register 0 (RO)

Register 1 (R1) . . P .
Register 2 (R2) «——— Registers: maintain program state: store value of

Register 3 (R3) variables used as inputs and outputs to operations

Stanford C5348K, Spring 2022

Efficiency benefits of compute specialization

m Rules of thumb: compared to high-quality C code on CPU...

m Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

m Fixed-function ASIC ("application-specific integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt
Clock and Data supply

- Assuming code is compute bound and T 28%

and is not floating-point math

Arithmetic ___
6%

Instruction

supply
42%

Efficient Embedded Computing [Dally et al. 08]
[Source: Chung et al. 2010, Dally 08] [Figure credit Eric Chung] Stanford (5348K, Spring 2022

Hardware specialization increases efficiency

Area-normalized FFT Performance (40nm)

X\x K K ——-=-- Corei7
100 LX760 O P FPGA
ik GTX285 ...
i GPUSs
—¢— GTX480 « G

3 ASIC

N
o

ASIC delivers same performance as one CPU core with

1 ;Wbmﬁ ~ 1/1000th the chip area.
C--0-0-0-0-o.
& . *-e-e-e-a

-

GPU cores: ~ 5-7 times more area efficient than C(PU
cores.

Pseudo-GFLOP/s per
mm?
o

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Ig2(N) (data set size)

FFT Energy Efficiency (40nm)

100 X\%—)Kﬂ’(SN e ---®---Core i7
B . T LX760 s FPGA
o A— GTX285 ...
g‘ — ¢ GTX480 & GPUS
(o 10 H ASIC
< W“"""*—*“‘P‘—*ﬁ*ﬁﬁ
-
6 1 ASIC delivers same performance as one CPU core with
o ,0--‘0""""-"_""’"""’"”~-0--0--0---0.s only ~ 1/100th the power.
'g . -9
@ 0
(o

4 5§ 6 7 8 89 1011 12 13 14. 15 16 17 18 19 ‘20
Ig2(N) (data set size)

[Chung et al. MICRO 2010] Stanford CS348K, Spring 2022

JIRRERWith Layla in 307 inleee

Let’s crack open a recent smartphone

Google Pixel 2 Phone:
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

fu

Visual Pixel Core H L | IPUIOBlock ||
Programmableimage = | [REESRRTSS

processor and DNN accelerator = '~ FISTIR T

. Core 3
. IPU
i Core 5
f e ;;, il
Seraasll) IPY L TPY
ax-i4s| Core8 | Coref

e M A e

“Hexagon” Mult >
Programmable DSP ERRRECLETEIZETY RASRCAS u;)l-cor: GPU
data-parallel multi-media [Ll “Unit@Py) T (3D graphics,

: [_ - : Open(CL data-parallel compute)
processing | Wi-Fi procectes uni Procasensur g
Qualcommi | I
A Hexagon DSP T, Video encode/decode ASIC
. ©UHVX All-Wa Camera : . .
Image Signal Processor j§ . - Display engine
ASIC for processing camera [§ A::ﬁ'?::;io Kryo 280 CPU __ (compresses pixels for
sensor pixels S — ' transfer to high-res screen)
Zat™Location Haven Security ~ Multi-core ARM CPU

4 “big cores” + 4 “little cores”
Stanford C5348K, Spring 2022

Modern smartphones utilize multiple processing units to quickly
generate high-quality images

Apple A13 Bionic

Multi-core CPU (heterogeneous cores)
Multi-core GPU

Neural accelerator

Sensor processing accelerator

Video compression/decompression HW

Etc...

Image Credit: Anandtech / Techinsights Inc. Stanford C5348K, Spring 2022

Modern systems use specialized HW for...
m Image/video encode/decode (e.g., H.264, JPG)

m Audio recording/playback
m Voice “wake up” (e.g., Ok Google)

m Camera “RAW" processing: processing data acquired by image sensor into images that are
pleasing to humans

m Many 3D graphics tasks (rasterization, texture mapping, occlusion using the Z-buffer)

m Continuous sensing (health, fitness, GPS, etc)

m Deep network evaluation (Google’s Tensor Processing Unit, Apple Neural engine, etc.)

Stanford C5348K, Spring 2022

Three things to know

1. What are these three hardware design strategies, and what problem/goals do they address? (See
(5149 if you need a refresher)

- Muti-core processing
- SIMD processing
- Hardware multi-threading

2. What is the motivation for specialization via...
- Multiple types of processors (e.g., CPUs, GPUs)
- Custom hardware units (ASIC)

3. Whyis memory bandwidth a major constraint (often the most important constraint) when
mapping applications to modern computer systems?

Stanford C5348K, Spring 2022

Welcome to (5348K!

m See website for tonight’s reading

Stanford C5348K, Spring 2022

