
Visual Computing Systems
Stanford CS348K, Spring 2022

Lecture 1:

Course Introduction +
Review of Throughput HW

Architecture

Stanford CS348K, Spring 2022

Hello from the course sta!
Your instructor (me) Your CA

Prof. Kayvon Brennan Shacklett

Stanford CS348K, Spring 2022

Visual computing applications
have always demanded some of the world’s most advanced
parallel computing systems

Stanford CS348K, Spring 2022

Ivan Sutherland’s Sketchpad on MIT TX-2 (1962)

Stanford CS348K, Spring 2022

The frame bu!er
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)

Stanford CS348K, Spring 2022

The frame bu!er 16 2K shift registers (640 x 486 x 8 bits)

Shoup’s SuperPaint (PARC 1972-73)

Stanford CS348K, Spring 2022

Xerox Alto (1973)

TI 74181 ALU
Bravo (WYSIWYG)

Stanford CS348K, Spring 2022

Clark’s geometry engine (1982)

Figure 2: Photograph of the Geometry Engine.

ASIC for geometric transforms
used in real-time graphics

Stanford CS348K, Spring 2022

NVIDIA Titan RTX 3090 GPU

~ 40 TFLOPs fp32 *
4X "ops of ASCI Q (top US supercomputer circa 2002) **
* doesn’t about 70 TFLOPS of ray tracing compute + 320 TFLOPS of DNN compute
** not apples to Apples since ASCI Q is double precision "ops

Stanford CS348K, Spring 2022Cyberpunk 2077

Stanford CS348K, Spring 2022Forza Motorsport 7

Stanford CS348K, Spring 2022

Unreal 5 Demo (Nanite renderer)

Stanford CS348K, Spring 2022

Image/video analysis via deep learning

https://medium.com/analytics-vidhya/introduction-to-computer-vision-with-opencv-part-1-3dc948521deb

Stanford CS348K, Spring 2022

Hardware acceleration of DNN inference/training

Google TPU3

Huawei Kirin NPU

Apple Neural Engine

GraphCore IPU

Ampere GPU with
Tensor Cores

Intel Deep Learning
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova
Cardinal SN10

Stanford CS348K, Spring 2022

Datacenter-scale applications

Google TPU pods
Image Credit: TechInsights Inc.

Stanford CS348K, Spring 2022

Youtube Transcode, stream, analyze…

Google VPU transcoding HW

Stanford CS348K, Spring 2022

Video conferencing
Background blur

Add e!ects

Richer environments

Stanford CS348K, Spring 2022

Digital photography: major driver of compute capability
of modern smartphones

High dynamic range (HDR) photography
Portrait mode

(simulate e!ects of large aperture DSLR lens)

Stanford CS348K, Spring 2022

Modern smartphones utilize multiple processing units to quickly
generate high-quality images

Image Credit: Anandtech / TechInsights Inc.

Apple A13 Bionic

Multi-core CPU (heterogeneous cores)
Multi-core GPU
Neural accelerator
Sensor processing accelerator
Video compression/decompression HW
Etc…

Stanford CS348K, Spring 2022

Oculus Quest 2 headset (2020)

Stanford CS348K, Spring 2022

AR on a mobile device

Stanford CS348K, Spring 2022

Snap AR Spectacles

Stanford CS348K, Spring 2022

On every vehicle: analyzing images for transportation

Stanford CS348K, Spring 2022

What is this course about?

Accelerator hardware architecture?

Graphics/vision/digital photography algorithms?

Programming systems?

Stanford CS348K, Spring 2022

What we will be learning about

Visual Computing Workloads
Algorithms for image/video processing,
DNN evaluation, data compression, etc.

Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [15] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [15] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

NYUDv2 [33] is an RGB-D dataset collected using the
Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [14]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [15], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,9 show state-of-the-art performance on
both tasks.

9Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation. (An earlier version of this pa-
per reported a lower mean IU, which included all categories either present
or predicted in the evaluation.)

Table 5. Results on SIFT Flow9 with class segmentation
(center) and geometric segmentation (right). Tighe [36] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [25] 76.7 - - - -
Tighe et al. [36] - - - - 90.8

Tighe et al. [37] 1 75.6 41.1 - - -
Tighe et al. [37] 2 78.6 39.2 - - -
Farabet et al. [9] 1 72.3 50.8 - - -
Farabet et al. [9] 2 78.5 29.6 - - -
Pinheiro et al. [31] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [17] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [17]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

6. Conclusion

Fully convolutional networks are a rich class of mod-
els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification
nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.

Acknowledgements This work was supported in part

If you don’t understand key workload characteristics,
how can you design a “good” system?

Stanford CS348K, Spring 2022

What we will be learning about

If you don’t understand key constraints of modern
hardware, how can you design algorithms that are

well suited to run on it e#ciently?

Modern Hardware
Organization

High-throughput hardware designs
(parallel, heterogeneous, and specialized)

fundamental constraints like area and power

Stanford CS348K, Spring 2022

What we will be learning about

Good programming abstractions enable productive
development of applications, while also providing system

implementors "exibility to explore highly e#cient
implementations

Programming Model
Design

Choice of programming abstractions,
level of abstraction issues,

domain-speci$c vs. general purpose, etc.

Halide

Stanford CS348K, Spring 2022

This course is about architecting e#cient and scalable
systems…
It is about the process of understanding the fundamental structure of problems in the visual
computing domain, and then leveraging that understanding to…

To design more e#cient and more robust algorithms

To build the most e#cient hardware to run these algorithms

To design programming systems to make developing new applications simpler, more
productive, and highly performant

Stanford CS348K, Spring 2022

2022 course topics
The digital camera photo processing pipeline in modern smartphones

Basic algorithms (the workload)
Programming abstractions for writing image processing apps
Mapping these algorithms to parallel hardware

Systems for creating fast and accurate deep learning models
Designing e#cient DNN topologies, and scheduling them on modern CPUs/GPUs
Hardware for accelerating deep learning (why GPUs are not e#cient enough!)

System support for automating data labeling

Recent advances in real-time (hardware accelerated) rendering
Advanced rasterization in energy-constrained mobile environments
Recent API and hardware support for real-time ray tracing
How deep learning, combined with RT hardware, is making real time ray tracing possible

Processing and Transmitting Video
E#cient DNN inference on video
Trends in video compression (neural techniques)
How modern video conferencing systems work, and what new experiences are on the horizon

Raising level of abstraction when designing models

+ a few assorted topics…
Resigning renderers as simulation
engines for ML
A few guest speakers from industry

Stanford CS348K, Spring 2022

Logistics and Expectations

Stanford CS348K, Spring 2022

Logistics
Course web site:
- http://cs348k.stanford.edu
- My goal is to post lecture slides the night before class

All announcements will go out via Ed Discussion (not via Canvas)

Stanford CS348K, Spring 2022

My expectations of you
40% participation
- There will be ~1 assigned technical paper reading per class
- You will submit a response to each reading by 11am on class days via Gradescope
- We will start most classes with a 30-45 minute discussion of the reading

20% two programming assignments ($rst 1/2 of course)
- Implement and optimize a simple HDR photography processing pipeline
- Understanding why “blocking” a conv layer in a DNN matters

40% self-selected term project
- I suggest you start thinking about projects now

This is so important. You’ve got
to do the reasons and come to
class to make the course tick.

Stanford CS348K, Spring 2022

Review (or crash course):

key principles of modern
throughput computing hardware

Stanford CS348K, Spring 2022

Concept #1:
The high cost of data communication

(Almost everything we talk about in this course starts from this concept)

Stanford CS348K, Spring 2022

A basic CPU that executes instructions
A processor executes instructions

Execution
Context

ALU
(Execution Unit)

Professor Kayvon’s
Very Simple Processor

Registers: maintain program state: store value of
variables used as inputs and outputs to operations

Execution unit: performs the operation described by an
instruction, which may modify values in the processor’s
registers or the computer’s memory

Register 0 (R0)
Register 1 (R1)
Register 2 (R2)
Register 3 (R3)

Fetch/
Decode Determine what instruction to run next

Stanford CS348K, Spring 2022

But what is memory?

Memory

Stanford CS348K, Spring 2022

A program’s memory address space
A computer’s memory is organized as a array of bytes

Each byte is identi$ed by its “address” in memory
(its position in this array)
(Today we’ll assume memory is byte-addressable)

“The byte stored at address 0x10 (16) has the value 128.”

“The byte stored at address 0x8 has the value 32.”

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255
0
0
0

0x1F

. .
.

. .
.

0

In the illustration on the right, the program’s
memory address space is 32 bytes in size
(so valid addresses range from 0x0 to 0x1F)

Stanford CS348K, Spring 2022

Load: an instruction for accessing the contents of memory

Fetch/
Decode

Execution
Context

ALU
(Execution Unit)

Professor Kayvon’s
Very Simple Processor

ld R0 ← mem[R2]
“Please load the four-byte value in memory starting from the
address stored by register R2 and put this value into register R0.”

R0: 96
R1: 64
R2: 0x!681080
R3: 0x80486412

Memory

0xff681080: 42

0xff681084: 32
0xff681088: 0

0xff68107c: 1024

...

...

Stanford CS348K, Spring 2022

Terminology
Memory access latency
- The amount of time it takes the memory system to provide data to the processor
- Example: 100 clock cycles, 100 nsec

Memory

Data request

Latency ~ 2 sec

Stanford CS348K, Spring 2022

Stalls
A processor “stalls” when it cannot run the next instruction in an instruction stream
because of a dependency on a previous instruction that is not yet complete.

Accessing memory is a major source of stalls
ld r0 mem[r2]

ld r1 mem[r3]

add r0, r0, r1

Memory access times ~ 100’s of cycles
- Memory “access time” is a measure of latency

Dependency: cannot execute ‘add’ instruction until data from
mem[r2] and mem[r3] have been loaded from memory

Stanford CS348K, Spring 2022

The implementation of the linear memory address space abstraction on
a modern computer is complex

DRAM
(32 GB)

L3 cache
(20 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Core 1

Core 8

L1 cache
(32 KB)

L2 cache
(256 KB)

The instruction “load the value stored at address X into register R0” might involve a
complex sequence of operations by multiple data caches and access to DRAM

Stanford CS348K, Spring 2022

Why do modern processors have data caches?

38 GB/sec

L3 cache
(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR4 DRAM

(Gigabytes)

Core 1

Core N

Stanford CS348K, Spring 2022

Caches reduce length of stalls (reduce memory access latency)
Processors run e#ciently when data is resident in caches
Caches reduce memory access latency *

* Caches also provide high bandwidth data transfer to CPU

38 GB/sec

L3 cache
(8 MB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

. . .

Memory
DDR4 DRAM

(Gigabytes)

Core 1

Core N

Stanford CS348K, Spring 2022

Data access times

Data in L1 cache

Data in L2 cache

Data in L3 cache

Data in DRAM (best case)

4

12

38

~248

Latency (number of cycles at 4 GHz)

(Kaby Lake CPU)

Stanford CS348K, Spring 2022

Cache review

8

address 0x0
0x4

0x10

0x20

0x40

Consider 4-byte elements
Consider a cache with 16-byte cache lines and a total
capacity of 32 bytes (2 lines $t in cache)
Least recently used (LRU) replacement policy

0x0
0x4
0x8
0xc
0x10
0x14
0x18
0x1c
0x20
0x24
0x28
0x2c
0x30
0x34
0x38
0x3c
0x40

0x1c

Address
accessed

Cache state (after load is complete)

“cold miss”
hit
hit
hit
cold miss
hit
hit
hit
cold miss (evict 0x0)
hit
hit
hit
cold miss (evict 0x10)
hit
hit
hit
cold miss (evict 0x20)

0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0

0x10
0x10
0x10
0x10
0x10
0x10
0x10
0x10

0x20
0x20
0x20
0x20
0x20
0x20
0x20
0x20

0x30
0x30
0x30
0x30
0x300x40

Stanford CS348K, Spring 2022

Data access in grid solver: row-major traversal
“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy

N
Assume row-major grid layout.
Assume cache line is 4 grid elements.
Cache capacity is 24 grid elements (6 lines)

Recall grid solver application.
Blue elements show data that is in cache
after update to red element.

Stanford CS348K, Spring 2022

N
Assume row-major grid layout.
Assume cache line is 4 grid elements.
Cache capacity is 24 grid elements (6 lines)

Blue elements show data in cache at end
of processing $rst row.

Data access in grid solver: row-major traversal
“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy

Stanford CS348K, Spring 2022

Problem with row-major traversal: long time between
accesses to same data

N
Assume row-major grid layout.
Assume cache line is 4 grid elements.
Cache capacity is 24 grid elements (6 lines)

Although elements (0,2) and (0,1) had been
accessed previously, they are no longer
present in cache at start of processing row 2.

This program loads three lines for every
four elements of output.

Stanford CS348K, Spring 2022

Improving temporal locality by changing grid traversal order
“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy

N
Assume row-major grid layout.
Assume cache line is 4 grid elements.
Cache capacity is 24 grid elements (6 lines)

“Blocked” iteration order

(diagram shows state of cache after
$nishing work from $rst row of $rst block)

Now load two cache lines for every six
elements of output

Stanford CS348K, Spring 2022

Improving temporal locality by “fusing” loops
void add(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] + B[i];
}

void mul(int n, float* A, float* B, float* C) {
 for (int i=0; i<n; i++)
 C[i] = A[i] * B[i];
}

float* A, *B, *C, *D, *E, *tmp1, *tmp2;

// assume arrays are allocated here

// compute E = D + ((A + B) * C)
add(n, A, B, tmp1);
mul(n, tmp1, C, tmp2);
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
 for (int i=0; i<n; i++)
 E[i] = D[i] + (A[i] + B[i]) * C[i];
}

// compute E = D + (A + B) * C
fused(n, A, B, C, D, E);

Two loads, one store per math op
(arithmetic intensity = 1/3)

Two loads, one store per math op
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Code on top is more modular (e.g, array-based math library like numPy in Python)
Code on bottom performs much better. Why?

Stanford CS348K, Spring 2022

Multi-threading reduces stalls
Idea: interleave processing of multiple threads on the same core to hide stalls
- If you can’t make progress on the current thread… work on another one

Stanford CS348K, Spring 2022

Hiding stalls with multi-threading
Time

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 Core (1 thread)

Exec Ctx

Stanford CS348K, Spring 2022

Hiding stalls with multi-threading
Time

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

1 2 3 4

Thread 1
Elements 0 … 7

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Stanford CS348K, Spring 2022

Hiding stalls with multi-threading
Time

1 2 3 4

Stall

Runnable

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

Stanford CS348K, Spring 2022

Hiding stalls with multi-threading
Time

1 2 3 4

Stall

Runnable

Stall

Runnable

Done!

Stall

Runnable

Stall

Runnable
Done!

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

1 2

3 4

1 Core (4 hardware threads)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

Stanford CS348K, Spring 2022

Throughput computing: a trade-o!
Time

Stall

Runnable

Done!

Key idea of throughput-oriented systems:
Potentially increase time to complete work by any one thread,
in order to increase overall system throughput when running
multiple threads.

Note: during this time, this thread is runnable, but it is not being
executed by the processor core.
(The core is executing instructions from another thread.)

Thread 2
Elements 8 … 15

Thread 3
Elements 16 … 23

Thread 4
Elements 24 … 31

Thread 1
Elements 0 … 7

Stanford CS348K, Spring 2022

No free lunch: storing execution contexts

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

Context storage
(or L1 cache)

Consider on-chip storage of execution contexts as a $nite resource

Stanford CS348K, Spring 2022

Many small contexts (high latency hiding ability)
16 hardware threads: storage for small working set per thread

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Stanford CS348K, Spring 2022

Four large contexts (low latency hiding ability)

Fetch/
Decode

ALU 0 ALU 1 ALU 2 ALU 3

ALU 4 ALU 5 ALU 6 ALU 7

 CMU 15-418/618, Spring 2016

1 2 3 4

1 2

3 4

4 hardware threads: storage for large working set per thread

Stanford CS348K, Spring 2022

Exercise: consider a simple two threaded core

Fetch/
Decode

Execution
Context 0
(HW thread)

ALU
(Execution unit)

Data
Cache

Memory

R0
R1
R2
R3

R4
R5
R6
R7

PC

Single core processor, multi-threaded core (2 threads).
Can run one scalar instruction per clock from

one of the hardware threads

Execution
Context 1
(HW thread)

R0
R1
R2
R3

R4
R5
R6
R7

PC

Stanford CS348K, Spring 2022

What is the utilization of the core? (one thread)
Thread 0

0 5 10 15 20 25 30 35

3/15 = 20%

stall stall stall …

Assume we are running a
program where threads perform
three arithmetic instructions,
followed by memory load
(with 12 cycle latency)

Stanford CS348K, Spring 2022

What is the utilization of the core? (two threads)
Thread 0

Thread 1

0 5 10 15 20 25 30 35

6/15 = 40%Assume we are running a
program where threads perform
three arithmetic instructions,
followed by memory load
(with 12 cycle latency)

Stanford CS348K, Spring 2022

How many threads are needed to achieve 100% utilization?
Thread 0

Thread 1

0 5 10 15 20 25 30 35

Assume we are running a
program where threads perform
three arithmetic instructions,
followed by memory load
(with 12 cycle latency)

Stanford CS348K, Spring 2022

Five threads needed to obtain 100% utilization
Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

0 5 10 15 20 25 30 35

Five threads required
for 100% utilization

Stanford CS348K, Spring 2022

Additional threads yield no bene$t (already 100% utilization)

Thread 5

Thread 6

Thread 7

Thread 0

Thread 1

Thread 2

Thread 3

Thread 4

0 5 10 15 20 25 30 35Still 100%

Stanford CS348K, Spring 2022

How many threads are needed to achieve 100% utilization?

0 5 10 15 20 25 30 35

Threads now perform six arithmetic instructions, followed by memory load (with 12 cycle latency)

Thread 0

How does a higher ratio of math instructions to memory latency a!ect the number of threads
needed for latency hiding?

Stanford CS348K, Spring 2022

Takeaway (point 1):
A processor with multiple hardware threads has the ability to avoid stalls by

performing instructions from other threads when one thread must wait for a long
latency operation to complete.

Note: the latency of the memory operation is not changed by multi-threading, it
just no longer causes reduced processor utilization.

Stanford CS348K, Spring 2022

Takeaway (point 2):
A multi-threaded processor hides memory latency by performing arithmetic from

other threads.

Programs that feature more arithmetic per memory access need fewer threads to
hide memory stalls.

Stanford CS348K, Spring 2022

Terminology
Memory bandwidth
- The rate at which the memory system can provide data to a processor
- Example: 20 GB/s

Memory

Bandwidth ~ 4 items/sec

Latency of transferring any one item: ~2 sec

Stanford CS348K, Spring 2022

Terminology
Memory bandwidth
- The rate at which the memory system can provide data to a processor
- Example: 20 GB/s

Memory

Bandwidth: ~ 8 items/sec

Latency of transferring any one item: ~2 sec

Stanford CS348K, Spring 2022

Consider a processor that can do one add per clock (+ can co-issue LD)

time

= Math instruction

= Occupancy of memory bus
 (size of cache line / memory bus bandwidth)

Load 64 bytes

Add

Add

Add

Add

Load 64 bytes

Stall!

Stall!

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

= Load instruction

Assumptions (8 clocks to transfer data)
Up to 3 outstanding load requests.

Stanford CS348K, Spring 2022

Rate of math instructions limited by available bandwidth

time

= Math instruction

= Occupancy of memory bus
 (size of cache line / memory bus bandwidth)

= Load instruction

Bandwidth-bound execution!

Convince yourself that the instruction
throughput is not impacted by memory
latency, number of outstanding memory
requests, etc.

Only the memory bandwidth!!!

(Note how the memory system is occupied
100% of the time)

Stanford CS348K, Spring 2022

High bandwidth memories
Modern GPUs leverage high bandwidth memories located near processor
Example:
- V100 uses HBM2
- 900 GB/s

Stanford CS348K, Spring 2022

Thought experiment
Task: element-wise multiplication of two vectors A and B

Assume vectors contain millions of elements

- Load input A[i]
- Load input B[i]
- Compute A[i] × B[i]
- Store result into C[i]

=

A

B

C

×

<1% GPU e#ciency… but still 12x faster than eight-core CPU!
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus: ~3% e#ciency on this computation)

Three memory operations (12 bytes) for every MUL
NVIDIA V100 GPU can do 5120 fp32 MULs per clock (@ 1.6 GHz)
Need ~98 TB/sec of bandwidth to keep functional units busy

Stanford CS348K, Spring 2022

Bandwidth limited!
This computation is
bandwidth limited!

If processors request data at too high a rate,
the memory system cannot keep up.

Overcoming bandwidth limits is often the most important challenge facing
software developers targeting modern throughput-optimized systems.

Stanford CS348K, Spring 2022

Data movement has high energy cost
Rule of thumb in mobile system design: always seek to reduce amount of data transferred from memory
- Earlier in class we discussed minimizing communication to reduce stalls (poor performance). Now, we wish to reduce communication to

reduce energy consumption

“Ballpark” numbers
- Integer op: ~ 1 pJ *
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ

Implications
- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt

(remember phone is also running CPU, display, radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Macbook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values,
rather than storing and reloading
them, is a better answer when
optimizing code for energy e#ciency!

Stanford CS348K, Spring 2022

In modern computing, bandwidth is the critical resource
Performant parallel programs will:

▪ Organize computation to fetch data from memory less often
- Reuse data previously loaded by the same thread

(temporal locality optimizations)
- Share data across threads (inter-thread cooperation)

▪ Favor performing additional arithmetic to storing/reloading values (the math is “free”)

▪ Main point: programs must access memory infrequently to utilize modern processors e#ciently

Stanford CS348K, Spring 2022

Concept #2:
The value of specializing computation

Stanford CS348K, Spring 2022

Mobile: bene$ts of increasing e#ciency
Run faster for a $xed period of time
- Run at higher clock, use more cores (reduce latency of critical task)

- Do more at once

Run at a $xed level of performance for longer
- e.g., video playback, health apps

- Achieve “always-on” functionality that was previously impossible

Amazon Echo / Google Home
Always listening

iPhone:
Siri activated by button press or holding
phone up to ear

Google Glass: ~40 min
recording per charge
(nowhere near “always on”)

Stanford CS348K, Spring 2022

Limits on chip power consumption
General mobile processing rule: the longer a task runs the less power it can use

- Processor’s power consumption is limited by heat generated (e#ciency is required for more than just
maximizing battery life)

Po
we

r

Time

Electrical limit: max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
(chip can run at high power for short period of time until chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power
consumption to sustain long battery life for given task

Slide credit: adopted from original slide from M. Shebanow: HPG 2013 keynote

iPhone 6 battery: 7 watt-hours
9.7in iPad Pro battery: 28 watt-hours
15in Macbook Pro: 99 watt-hours

Stanford CS348K, Spring 2022

A basic CPU that executes instructions

Execution
Context

ALU
(Execution Unit)

Professor Kayvon’s
Very Simple Processor

Registers: maintain program state: store value of
variables used as inputs and outputs to operations

Execution unit: performs the operation described by an
instruction, which may modify values in the processor’s
registers or the computer’s memory

Register 0 (R0)
Register 1 (R1)
Register 2 (R2)
Register 3 (R3)

Fetch/
Decode Determine what instruction to run next

Stanford CS348K, Spring 2022

E#ciency bene$ts of compute specialization
Rules of thumb: compared to high-quality C code on CPU...

Throughput-maximized processor architectures: e.g., GPU cores

- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

Fixed-function ASIC (“application-speci$c integrated circuit”)

- Can approach 100-1000x or greater improvement in perf/watt

- Assuming code is compute bound and

and is not "oating-point math

[Source: Chung et al. 2010 , Dally 08] [Figure credit Eric Chung]

Stanford CS348K, Spring 2022

Hardware specialization increases e#ciency

[Chung et al. MICRO 2010]
lg2(N) (data set size)

FPGA

GPUs

FPGA

GPUs

lg2(N) (data set size)

ASIC delivers same performance as one CPU core with
~ 1/1000th the chip area.

GPU cores: ~ 5-7 times more area e#cient than CPU
cores.

ASIC delivers same performance as one CPU core with
only ~ 1/100th the power.

Stanford CS348K, Spring 2022

Let’s crack open a recent smartphone

Multi-core GPU
(3D graphics,

OpenCL data-parallel compute)

Display engine
(compresses pixels for

transfer to high-res screen)

Image Signal Processor
ASIC for processing camera

sensor pixels

Multi-core ARM CPU
4 “big cores” + 4 “little cores”

Video encode/decode ASIC

“Hexagon”
Programmable DSP
data-parallel multi-media

processing

Google Pixel 2 Phone:
Qualcomm Snapdragon 835 SoC + Google Visual Pixel Core

Visual Pixel Core
Programmable image

processor and DNN accelerator

Stanford CS348K, Spring 2022

Modern smartphones utilize multiple processing units to quickly
generate high-quality images

Image Credit: Anandtech / TechInsights Inc.

Apple A13 Bionic

Multi-core CPU (heterogeneous cores)
Multi-core GPU
Neural accelerator
Sensor processing accelerator
Video compression/decompression HW
Etc…

Stanford CS348K, Spring 2022

Modern systems use specialized HW for…
Image/video encode/decode (e.g., H.264, JPG)

Audio recording/playback

Voice “wake up” (e.g., Ok Google)

Camera “RAW” processing: processing data acquired by image sensor into images that are
pleasing to humans

Many 3D graphics tasks (rasterization, texture mapping, occlusion using the Z-bu!er)

Continuous sensing (health, $tness, GPS, etc)

Deep network evaluation (Google’s Tensor Processing Unit, Apple Neural engine, etc.)

Stanford CS348K, Spring 2022

Three things to know
1. What are these three hardware design strategies, and what problem/goals do they address? (See

CS149 if you need a refresher)
- Muti-core processing
- SIMD processing
- Hardware multi-threading

2. What is the motivation for specialization via…
- Multiple types of processors (e.g., CPUs, GPUs)
- Custom hardware units (ASIC)

3. Why is memory bandwidth a major constraint (often the most important constraint) when
mapping applications to modern computer systems?

Stanford CS348K, Spring 2022

Welcome to CS348K!

See website for tonight’s reading

