Background: the light field and rendering basics

Visual Computing Systems
Stanford CS348K, Spring 2022

Recall basic pinhole camera

Pinhole

What about taking the pictures from a new viewpoint?

Pinhole

Light-field parameterization

Light field as a 4D function (represents light in free space: no occlusion)

[Image credit: Levoy and Hanrahan 96]
Efficient two-plane parameterization
Line described by connecting point on (u, v) plane with point on (s, t) plane
If one of the planes placed at infinity: point + direction representation

Levoy/Hanrahan refer to representation as a"light slab": beam of light entering one quadrilateral and exiting another

Sampling the light field

Measuring the light field by taking many pictures

Stanford Camera Array

640×480 tightly synchronized, repositionable cameras Custom processing board per camera

Tethered to PCs for additional processing/storage

Light field storage layouts

(a)

(b)

Later light field cameras

Lytro Illum

Acquiring light field content for VR

Google's Jump VR video:
Yi Halo Camera (17 cameras)

Facebook Manifold
(168 K cameras)

Stereo, 360-degree viewing

Stereo, 360-degree viewing

Measuring light arriving at left eye

Measuring light arriving at right eye

How to estimate rays at "missing" views?

Interpolation to novel views depends on scene depth

Interpolation to novel views depends on scene depth

Computing depth of scene point from two images

Binocular stereo 3D reconstruction of point P : depth from disparity

Focal length: f

Baseline: b
Disparity: $d=x^{\prime}-x$

$$
z=\frac{b f}{d}
$$

Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length "Disparity" is the distance between object's projected position in the two images: $x-x^{\prime}$

Microsoft XBox 360 Kinect

[^0]
Infrared image of Kinect illuminant output

Infrared image of Kinect illuminant output

Correspondence problem

How to determine which pairs of pixels in image 1 and image 2 correspond to the same scene point?

Correspondence problem = compute "flow" between adjacent cameras

- For each pixel in frame from camera i, find closest pixel in camera $i+1$
- Google's Jump pipeline uses a coarse-to-fine algorithm: align 32×32 blocks by searching over local window, then perform perpixel alignment
- Recall: H. 264 motion estimation, HDR+ burst alignment (same correspondence challenge, but here we are aligning different perspectives at the same time to estimate unknown scene depth, not estimating motion of camera or scene over time)
- Additional tricks to ensure temporal consistency of flow over time (see papers)

2D Flow
(sat $=\mathbf{u}$, hue $=\mathbf{v}$)

Left eye: with interpolated rays

Omnidirectional stereo (ODS) representation

- Unique panorama of size W x H for left and right eye
- Good: can be saved, compressed, edited as normal video
- Columnj of pixels corresponds to column from interpolated camera at ring position at angle: $\frac{2 \pi j}{W}$

Overlay of Left and Right eye ODS panoramas

"Casual 3D photography"

- Acquisition: wave a smartphone camera around to acquire images of scene from multiple viewpoints
- Processing: construct 3D representation of scene from photos
- Render a textured triangle mesh

Dual-camera Smartphone

Burst of photos

+ depth maps

Stitch photos into depth panorama, create 3D mesh + textures, render during VR viewing

But it's hard to estimate depth and geometry

Volumetric representations

Volume density and color at all points in space.
e.g., Values stored in a 3D grid

Representing rays

Absorption in a volume

- $L(\mathrm{p}, \omega)$ light energy (radiance) along a ray from \mathbf{p} in direction \mathbf{w}
- Absorption cross section at point in space: $\sigma_{a}(\mathrm{p})$
- Probability of being absorbed per unit length
- Units: 1/distance

Rendering volumes

$$
\begin{aligned}
& \sigma(\mathrm{p}) \\
& \mathrm{c}(\mathrm{p}) \\
& \longleftrightarrow \substack{\text { Volume density and color a tall points in space. } \\
\text { e.9, Valuestored in a } 30 \text { g gid }} \\
& C(\mathbf{r})=\int_{t_{n}}^{t_{f}} T(t) \sigma(\mathbf{r}(t)) \mathbf{c}(\mathbf{r}(t), \mathbf{d}) d t, \text { where } T(t)=\exp \left(-\int_{t_{n}}^{t} \sigma(\mathbf{r}(s)) d s\right)
\end{aligned}
$$

Neural volumes

- Learn to encode multiple views of a person into a latency code (z) that is decoded into a volume than can be rendered with conventional graphics techniques from any viewpoint

- Initially motivated by VR applications
- Want to move the view location as well as view direction

Learning better (more compressed) representations

- Why not just learn an approximation to the continuous function:

$$
(\mathrm{p}, \omega) \rightarrow F_{\theta}(\mathrm{p}, \omega) \rightarrow \begin{aligned}
& \sigma(\mathrm{p}) \\
& \mathrm{c}(\mathrm{p})
\end{aligned}
$$

- For all photos of the scene that we have, use $F_{\theta}(\mathrm{p}, \omega)$ to volume render the scene from the known viewpoint.
- Loss is difference between rendered view and actual photo.
- Update θ using standard optimization techniques (SGD)

Learning neural radiance fields (NeRF)

Input Images

Optimize NeRF

Render new views

5D Input
Position + Direction

Output
Color + Density

$\begin{array}{cc}\text { Volume } & \text { Rendering } \\ \text { Rendering } & \text { Loss }\end{array}$

Key ideas of volumetric representations in this context

- Do not need to reconstruct/estimate triangle mesh surface geometry
- Volume rendering is easily differentiable, so easy to update $F_{\theta}(\mathrm{p}, \omega)$
- The DNN used to represent $F_{\theta}(\mathrm{p}, \omega)$ is a compact representation of this highdimensional function.
- Better representation than a dense voxel grid.

Demos

[^0]: ** Kinect returns 640×480 disparity image, suspect sensor is configured for 2×2 pixel binning down to 640×512, then crop

