Lecture 12:

Background: the light field
and rendering basics

Visual Computing Systems
Stanford C5348K, Spring 2022



Recall basic pinhole camera

Pixel P1
Scene object 1

Pinhole

Pixel P2

Scene object 2

Sensor plane: (X,Y)

Pinhole
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What about taking the pictures from a new viewpoint?

Scene object 1

‘ Scene object 2

Pinhole
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Light-field parameterization ) Cortretal o

Light field as a 4D function (represents light in free space: no occlusion)

v J v
L(u,v,s,t)

[Image credit: Levoy and Hanrahan 96]

Efficient two-plane parameterization
Line described by connecting point on (u,v) plane with point on (s,t) plane

If one of the planes placed at infinity: point + direction representation

Levoy/Hanrahan refer to representation as a “light slab”: beam of light entering one quadrilateral and exiting another
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Sampling the light field

U=1 S=1

Simplification: only showing lines in 2D
(full light field is 4D function)
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Measuring the light field by taking many pictures

U=0 B @ S=0

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project] Stanford (S348K, Spring 2022



[Wilburn et al. 2005]

Stanford Camera Array

640 x 480 tightly synchronized, repositionable cameras

Custom processing board per camera

Tethered to PCs for additional processing/storage

____________________________________________________

MICROPROCESSOR 32MB DRAM EEPROM

I
!

|
!

'
|

|
|

I
!

!
!

!
. I

I
|

I
|

I

'
|

I

I

control’ . |
[ IMAGE Lming, — ——=| 8KBFIFO — éﬁff;é?“ E »| Host PCwith
SENSOR VIdCQ_%:_ | disk array » y WUV
. A T ey
j' l T v CLOCKS [« O AALSLAAAAN
| TRIGGERS |+ 0% ‘ e RSN £ 1
SRAM | | MPEG2 MENGS. N Y YYYYIIIIT

. | SDRAM | | ENCODER

Camera Processing Board

G S0 S0 S0 S0 TR TR E SR R R WR R NR SR R R WR SR WS WR SR R YE SR SR SR SR R WE SR SR W R SR SR WE R SR O WR SE SR SR SR WE W we W e

Stanford C5348K, Spring 2022



Light field storage lay

(a)

(b)

[Image credit: Levoy and Hanrahan 96] Stanford (S348K, Spring 2022



Later light field cameras

Lytro lllum
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Acquiring light field content for VR

Google’s Jump VR video:
Yi Halo Camera (17 cameras)

Facebook Manifold |
(16 8K cameras)

Stanford C5348K, Spring 2022



Stereo, 360-degree viewing
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Stereo, 360-degree viewing

/4
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Measuring light arriving at left eye

Left eye

sinf =r/R

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project] Stanford (S348K, Spring 2022



Measuring light arriving at right eye

Right eye

sinff = —r/R

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project] Stanford (S348K, Spring 2022



How to estimate rays at “missing” views?

[Credit: Camera icon by Venkatesh Aiyuii from The Noun Project] Stanford (S348K, Spring 2022



Interpolation to novel views depends on scene depth

[Credit: Camera icon by Venkatesh Aiyuii from The Noun Project] Stanford (S348K, Spring 2022



Interpolation to novel views depends on scene depth

[Credit: Camera icon by Venkatesh Aiyuii from The Noun Project] Stanford (S348K, Spring 2022



Computing depth of scene point from two images

Binocular stereo 3D reconstruction of point P: depth from disparity

P
Focal length: / ?
Baseline: b |
Disparity: d =x - x
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Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length

“Disparity” is the distance between object’s projected position in the two images: x - x’
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Microsoft XBox 360 Kinect

f
/
Image credit: iFixIt
llluminant RGB CMOS Sensor Monochrome Infrared
(Infrared Laser + diffuser) 640x480 (w/ Bayer mosaic) CMOS Sensor
(Aptina MT9MO001)
1280x1024 **

** Kinect returns 640x480 disparity image, suspect sensor is configured for 2x2 pixel binning down to 640x512, then crop
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Infrared image of Kinect illuminant output

Credit: www.futurepicture.org
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Infrared image of Kinect illuminant output
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Credit: www.futurepicture.org
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Correspondence problem

How to determine which pairs of pixels in image 1 and image 2 correspond to the same scene point?
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Correspondence problem = compute “flow” between adjacent cameras

For each pixel in frame from camera j, find closest pixel in camera j+7
Google’s Jump pipeline uses a coarse-to-fine algorithm: align 32x32 blocks by searching over local window, then perform per-

pixel alignment

- Recall: H.264 motion estimation, HDR+ burst alignment (same correspondence challenge, but here we are aligning
different perspectives at the same time to estimate unknown scene depth, not estimating motion of camera or scene over
time)

- Additional tricks to ensure temporal consistency of flow over time (see papers)

2D Flow
(sat=u, hue =v)
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Left eye: with interpolated rays
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[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project] Stanford (S348K, Spring 2022



Omnidirectional stereo (ODS) representation

m Unique panorama of size W x H for left and right eye
m Good: can be saved, compressed, edited as normal video

m Columnj of pixels corresponds to column from interpolated camera at ring position at

angle: 27
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Overlay of Left and Right eye 0DS panoramas

Image credit: Andersen et al. 2016 Stanford (S348K, Spring 2022



“Casual 3D photography”

m Acquisition: wave a smartphone camera around to acquire images of scene from multiple
viewpoints

m Processing: construct 3D representation of scene from photos
- Render a textured triangle mesh

Dual-camera Burst of photos Stitch photos into depth panorama,
Smartphone + depth maps create 3D mesh + textures,
render during VR viewing
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But it’s hard to estimate depth and geometry
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Representing rays

origin unit direction

/r(t\) — (X) + td/

llti m eII

point along ray



Absorption in a volume

L(p,w L +dL
(p )_@ Ua(p) >—+ P = (CC,y,Z)
W

—ds—|

dL(p,w) = —04(p) L(p,w) ds

m [(p,w) light energy (radiance) along a ray from p in direction w
m Absorption cross section at point in space: o, (p)

- Probability of being absorbed per unit length

- Units: 1/distance

Stanford C5348K, Spring 2022



Rendering volumes

<4——— \/olume density and color at all points in space.
C ( p ) e.g., Values stored in a 3D grid

C(r) = /t :f T(t)o(x(t))e(x(t), d)dt, where T(t) = exp (— /t t 0(r(s))ds>
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Neural volumes

m Learn to encode multiple views of a person into a latency code (z) that is decoded into a volume than can be
rendered with conventional graphics techniques from any viewpoint

Encoder '/, | Decoder

Reconstruction  Ta rget Imag

Input Multi-view Video

® |nitially motivated by VR applications

B Want to move the view location as well as view direction

Stanford C5348K, Spring 2022



Learning better (more compressed) representations

m Why not just learn an approximation to the continuous function:

(p,w) = Fo(p,w) —’Zég;

m Forall photos of the scene that we have, use Fy(p,w) tovolume render the scene
from the known viewpoint.

m Lossis difference between rendered view and actual photo.
m Update ¢ using standard optimization techniques (SGD)
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Learning neural radiance fields (NeRF)

Input Images Optimize NeRF Render new views
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Key ideas of volumetric representations in this context

m Do not need to reconstruct/estimate triangle mesh surface geometry
m Volume rendering is easily differentiable, so easy to update Fy(p,w)

m The DNN used to represent Fy(p, w) isa compact representation of this high-
dimensional function.

- Better representation than a dense voxel grid.
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Demos
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