
Visual Computing Systems
Stanford CS348K, Spring 2022

Lecture 18:

Rendering/Simulation for Model Training
(+ intro to shading languages)

Stanford CS348K, Spring 2022

Today
We’ve talked about how ML/AI techniques are used to improve visual computing
applications: computational photography, rendering, video compression, etc…

Today we’ll talk about how rendering/simulation are increasing being used to train
better ML models.

At the end we’ll talk about a few GPU architecture issues that will be relevant to
Tuesday’s discussion of GPU programming languages

Stanford CS348K, Spring 2022

Think back to earlier in course
What was the biggest practical bottleneck to training good models?

Stanford CS348K, Spring 2022

Using advanced rendering/simulation
to generate supervision to train better models

Stanford CS348K, Spring 2022

Carla: urban driving simulator based on Unreal Engine

Stanford CS348K, Spring 2022

Example Carla outputs

Object type

Figure 2: Three of the sensing modalities provided by CARLA. From left to right: normal vision
camera, ground-truth depth, and ground-truth semantic segmentation. Depth and semantic segmen-
tation are pseudo-sensors that support experiments that control for the role of perception. Additional
sensor models can be plugged in via the API.

pseudo-sensor provides 12 semantic classes: road, lane-marking, traffic sign, sidewalk, fence, pole,
wall, building, vegetation, vehicle, pedestrian, and other.

In addition to sensor and pseudo-sensor readings, CARLA provides a range of measurements associ-
ated with the state of the agent and compliance with traffic rules. Measurements of the agent’s state
include vehicle location and orientation with respect to the world coordinate system (akin to GPS
and compass), speed, acceleration vector, and accumulated impact from collisions. Measurements
concerning traffic rules include the percentage of the vehicle’s footprint that impinges on wrong-way
lanes or sidewalks, as well as states of the traffic lights and the speed limit at the current location of
the vehicle. Finally, CARLA provides access to exact locations and bounding boxes of all dynamic
objects in the environment. These signals play an important role in training and evaluating driving
policies.

3 Autonomous Driving

CARLA supports development, training, and detailed performance analysis of autonomous driving
systems. We have used CARLA to evaluate three approaches to autonomous driving. The first is
a modular pipeline that relies on dedicated subsystems for visual perception, planning, and control.
This architecture is in line with most existing autonomous driving systems [21, 8]. The second
approach is based on a deep network trained end-to-end via imitation learning [4]. This approach
represents a long line of investigation that has recently attracted renewed interest [22, 16, 4]. The
third approach is based on a deep network trained end-to-end via reinforcement learning [19].

We begin by introducing notation that is common to all methods and then proceed to describe each
in turn. Consider an agent that interacts with the environment over discrete time steps. At each
time step, the agent gets an observation ot and must produce an action at. The action is a three-
dimensional vector that represents the steering, throttle, and brake. The observation ot is a tuple of
sensory inputs. This can include high-dimensional sensory observations, such as color images and
depth maps, and lower-dimensional measurements, such as speed and GPS readings.

In addition to momentary observations, all approaches also make use of a plan provided by a high-
level topological planner. This planner takes the current position of the agent and the location of the
goal as input, and uses the A⇤ algorithm to provide a high-level plan that the agent needs to follow
in order to reach the goal. This plan advises the agent to turn left, turn right, or keep straight at
intersections. The plan does not provide a trajectory and does not contain geometric information. It
is thus a weaker form of the plan that is given by common GPS navigation applications which guide
human drivers and autonomous vehicles in the physical world. We do not use metric maps.

3.1 Modular pipeline

Our first method is a modular pipeline that decomposes the driving task among the following sub-
systems: (i) perception, (ii) planning, and (iii) continuous control. Since no metric map is provided
as input, visual perception becomes a critical task. Local planning is completely dependent on the
scene layout estimated by the perception module.

The perception stack uses semantic segmentation to estimate lanes, road limits, and dynamic objects
and other hazards. In addition, a classification model is used to determine proximity to intersections.

4

Figure 2: Three of the sensing modalities provided by CARLA. From left to right: normal vision
camera, ground-truth depth, and ground-truth semantic segmentation. Depth and semantic segmen-
tation are pseudo-sensors that support experiments that control for the role of perception. Additional
sensor models can be plugged in via the API.

pseudo-sensor provides 12 semantic classes: road, lane-marking, traffic sign, sidewalk, fence, pole,
wall, building, vegetation, vehicle, pedestrian, and other.

In addition to sensor and pseudo-sensor readings, CARLA provides a range of measurements associ-
ated with the state of the agent and compliance with traffic rules. Measurements of the agent’s state
include vehicle location and orientation with respect to the world coordinate system (akin to GPS
and compass), speed, acceleration vector, and accumulated impact from collisions. Measurements
concerning traffic rules include the percentage of the vehicle’s footprint that impinges on wrong-way
lanes or sidewalks, as well as states of the traffic lights and the speed limit at the current location of
the vehicle. Finally, CARLA provides access to exact locations and bounding boxes of all dynamic
objects in the environment. These signals play an important role in training and evaluating driving
policies.

3 Autonomous Driving

CARLA supports development, training, and detailed performance analysis of autonomous driving
systems. We have used CARLA to evaluate three approaches to autonomous driving. The first is
a modular pipeline that relies on dedicated subsystems for visual perception, planning, and control.
This architecture is in line with most existing autonomous driving systems [21, 8]. The second
approach is based on a deep network trained end-to-end via imitation learning [4]. This approach
represents a long line of investigation that has recently attracted renewed interest [22, 16, 4]. The
third approach is based on a deep network trained end-to-end via reinforcement learning [19].

We begin by introducing notation that is common to all methods and then proceed to describe each
in turn. Consider an agent that interacts with the environment over discrete time steps. At each
time step, the agent gets an observation ot and must produce an action at. The action is a three-
dimensional vector that represents the steering, throttle, and brake. The observation ot is a tuple of
sensory inputs. This can include high-dimensional sensory observations, such as color images and
depth maps, and lower-dimensional measurements, such as speed and GPS readings.

In addition to momentary observations, all approaches also make use of a plan provided by a high-
level topological planner. This planner takes the current position of the agent and the location of the
goal as input, and uses the A⇤ algorithm to provide a high-level plan that the agent needs to follow
in order to reach the goal. This plan advises the agent to turn left, turn right, or keep straight at
intersections. The plan does not provide a trajectory and does not contain geometric information. It
is thus a weaker form of the plan that is given by common GPS navigation applications which guide
human drivers and autonomous vehicles in the physical world. We do not use metric maps.

3.1 Modular pipeline

Our first method is a modular pipeline that decomposes the driving task among the following sub-
systems: (i) perception, (ii) planning, and (iii) continuous control. Since no metric map is provided
as input, visual perception becomes a critical task. Local planning is completely dependent on the
scene layout estimated by the perception module.

The perception stack uses semantic segmentation to estimate lanes, road limits, and dynamic objects
and other hazards. In addition, a classification model is used to determine proximity to intersections.

4

RGB Depth

Since renderer has complete description of scene, it can
output detailed, !ne-grained labels as well as RGB
image.
(would be laborious to annotate)

Stanford CS348K, Spring 2022

Stanford CS348K, Spring 2022

NVIDIA Drive Sim

Stanford CS348K, Spring 2022

NVIDIA Drive Sim

Stanford CS348K, Spring 2022

Gibson: acquire/render real world data
Dataset acquired via 3D scanning (3D mesh + texture)
Geometry, normals, semantics, + (so-called) “photorealistic” 3D

Stanford CS348K, Spring 2022

Enhancing CG images to look like real-world images using
image-to-image transfer

Stanford CS348K, Spring 2022

Modifying real-world images to create novel situations

Remove or move
this car.

Stanford CS348K, Spring 2022

Video inpainting
Identify and remove foreground object
Hallucinate background with deep neural network

Original video frames
(with foreground segmentation shown) After inpainting foreground regions

[Ouyang 2021]

Stanford CS348K, Spring 2022

Physics simulation

Stanford CS348K, Spring 2022

OpenAI’s “OpenAI 5” Dota 2 bot

Stanford CS348K, Spring 2022

Need signi!cant amounts of simulated
experience to learn skills
Example: even for simple PointGoal navigation task: need billions of steps
of “experience” to exceed traditional non-learned approaches

Stanford CS348K, Spring 2022

Deeper dive:
Accelerating reinforcement learning

RL in 30 seconds

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓
agent
action

environment
observation

e.g. RGB image

Model Inference

RL in 30 seconds

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓
agent
action

environment
observation

e.g. RGB image

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

sequence of
observations

…

sequence of
agent actions

…

Reward: change in
distance from goal

update
model

via SGD

Model Training

Model Inference

compute loss
gradients

RL in 30 seconds

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓
agent
action

environment
observation

e.g. RGB image

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Model Training

Model Inference

Rollout
update
model

via SGD

compute loss
gradients

RL in 30 seconds

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Batch Model
Training

Rollout 0

update
model

via SGD

Rollout 1

Rollout 2

Rollout N-1

compute loss
gradients

…

Many rollouts:
- Agents independently navigating

same environments

RL in 30 seconds

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Batch Model
Training

Rollout 0

update
model

via SGD

Rollout 1

Rollout 2

Rollout N-1

compute loss
gradients

…

Rollout 3

Rollout 4

…Rollout 5
…

Many rollouts:
- Agents independently navigating

same environments
- Or different environments

Learning robot skills requires many trials
(billions) of learning experience

￭ Training in diverse set of virtual environments

￭ Many training trials in each environment

Stanford CS348K, Spring 2022

Workload summary
Within a rollout
- For each step of a rollout:
- Render -> Execute policy inference -> simulate next world state

Across *many* independent rollouts
- Simulated agents may (or may not) share scene state
- Diversity in scenes in a batch of rollouts is desirable to avoid over!tting, sample

e"ciency of learning

Stanford CS348K, Spring 2022

System components

World State
“Simulator”

(updates position of agent in scene,
detects collisions with scene geometry)

Renderer
(render scene from viewpoint of agent)

Inference/Learning
(inference: action from rendered image,

learning: update policy model from rollouts)
<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Viewpoints, scene object positions

Database of 3D assets (meshes, textures collision meshes)

Rendered framesNon-rendered state: position, compass…

Next action

Stanford CS348K, Spring 2022

Basic design: parallelize over workers
Simulator

Renderer

Scene A

Simulator

Renderer

Scene B

Simulator

Renderer

Scene D

Simulator

Renderer

Scene A

Simulator

Renderer

Scene B

Simulator

Renderer

Scene D

Simulator

Renderer

Scene A

Simulator

Renderer

Scene C

Simulator

Renderer

Scene D

Learning
learning: update policy model

from rollouts)

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Inference Inference Inference

Inference Inference Inference

Inference Inference Inference

Ask yourself:
1. What data gets communicated?
2. Can the system scale to su"cient parallelism?
3. Are there sync bottlenecks

Stanford CS348K, Spring 2022

Example: Rapid (OpenAI)

Stanford CS348K, Spring 2022

Design issues
Expensive communication of weights from learner node to workers
Worker nodes ine"ciently run inference
- May run on CPU if simulation code on workers doesn’t require GPU (use cheap worker nodes that

don’t feature GPUs)
- Run inference on small batches since each worker is running one rollout sim

Stanford CS348K, Spring 2022

Centralize inference AND training
￭ Instance multiple copies of the engine on a

single machine (fill up GPU), use all CPU
cores in a large box

￭ Scale to multiple machines for further
throughput

Simulator

Renderer

Batch
Inference/
Learning

(inference: action from
rendered image,

learning: update policy model
from rollouts)

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Scene A

Simulator

Renderer

Scene B

Simulator

Renderer

Scene D

Simulator

Renderer

Scene A

Simulator

Renderer

Scene B

Simulator

Renderer

Scene D

Simulator

Renderer

Scene A

Simulator

Renderer

Scene C

Simulator

Renderer

Scene D

Efficient batch inference/training
Centralization enables

heterogeneity (e.g., use TPU for training)

Stanford CS348K, Spring 2022

Advantages
No communication of model weights between workers and learner
Must communicate simulation state — surprisingly this can be compact (object locations, smaller
rendered image)
Can use e"cient batch inference in a centralized location (batch over rollouts from many workers)
Can use machine optimized for DNN operations in centralized location — e.g., run on a TPU

Stanford CS348K, Spring 2022

SEED RL

Stanford CS348K, Spring 2022

Design issues
Ine"cient simulation/rendering: rendering a small image does not make good use of a
modern GPU (rendering throughput is low)

Duplication of computation and memory footprint (for scene data) across renderer/
simulator instances

Forza-Horizon-5

What modern graphics engines are designed to render
4K image outputs
30-60 fps
Advanced lighting and material simulation

Stanford CS348K, Spring 2022

Low-resolution images with pre-captured lighting
(from Gibson): clearly not state-of-the-art rendering! ;-)

Stanford CS348K, Spring 2022

Often the best way to reduce communication / increase e"ciency
is often to make the best possible use out of one node

Can we make simulation faster?

Stanford CS348K, Spring 2022

AI Habitat
Focus on high-performance rendering/
simulation to enable order of magnitude
longer RL training runs

Stanford CS348K, Spring 2022

Prior work was still using simulators (game engines) designed to render large
high-resolution images for human eyes.

How would you design an engine “from the ground up” for the RL workload?

Stanford CS348K, Spring 2022

Main idea: design a renderer that executes rendering for 100s-1000’s of unique
rollouts in a single request

Inference/training, simulation, and rendering all operate on batches of N requests (rollouts)

E"cient bulk communication between three components

Stanford CS348K, Spring 2022

Example renderer output (PointNav task)

Stanford CS348K, Spring 2022

Opportunities provided by a batch rendering interface
Wide parallelism: rendering each scene in a batch is independent
- "Fill up” large parallel GPU with rendering work
- Enables graphics optimizations like pipelining frustum culling (removing o#-screen geometry

before drawing it) for one environment with rendering of another

Footprint optimizations: rendering requests in a batch can share same geometry assets
- Signi!cantly reduces memory footprint, enables large batch size
- N ~ 256-1024 (per GPU) in our experiments: !lls up large GPU
- Limit number of unique scenes in a batch to K≪N scenes.

- GPU RAM and scene size determines K

Amortize communication: rendering requests in a batch can be packaged and drawn together
- Render frames in batch to tiles in a single large frame bu#er to avoid state update

Stanford CS348K, Spring 2022

Also, simultaneously optimize policy DNN

DNN design/engineering (DNN encoder followed by policy LSTM)
Reduce resolution of rendered input to from 128x128 to 64x64
Move to ResNet9-based visual encoder from ResNet50
Replace key layers with performant alternatives (e.g. replace normalization with Fixup
Initialization)
Adjust learning rates and use Lamb optimization

Stanford CS348K, Spring 2022

Example: 10,000+ FPS render→infer→train on a single GPU *

* But low resolution: 64x64 rendered output resolution

Stanford CS348K, Spring 2022

NVIDIA Issac Gym
Same idea of batched many-environment execution, applied to physics
Simulate 100’s to 1000’s of world environments simultaneously on the GPU
Current state for all environments packaged in a single PyTorch tensor
User can write GPU-accelerated loss/reward functions in PyTorch on this tensor
Result: tight loop of simulate/infer/train

Stanford CS348K, Spring 2022

Interesting rendering/simulation systems research questions

If you had to design a rendering/simulation system “from the ground up” to support ML
model training, what would you do di#erently from a modern high-performance game
engine?

What new opportunities for performance optimization are there? (amortize simulation and
rendering across multiple virtual sensors, agents, etc.)
- What should the architecture/API to the renderer be?

How much !delity is needed to train models that successfully transfer into the real-world?
- Do we even need photorealistic quality (or advanced physics) to train policies that work in

the real world?

Stanford CS348K, Spring 2022

Example Sim2Real experiments: RoboTHOR

Virtual environment Real world photo of corresponding
environment (in lab)

[Dietke 20]

Stanford CS348K, Spring 2022

RobotTHOR: Sim2Real initial study [Dietke 20]

Stanford CS348K, Spring 2022

Understanding the e#ects of sim2real gap [Chattopadhyay 21]

Example visual corruptions

What parts of real-world sensing do we really need to model in simulation?

Stanford CS348K, Spring 2022

Prep/background for next class

Stanford CS348K, Spring 2022

Key parts of a shader
[Slide credits: Yong He]

Stanford CS348K, Spring 2022

The rendering equation * [Kajiya 86]

* Note: using notation from Hanrahan 90 (to match suggested reading)

x

x’

i(x,x’)

i(x, x’) = Radiance (light energy along a ray) from point x’ in direction of point x
v(x, x’) = Binary visibility function (1 if ray from x’ reaches x, 0 otherwise)
l(x, x’) = Radiance emitted from x’ in direction of x (if x’ is an emitter)
r(x, x’,x’’) = BRDF: fraction of energy arriving at x’ from x’’ that is re$ected in direction of x

x’’

Stanford CS348K, Spring 2022

Categories of re$ection functions: r(x,x’,x’’)
Ideal specular

Ideal di#use

Glossy specular

Retro-re$ective

Diagrams illustrate how incoming light energy from
given direction is re$ected in various directions.

Perfect mirror

Uniform re$ection in all directions

Re$ects light back toward source

Majority of light distributed in
re$ection direction

[Slide credit: Stanford 348b / Pat Hanrahan]

Stanford CS348K, Spring 2022

Types of lights
Attenuated omnidirectional point light
(emits equally in all directions, intensity falls o# with distance: 1/R2 fallo#)

Spot light
(does not emit equally in all directions)

ɵ

Stanford CS348K, Spring 2022

More sophisticated lights
Environment light
(not a point light source: de!nes incoming light from all directions)

Environment Map
(Grace cathedral)

Rendering using environment map
(pool balls have varying material properties)

[Ramamoorthi et al. 2001]

Stanford CS348K, Spring 2022

Environment map

Image credit: USC High-Resolution Light Probe Image Gallery

Stanford CS348K, Spring 2022

The rendering equation *
[Kajiya 86]

* Note: using notation from Hanrahan 90 (to match suggested reading)

x

x’

i(x,x’)

i(x, x’) = Radiance (light energy along a ray) from point x’ in direction of point x
v(x, x’) = Binary visibility function (1 if ray from x’ reaches x, 0 otherwise)
l(x, x’) = Radiance emitted from x’ in direction of x (if x’ is an emitter)
r(x, x’,x’’) = BRDF: fraction of energy arriving at x’ from x’’ that is re$ected in direction of x

x’’

De!ned by material De!ned by lights

Skeletal Animated Character

Sub-surface Scattering
Double-sided lighting

Vegetation Instancing

Atmosphere Scattering

Dynamic Soft Shadow

Complex Wear Pattern

Layered Terrain Texturing

Geometry / Shader LOD

Pre-baked Lighting

Epic Games, Inc.

Vertex Animation

StaticMesh Displacement SkeletalAnim

Geometry / Animation

Metal Cloth Glass

Material

SpotLight PointLight

Light

Skylight

Geometry

Static Mesh Skeletal Animated Mesh

Materials
Metal 0 Metal 1

Wood Brick Dirt

Metal 2

Lighting

StaticMesh Displacement SkeletalAnim

Metal Glass

SpotLight PointLight

Geometry / Animation

Material

Light

Skylight

Cloth

Extensibility is easy when performance is not a priority

Material

Clay Matte Skin

Light

PointLight SpotLight AreaLight

Plastic

Real-time renderers need to be efficient

Multi-core CPU
4-8 out-of-order execution cores

Managing Resources
Issuing Draw Commands to GPU

GPU
Thousands of throughput-oriented cores

Executing Draw Commands
Evaluating Shading Features

1. Efficient communication 2. Generate
efficient
GPU code

Shading System

Input
Many objects to render 
Each has a set of features to use
obj0: Skylight, Metal, Displacement
obj1: Skylight, Metal
obj2: Skylight, Brick
obj3: Skylight, Dirt
…

The basic physics model that a shading system computes

2. Light Shading
Li, Wi = light[i].illum(p)

!" = ∑#
!#$(%#, %")

!"

!#

&

%"

%#

3. Lighting Integration
Lo = integrate(Li, f, Wi, Wo);

bidirectional reflectance
function (BxDF)

1. Material Shading
f = evalMaterial(p)

Displacement
displacementMap

normalMap

Metal Material
roughness

tint [0.4 0.4 0.4]

Skylight
lightProbe

strength 2.0

shadowMap

Skylight
lightProbe

strength 2.0

shadowMap

Brick Material
diffuse

tiling [0.4]

uvOffset [0.0, 0.0]

A shading system does two things to draw an object

Determine what code to
run on current GPUs

Communicate the
parameters to the GPU

GPU Shader Code

SkeletalAnim Cloth SpotLight

GPU

21

[0.0 1.0 1.5]

[1.0 1.2 0.3]

true

Dynamically dispatch GPU code for shading features
void myShader (int geometryType, GP geomParams,
 int materialType, MP materialParams,
 int lightType, LP lightParams)
{
 if (geometryType == STATIC_MESH)
 computeStaticMeshGeometry(geomParams);
 else if (geometryType == DISPLACEMENT)
 computeDisplacementGeometry(geomParams);
 else if (geometryType == SKELETAL_ANIM)
 computeSkeletalAnimGeometry(geomParams);

 if (materialType == METAL)
 computeMetal(materialParams);
 else if (materialType == CLOTH)
 computeCloth(materialParams);
 else if (materialType == GLASS)
 computeGlass(materialParams);

 if (lightType == SPOT_LIGHT)
 computeSpotLight(lightParams);
 else if (lightType == POINT_LIGHT)
 computePointLight(lightParams);
 else if (lightType == SKY_LIGHT)
 computeSkyLight(lightParams);
}

Shader Code

Geometry

Material

Lighting

Dynamic dispatching is bad for performance
void myShader (int geometryType, GP geomParams,
 int materialType, MP materialParams,
 int lightType, LP lightParams)
{
 if (geometryType == STATIC_MESH)
 computeStaticMeshGeometry(geomParams);
 else if (geometryType == DISPLACEMENT)
 computeDisplacementGeometry(geomParams);
 else if (geometryType == SKELETAL_ANIM)
 computeSkeletalAnimGeometry(geomParams);

 if (materialType == METAL)
 computeMetal(materialParams);
 else if (materialType == CLOTH)
 computeCloth(materialParams);
 else if (materialType == GLASS)
 computeGlass(materialParams);

 if (lightType == SPOT_LIGHT)
 computeSpotLight(lightParams);
 else if (lightType == POINT_LIGHT)
 computePointLight(lightParams);
 else if (lightType == SKY_LIGHT)
 computeSkyLight(lightParams);
}

Shader Code

• Overhead of branching instructions on wide
SIMD processors

Dynamic dispatching is bad for performance
void myShader (int geometryType, GP geomParams,
 int materialType, MP materialParams,
 int lightType, LP lightParams)
{
 if (geometryType == STATIC_MESH)
 computeStaticMeshGeometry(geomParams);
 else if (geometryType == DISPLACEMENT)
 computeDisplacementGeometry(geomParams);
 else if (geometryType == SKELETAL_ANIM)
 computeSkeletalAnimGeometry(geomParams);

 if (materialType == METAL)
 computeMetal(materialParams);
 else if (materialType == CLOTH)
 computeCloth(materialParams);
 else if (materialType == GLASS)
 computeGlass(materialParams);

 if (lightType == SPOT_LIGHT)
 computeSpotLight(lightParams);
 else if (lightType == POINT_LIGHT)
 computePointLight(lightParams);
 else if (lightType == SKY_LIGHT)
 computeSkyLight(lightParams);
}

Shader Code

• Overhead of branching instructions on wide
SIMD processors

• Larger working set limits the ability of
hardware multi-threading to hide memory
latency

Common approach: specialize shader code for shading
features in-use

void myShader(...)
{
 #if defined(STATIC_MESH)
 computeStaticMeshGeometry(geomParams);
 #elif defined(DISPLACEMENT)
 computeDisplacementGeometry(geomParams);
 #elif defined(SKELETAL_ANIM)
 computeSkeletalAnimGeometry(geomParams);
 #endif
 #if defined(METAL)
 computeMetal(materialParams);
 #elif defined(CLOTH)
 computeCloth(materialParams);
 #elif defined(GLASS)
 computeGlass(materialParams);
 #endif
 #if defined(SPOT_LIGHT)
 computeSpotLight(lightParams);
 #elif defined(POINT_LIGHT)
 computePointLight(lightParams);
 #elif defined(SKY_LIGHT)
 computeSkyLight(lightParams);
 #endif
}

Shader Code (using preprocessor directives)

compile myShader –D SKELETAL_ANIM, CLOTH, SPOT_LIGHT

draw(myShader, ...);

A shading system does two things to draw an object

Determine what code to
run on current GPUs

Communicate the
parameters to the GPU

GPU Shader Code

SkeletalAnim Cloth SpotLight

GPU

21

[0.0 1.0 1.5]

[1.0 1.2 0.3]

true

A shading system does two things to draw an object

Determine what code to
run on current GPUs

Communicate the
parameters to the GPU

GPU Shader Code

SkeletalAnim Cloth SpotLight

GPU

21

[0.0 1.0 1.5]

[1.0 1.2 0.3]

true

CPU-GPU communication model

CPU GPU

Draw(obj0) SetShader(s)SetParam(p1)SetParam(p5) …

Displacement
displacementMap

normalMap

Metal Material
roughness

tint [0.4 0.4 0.4]

Skylight
lightProbe

strength 2.0

shadowMap

Displacement
displacementMap

normalMap

Metal Material
roughness

tint [0.5 0.5 0.5]

Skylight
lightProbe

strength 2.0

shadowMap

Block0
lightProbe

strength 2.0

shadowMap

displacementMap

normalMap

Block 1
roughness

tint [0.4 0.4 0.4]

Block 2
roughness

tint [0.5 0.5 0.5]

Block0
lightProbe

strength 2.0

shadowMap

displacementMap

normalMap

Block 1
roughness

tint [0.4 0.4 0.4]

79

Block 2
roughness

tint [0.5 0.5 0.5]

SetParamBlock(0, &block0)

SetParamBlock(1, &block1)

Draw(obj0)

Block0
lightProbe

strength 2.0

shadowMap

displacementMap

normalMap

Block 1
roughness

tint [0.4 0.4 0.4]

80

Block 2
roughness

tint [0.5 0.5 0.5]

SetParamBlock(1, &block2)

Draw(obj1)

SetParamBlock(0, &block0)

SetParamBlock(1, &block1)

Draw(obj0)

81

void entryPoint(
 @block0 geomParams,
 @block0 lightParams,
 @block1 materialParams)
{
 #if defined(STATIC_MESH)
 computeStaticMeshGeometry(geomParams);
 #elif defined(DISPLACEMENT)
 computeDisplacementGeometry(geomParams);
 #elif defined(SKELETAL_ANIM)
 computeSkeletalAnimGeometry(geomParams);

 #if defined(METAL)
 computeMetal(materialParams);
 #elif defined(CLOTH)
 computeCloth(materialParams);
 #elif defined(GLASS)
 computeGlass(materialParams);

 #if defined(SPOT_LIGHT)
 computeSpotLight(lightParams);
 #elif defined(POINT_LIGHT)
 computePointLight(lightParams);
 #elif defined(SKY_LIGHT)
 computeSkyLight(lightParams);
}

Specialize Shader CodeInput
obj0: Skylight, Metal(p1),
 Displacement
obj1: Skylight, Metal(p2),
 Displacement
…

Create Parameter Blocks

Block 1

roughness

tint [0.4 0.4 0.4]

Block0

lightProbe

strength 2.0

shadowMap

displacementMap

normalMap

Block 2

roughness

tint [0.5 0.5 0.5]
lightParams

struct SkylightParams
{
 TextureCube lightProbe;
 float strength;
 TextureCube shadowMap
};

1. Include skylight feature in GPU
code

2. Allocate and initialize
parameter blocks

3. Ensure CPU and GPU agree on
the parameter layout

82

void entryPoint(
 @block0 geomParams,
 @block0 lightParams,
 @block1 materialParams)
{
 #if defined(STATIC_MESH)
 computeStaticMeshGeometry(geomParams);
 #elif defined(DISPLACEMENT)
 computeDisplacementGeometry(geomParams);
 #elif defined(SKELETAL_ANIM)
 computeSkeletalAnimGeometry(geomParams);

 #if defined(METAL)
 computeMetal(materialParams);
 #elif defined(CLOTH)
 computeCloth(materialParams);
 #elif defined(GLASS)
 computeGlass(materialParams);

 #if defined(SPOT_LIGHT)
 computeSpotLight(lightParams);
 #elif defined(POINT_LIGHT)
 computePointLight(lightParams);
 #elif defined(SKY_LIGHT)
 computeSkyLight(lightParams);
}

Specialize Shader CodeInput
obj0: Skylight, Metal(p1),
 Displacement
obj1: Skylight, Metal(p2),
 Displacement
…

Create Parameter Blocks

Block 1

roughness

tint [0.4 0.4 0.4]

Block0

lightProbe

strength 2.0

shadowMap

displacementMap

normalMap

Block 2

roughness

tint [0.5 0.5 0.5]
lightParams

struct SkylightParams
{
 TextureCube lightProbe;
 float strength;
 TextureCube shadowMap
};

Recall: basic physics model

2. Light Shading
Li, Wi = light[i].illum(p)

!" = ∑#
!#$(%#, %")

!"

!#

&

%"

%#

3. Lighting Integration
Lo = integrate(Li, f, Wi, Wo);

bidirectional reflectance
function (BxDF)

1. Material Shading
f = evalMaterial(p)

Achieving modularity: implement shading features in
separate files

MetalMaterial.hlsl

BrickMaterial.hlsl

PointLight.hlsl

DirectionalLight.hlsl

LightEnv.hlsl

Materials Lights

struct MetalMaterial {…}
struct MetalBxDF {…}
MetalBxDF evalMaterial(MetalMaterial mat) {…}
float bxdf(MetalBxDF f) {…}

Light Integration

Specialize shader by linking different files via #include

float3 myShader(Material mat, LightEnv lightEnv)
{
 BxDF f = evalMaterial(mat);
 return evalLighting(lightEnv, f);
}

MyShader.hlsl

#include "MetalMaterial.hlsl"
typedef MetalMaterial Material;
typedef MetalBxDF BxDF;
#include "LightEnv.hlsl"
#include "MyShader.hlsl"

MyShader_Variant1.hlsl

struct MetalMaterial {…}
struct MetalBxDF {…}
MetalBxDF evalMaterial(MetalMaterial mat) {…}
float bxdf(MetalBxDF f) {…}

MetalMaterial.hlsl

Specialize shader by linking different files via #include

• No compiler help to ensure correctness 
Shader entry point is not checked until a
specialized variant is compiled

float3 myShader(Material mat, LightEnv lightEnv)
{
 BxDF f = evalMaterial(mat);
 return evalLighting(lightEnv, f);
}

MyShader.hlsl

#include "MetalMaterial.hlsl"
typedef MetalMaterial Material;
typedef MetalBxDF BxDF;
#include "LightEnv.hlsl"
#include "MyShader.hlsl"

MyShader_Variant1.hlsl

struct MetalMaterial {…}
struct MetalBxDF {…}
MetalBxDF evalMaterial(MetalMaterial mat) {…}
float bxdf(MetalBxDF f) {…}

MetalMaterial.hlsl

Specialize shader by linking different files via #include

float3 myShader(Material mat, LightEnv lightEnv)
{
 BxDF f = evalMaterial(mat);
 return evalLighting(lightEnv, f);
}

MyShader.hlsl

#include "MetalMaterial.hlsl"
typedef MetalMaterial Material;
typedef MetalBxDF BxDF;
#include "LightEnv.hlsl"
#include "MyShader.hlsl"

MyShader_Variant1.hlsl

struct MetalMaterial {…}
struct MetalBxDF {…}
MetalBxDF evalMaterial(MetalMaterial mat) {…}
float bxdf(MetalBxDF f) {…}

MetalMaterial.hlsl

• No compiler help to ensure correctness 
Shader entry point is not checked until a
specialized variant is compiled

• Assumptions to make a valid entry point is
never explicitly stated in code 
What types and functions should I provide to
implement a new material?

Stanford CS348K, Spring 2022

Next time (Foley and He visiting from NVIDIA)

Can we do better?
- Can we achieve modularity and type safety of modern languages
- But retain the performance expectations of modern GPU code?

- No overhead of dynamic dispatch / worst-cast thread register allocation
- E"cient bulk CPU-GPU communication

