Lecture 18:

Rendering/Simulation for Model Training
(+ Intro to shading languages)

Visual Computing Systems
Stanford C5348K, Spring 2022



Today

m We've talked about how ML/AIl techniques are used to improve visual computing
applications: computational photography, rendering, video compression, etc...

m Today we'll talk about how rendering/simulation are increasing being used to train
better ML models.

m At the end we'll talk about a few GPU architecture issues that will be relevant to
Tuesday’s discussion of GPU programming languages
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ABSTRACT

Labeling training data is increasingly the largest bottleneck
in deploying machine learning systems. We present Snorkel,
a first-of-its-kind system that enables users to train state-
of-the-art models without hand labeling any training data.
Instead, users write labeling functions that express arbi-
trary heuristics, which can have unknown accuracies and
correlations. Snorkel denoises their outputs without ac-
cess to ground truth by incorporating the first end-to-end
implementation of our recently proposed machine learning
paradigm, data programming. We present a flexible inter-
face layer for writing labeling functions based on our ex-
perience over the past year collaborating with companies,
agencies, and research labs. In a user study, subject mat-
ter experts build models 2.8 x faster and increase predictive
performance an average 45.5% versus seven hours of hand la-
beling. We study the modeling tradeoffs in this new setting
and propose an optimizer for automating tradeoff decisions
that gives up to 1.8x speedup per pipeline execution. In
two collaborations, with the U.S. Department of Veterans
Affairs and the U.S. Food and Drug Administration, and
on four open-source text and image data sets representa-
tive of other deployments, Snorkel provides 132% average
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e

Accuracy: 90%

1k labels

LABEL SOURCE 2
<

e —

Accuracy: 60%

100k labels
UNLABELED DATA

Figure 1: In Example 1.1, training data is labeled
by sources of differing accuracy and coverage. Two
key challenges arise in using this weak supervision
effectively. First, we need a way to estimate the un-
known source accuracies to resolve disagreements.
Second, we need to pass on this critical lineage in-
formation to the end model being trained.

advent of deep learning techniques, which can learn task-

specific representations of input data, obviating what used

to be the most time-consuming development task: feature

engineering. These learned representations are particularly
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Think back to earlier in course

What was the biggest practical bottleneck to training good models?

Overton: A Data System for Monitoring and Improving
Machine-Learned Products

Christopher Ré Feng Niu Pallavi Gudipati Charles Srisuwananukorn
Apple Apple Apple Apple

September 13, 2019

Abstract

We describe a system called Overton, whose main design goal is to support engineers in building, monitoring, and
improving production machine learning systems. Key challenges engineers face are monitoring fine-grained quality,
diagnosing errors in sophisticated applications, and handling contradictory or incomplete supervision data. Overton
automates the life cycle of model construction, deployment, and monitoring by providing a set of novel high-level,
declarative abstractions. Overton’s vision is to shift developers to these higher-level tasks instead of lower-level machine
learning tasks. In fact, using Overton, engineers can build deep-learning-based applications without writing any code
in frameworks like TensorFlow. For over a year, Overton has been used in production to support multiple applications
in both near-real-time applications and back-of-house processing. In that time, Overton-based applications have
answered billions of queries in multiple languages and processed trillions of records reducing errors 1.7 — 2.9x versus
production systems.

1 Introduction

In the life cycle of many production machine-learning applications, maintaining and improving deployed models is the
dominant factor in their total cost and effectiveness—much greater than the cost of de novo model construction. Yet, there
is little tooling for model life-cycle support. For such applications, a key task for supporting engineers is to improve and
maintain the quality in the face of changes to the input distribution and new production features. This work describes
a new style of data management system called Overton that provides abstractions to support the model life cycle by
helping build models, manage supervision, and monitor application quality.?

Overton is used in both near-real-time and backend production applications. However, for concreteness, our running
example is a product that answers factoid queries, such as “how tall is the president of the united states?” In our
experience, the engineers who maintain such machine learning products face several challenges on which they spend the
bulk of their time.
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Using advanced rendering/simulation
to generate supervision to train better models
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Carla: urban driving simulator based on Unreal Engine
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RGB Depth

Since renderer has complete description of scene, it can
output detailed, fine-grained labels as well as RGB
image.

(would be laborious to annotate)

Object type
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Gibson: acquire/render real world data

m Dataset acquired via 3D scanning (3D mesh + texture)
m Geometry, normals, semantics, + (so-called) “photorealistic” 3D
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Modifying real-world images to create novel situations
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Video inpainting
|dentify and remove foreground object
m Hallucinate background with deep neural network

Original video frames S |
(with foreground segmentation shown) After inpainting foreground regions

[Ouyang 2021]
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Physics simulation
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"Dota 2 bot

OpenAl’s “Op

OPENAI FIVE

CPUs 128,000 preemptible CPU cores on GCP

GPUs 256 P100 GPUs on GCP

Experience collected ~180 years per day (~900 years per day
counting each hero separately)

Size of observation ~36.8 kB

Observations per 715
second of gameplay

Batch size 1,048,576 observations

Batches per minute ~60
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Need significant amounts of simulated
experience to learn skills

Example: even for simple PointGoal navigation task: need billions of steps

of “experience” to exceed traditional non-learned approaches

Performance on Gibson validation split
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Deeper dive:
Accelerating reinforcement learning
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RL In 30 seconds

Model Inference

environment
observation —» 7-‘-9 —>
e.g. RGB image

agent
action




RL In 30 seconds

Model Inference

environment

i agent
observation —» /| 9 —p agE
: action
e.g. RGB image
Model Training
sequence of
observations
sequence of \ compute loss
qt ti gradients update
agent actions Ipcats
W W = N - 7"'9 _>viaSGD

Reward: change in /

distance from goal




RL In 30 seconds

Model Inference

environment
observation —» 7‘-9 —>
e.g. RGB image

agent
action

Model Training

compute loss
gradients update

—p —  model
T via SGD




RL In 30 seconds

Many rollouts:
- Agents independently navigating
same environments

Batch Model
Training

compute loss

gradients update
— - model
T via SGD




RL In 30 seconds

Many rollouts:

- Agents independently navigating
same environments

= Or different environments

Batch Model
Training

Rollout 2 compute loss
gradients update

— -  model
T via SGD

Rollout 3




Learning robot skills requires many trials
(billions) of learning experience

B [raining In diverse set of virtual environments
®m Many training trials in each environment



Workload summary

m Withina rollout
- For each step of a rollout:
- Render -> Execute policy inference -> simulate next world state

m Across *many” independent rollouts
- Simulated agents may (or may not) share scene state

- Diversity in scenes in a batch of rollouts is desirable to avoid overfitting, sample
efficiency of learning
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System components

Database of 3D assets (meshes, textures collision meshes)

l Viewpoints, scene object positions l
/\‘

World State Renderer

(Q; b
SImUIatOr (render scene from viewpoint of agent)

(updates position of agent in scene,
detects collisions with scene geometry)

Non-rendered state: position, compass... Rendered frames

Inference/Learning

(inference: action from rendered image,
learning: update policy model from rollouts)

o

Next action
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Simulator

Renderer

Scene A

Inference

Simulator

Renderer

Scene B

Inference

Simulator

Renderer

Scene D

Inference

Simulator

Renderer

Scene A

Inference

Simulator

Renderer

Scene B

Inference

Simulator

Renderer

Scene D

Inference

Basic design: parallelize over workers

Simulator

Renderer

Scene A

Inference

Simulator

Renderer

Scene C

Inference

Simulator

Renderer

Scene D

Inference

Ask yourself:
1. What data gets communicated?

2. Can the system scale to sufficient parallelism?

3. Are there sync bottlenecks

Learning

learning: update policy model
from rollouts)

Uy’
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Example: Rapid (OpenAl)

Optimizer + Connected Rollout Workers (x256)

Rollout Workers
~500 CPUs

Run episodes
» 80% against current bot

» 20% against mixture of past versions Rollout
. > Data
Randomized game settings Samples

Push data every 60s of gameplay
- Discount rewards across the 60s using
generalized advantage estimation

Model Parameters

(10M floats)

Eval Workers

~2500 CPUs
Play in various environments Model
for evaluation Parameters

* vs hardcoded “scripted” bot

- vs previous similar bots (used to
compute Trueskill)

* vs self (for humans to watch
and analyze)

Optimizers

use NCCL2 to
average gradients
at every step.

Gradient

Updates
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Design issues

m Expensive communication of weights from learner node to workers
m  Worker nodes inefficiently run inference

- May run on CPU if simulation code on workers doesn’t require GPU (use cheap worker nodes that
don’t feature GPUs)

- Run inference on small batches since each worker is running one rollout sim
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Centralize inference AND training

B |nstance multiple copies of the engine on a
single machine (fill up GPU), use all CPU
cores In a large box

Simulator Simulator Simulator
Renderer Renderer Renderer B Scale to multiple machines for further
throughput
Scene A Scene A Scene A \
Batch
Simulator Simulator Simulator Inference/
Renderer Renderer Renderer Learnin 0
H (inference: action from
Scene B Scene B Scene C . rendered |mage,
learning: update policy model
from rollouts)
T
SlRigto) Sllatey SlIate) Efficient batch inference/training
Renderer Renderer Renderer / Centralization enables
heterogeneity (e.g., use TPU for training)
Scene D Scene D Scene D
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Advantages

m  No communication of model weights between workers and learner

m  Must communicate simulation state — surprisingly this can be compact (object locations, smaller
rendered image)

m (Can use efficient batch inference in a centralized location (batch over rollouts from many workers)
m (Canuse machine optimized for DNN operations in centralized location — e.g., runon a TPU

Stanford C5348K, Spring 2022



SEED RL

Architecture Accelerators Environments Actor CPUs Batch Size FPS Ratio
DeepMind Lab

IMPALA Nvidia P100 176 176 32 30K —
SEED Nvidia P100 176 44 32 19K 0.63x
SEED TPU v3, 2 cores 312 104 32 74K 2.5x
SEED TPU v3, 8 cores 1560 520 48' 330K 11.0x
SEED TPU v3, 64 cores 12,480 4,160 384! 2.4M 80.0x
Google Research Football

IMPALA, Default 2 x Nvidia P100 400 400 128 11K —
SEED, Default  TPU v3, 2 cores 624 416 128 18K 1.6x
SEED, Default  TPU v3, 8 cores 2.496 1,664 160° 71K 6.5x
SEED, Medium  TPU v3, 8 cores 1,550 1,032 160° 44K —
SEED, Large TPU v3, 8 cores 1,260 840 160° 29K  —
SEED, Large TPU v3, 32 cores 5,040 3,360 640° 114K 3.9x
Arcade Learning Environment

R2D?2 Nvidia V100 256 N/A 64 85K*> —
SEED Nvidia V100 256 55 64 67K 0.79x
SEED TPU v3, 8 cores 610 213 64 260K 3.1x
SEED TPU v3, 8 cores 1200 419 256 440K* 5.2x
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Design issues

m [nefficient simulation/rendering: rendering a small image does not make good use of a
modern GPU (rendering throughput is low)

m Duplication of computation and memory footprint (for scene data) across renderer/
simulator instances

Stanford C5348K, Spring 2022
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Low-resolution images with pre-captured lighting
(from Gibson): clearly not state-of-the-art rendering! ;-)
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Often the best way to reduce communication / increase efficiency
is often to make the best possible use out of one node

Can we make simulation faster?

Stanford C5348K, Spring 2022



Al Habitat

m Focus on high-performance rendering/
simulation to enable order of magnitude
longer RL training runs

The table below reports performance statistics for a test scene from the Matterport3D dataset (id 17DRP5sb8fy ) on a Xeon E5-
2690 v4 CPU and Nvidia Titan Xp . Single-thread performance reaches several thousand frames per second, while multi-
process operation with several independent simulation backends can reach more than 10,000 frames per second on a single

GPU!
1 proc 3 procs 5 procs
Sensors / Resolution 128 256 512 128 256 512 128 256 512
RGB 4093 1987 848 10638 3428 2068 10592 3574 2629
RGB + depth 2050 1042 423 5024 1715 1042 02723 1774 1348

RGB + depth + semantics* 709 596 394 1312 1219 979 1521 1429 1291

Previous simulation platforms that have operated on similar datasets typically produce on the order of a couple hundred

frames per second. For example Gibson reports up to about 150 fps with 8 processes, and MINOS reports up to about 167 fps
with 4 threads.
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Prior work was still using simulators (game engines) designed to render large
high-resolution images for human eyes.

How would you design an engine “from the ground up” for the RL workload?

Stanford C5348K, Spring 2022



Main idea: design a renderer that executes rendering for 100s-1000’s of unique
rollouts in a single request

Inference/training, simulation, and rendering all operate on batches of N requests (rollouts)

Efficient bulk communication between three components

Learning +
Inference

—

N actions
ﬁ

.

Batch Simulator

Worker
Thread

Worker
Thread

Scene
Metadata

Worker
Thread

Scene
Metadata

N

N states l

-,

N frames

N states
q

Batch Renderer
N environment states

Scene
Assets

v J v

00 Scene Assets

New Scene | New Scene
Assets e.9e | Assets
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Opportunities provided by a batch rendering interface

m Wide parallelism: rendering each scene in a batch is independent
- "Fill up” large parallel GPU with rendering work

- Enables graphics optimizations like pipelining frustum culling (removing off-screen geometry
before drawing it) for one environment with rendering of another

m Footprint optimizations: rendering requests in a batch can share same geometry assets
- Significantly reduces memory footprint, enables large batch size
- N~ 256-1024 (per GPU) in our experiments: fills up large GPU
- Limit number of unique scenes in a batch to K< N scenes.
- GPU RAM and scene size determines K

m Amortize communication: rendering requests in a batch can be packaged and drawn together
- Render frames in batch to tiles in a single large frame buffer to avoid state update

Stanford C5348K, Spring 2022



Also, simultaneously optimize policy DNN

DNN design/engineering (DNN encoder followed by policy LSTM)
Reduce resolution of rendered input to from 128x128 to 64x64
Move to ResNet9-based visual encoder from ResNet50

Replace key layers with performant alternatives (e.g. replace normalization with Fixup
Initialization)

m Adjust learning rates and use Lamb optimization

Stanford C5348K, Spring 2022



Example: 10,000+ FPS render— infer— train on a single GPU *

Agent
Sensor  System CNN Res. RTX 3090 RTX 2080Ti Tesla V100 8x2080Ti 8xV100
BPS SE-ResNet9 64 19900 12900 12600 72000 46900
Denth BPS-R50 ResNet50 128 2300 1400 2500 10800 18400
Pt Wimans++ SE-ResNet9 64 2800 2800 2100 9300 13100
WIIMANS20 ResNet50 128 180 230 200 1600 1360
BPS SE-ResNet9 64 13300 8400 9000 43000 37800
RGB BPS-R50 ResNet50 128 2000 1050 2200 6800 14300
WiMANS++ SE-ResNet9 64 990 860 1500 4600 8400
WIIMANS20 ResNet50 128 140 OOM 190 OOM 1320
100%
?-f 80% - " ‘
z
»n  60%
5
S 40%
1L
7 o | —— Our System
o 20% —— ICLR 2020 Baseline

* But low resolution: 64x64 rendered output resolution

0% '
0 10 20

40

Wall-Clock Training Time (Hours)
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NVIDIA Issac Gym

Same idea of batched many-environment execution, applied to physics
Simulate 100’s to 1000’s of world environments simultaneously on the GPU
Current state for all environments packaged in a single PyTorch tensor

User can write GPU-accelerated loss/reward functions in PyTorch on this tensor
Result: tight loop of simulate/infer/train

env, env, env,

\J

franka, table, box, franka, table, box,

bodys body,j,
(left finger) ? (right finger)
EESAEEREERETEEEE
\ Y ) ! \ A .’ .

‘,
|’ . |" "' l"

Py Qo Vg dg P1o Q10 Vio d1g
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Interesting rendering/simulation systems research questions

m [fyou had to design a rendering/simulation system “from the ground up” to support ML
model training, what would you do differently from a modern high-performance game
engine?

m What new opportunities for performance optimization are there? (amortize simulation and
rendering across multiple virtual sensors, agents, etc.)

- What should the architecture/API to the renderer be?

m  How much fidelity is needed to train models that successfully transfer into the real-world?

- Do we even need photorealistic quality (or advanced physics) to train policies that work in
the real world?
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Example Sim2Real experiments: RoboTHOR e 20

Simulation

Feature
‘ ) . Space
‘Rertar:\ent v ’. F Nearest

L - e ‘.. ' ~\ " Neighbor
Virtual environment Real world photo of corresponding \Zp‘ﬁmmj 2o 0 Sy U E

° ° Wiy PP 4 S B ”'- : ::" 7‘": o
environment (in lab) "
ol Y -:-’._ . n" ":w:: .: S at l
.‘_’ ‘ B il N‘e)arlgst
Neighbor
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RobotTHOR: Sim2Real initial study

Easy Medium Hard
Success SPL Episode Path |Success SPL Episode Path [Success SPL Episode Path
length length length length length length
Random 758 532 436 034 | 000 0.00 427 030 0.00 0.00 3.06 0.19
Instant Done 455 379 100 0.00| 000 0.00 1.00 0.00| 0.00 0.00 1.00 0.00
Blind 455 379 100 000 000 0.00 1.00 0.00| 0.00 0.00 1.00 0.00
Image 55.30 38.12 4587 9.26 | 28.79 19.12 78.49 14.82| 147 0.97 81.09 14.22
Image+Detection| 36.36 19.89 6341 11.39| 11.36 5.25 90.37 16.65| 0.74 0.61 83.01 14.00

Table 1: Benchmark results for Sim-to-Sim
Easy Medium Hard

Success SPL Episode Path | Success SPL Episode Path | Success SPL Episode Path
length length length length length length
Image | 33.33 353 53.16 7.18 | 16.66 3.70 43.83 5.33 0.00 0.00 67.83 7.00

[Dietke 20]
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Understanding the effects of sim2real gap Catopadhyay 21

What parts of real-world sensing do we really need to model in simulation?

Agent Operating in
a RoboTHOR Scene

Clean Frame [___ Camera Crack |

Example visual corruptions
| — |

T DN

Defocus Blur

(with Drift)
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Prep/background for next class
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Key parts of a shader

[Slide credits: Yong He]
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The rendering equation * Keivase
i(X,)C') - v(x,x')[l(x,x!)_l_fr(x,x!’xH)l‘(x!,xﬂ)dxﬂ]

i(x, x’) =Radiance (light energy along a ray) from point x’in direction of point x

v(x, x”) = Binary visibility function (1 if ray from x’ reaches x, 0 otherwise)

[(x, x”) = Radiance emitted from x"in direction of x (if x"is an emitter)

r(x, x’,x””) = BRDF: fraction of energy arriving at x’ from x” that is reflected in direction of x
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Categories of reflection functions: r(x,x;x")

m Ideal specular

Perfect mirror

m |deal diffuse

Uniform reflection in all directions

m Glossy specular

Majority of light distributed in
reflection direction

m Retro-reflective

Reflects light back toward source

Diagrams illustrate how incoming light energy from
given direction is reflected in various directions.

[Slide credit: Stanford 348b / Pat Hanrahan] Stanford (5348K, Spring 2022



Types of lights

m Attenuated omnidirectional point light
(emits equally in all directions, intensity falls off with distance: 1/R2 falloff)

m Spotlight

(does not emit equally in all directions)

Stanford C5348K, Spring 2022



More sophisticated lights

m Environment light
(not a point light source: defines incoming light from all directions)

Environment Map
(Grace cathedral)

Rendering using environment map
(pool balls have varying material properties)

[Ramamoorthi et al. 2001]
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USC High-Resolution Light Probe Image Gallery

Environment map

Image cred



[Kajiya 86]

The rendering equation * | |
i(x,xv)=v(x,xv)[l(x,x')+fr(x,x',x'v)i(x',x'!)dxh:l

i(x, x’) =Radiance (light energy along a ray) from point x’in direction of point x

v(x, x”) = Binary visibility function (1 if ray from x’ reaches x, 0 otherwise)

[(x, x”) = Radiance emitted from x’in direction of x (if x"is an emitter)

r(x, x’,x””) = BRDF: fraction of energy arriving at x’ from x” that is reflected in direction of x
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Geometry / Animation

A\

StaticMesh Displacement SkeletalAnim

VY EYHE]

CIES

SpotLight PointLight Skylight



Geometry .

Static Mesh Skeletal Animated Mesh



Materials




Lighting




Geometry / Animation
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Extensibility is easy when performance is not a priority

Copyrighted Material
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PHYSICALLY BASED
RENDERING

From Theory to Implementation
Third Edition

Clay
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Material
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Light
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Real-time renderers need to be efficient
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GPU code

4-8 out-of-order execution cores Thousands of throughput-oriented cores

Managing Resources Executing Draw Commands
Issuing Draw Commands to GPU Evaluating Shading Features



Shading System

Input

Many objects to render
Each has a set of features to use

obj@: Skylight, Metal, Displacement
objl: Skylight, Metal

obj2: Skylight, Brick

obj3: Skylight, Dirt




The basic physics model that a shading system computes
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bidirectional reflectance
function (BxDF) ?

Lo — Z . Lif(a)i’ 600)

1. Material Shading
f = evalMaterial(p)

2. Light Shading
Li, Wi = light[i].illum(p)

3. Lighting Integration
Lo = integrate(Li, f, Wi, Wo);




Skylight
lightProbe

strength

shadowMap

Displacement

displacementMap D

normalMap

Metal Material

roughness

tint 0.4 0.4 0.4]




Skylight
lightProbe

strength

shadowMap

Brick Material

diffuse
tiling [0.4]

uvOffset [0.0, 0.0]




A shading system does two things to draw an object

Determine what code to Communicate the
run on current GPUs parameters to the GPU

GPU Shader Code

=

SkeletalAnim  Cloth  SpotLight




Dynamically dispatch GPU code for shading features

Shader Code

void myShader (int geometryType, GP geomParams,
int materialType, MP materialParams,
int lightType, LP lightParams)

ol if (geometryType == STATIC MESH)

- computeStaticMeshGeometry(geomParams) ;

else if (geometryType == DISPLACEMENT)
computeDisplacementGeometry(geomParams) ;

else if (geometryType == SKELETAL_ANIM)
computeSkeletalAnimGeometry(geomParams) ;

Geometry

if (materialType == METAL)
computeMetal(materialParams);
, else if (materialType == CLOTH)
Material computeCloth(materialParams);
else if (materialType == GLASS)
computeGlass(materialParams);

if (lightType == SPOT LIGHT)
computeSpotLight(lightParams);
, , else if (lightType == POINT LIGHT)
LKJhtHWQ computePointLight(lightParams);
else if (lightType == SKY_LIGHT)
computeSkyLight(lightParams);



Dynamic dispatching is bad for performance
Shader Code

void myShader (int geometryType, GP geomParams,

: : : , int materialType, MP materialParams,
* Overhead of branching instructions on wide int lightType, LP lightParams)

SIMD processors {
if (geometryType == STATIC MESH)

computeStaticMeshGeometry(geomParams);
else if (geometryType == DISPLACEMENT)

computeDisplacementGeometry(geomParams);
else if (geometryType == SKELETAL_ANIM)

computeSkeletalAnimGeometry(geomParams);

if (materialType == METAL)
computeMetal(materialParams);

else if (materialType == CLOTH)
computeCloth(materialParams);

else if (materialType == GLASS)
computeGlass(materialParams);

if (lightType == SPOT_LIGHT)
computeSpotLight(lightParams);

else if (lightType == POINT LIGHT)
computePointLight(lightParams);

else if (lightType == SKY_LIGHT)
computeSkyLight(lightParams);



Dynamic dispatching is bad for performance
Shader Code

void myShader (int geometryType, GP geomParams,

: : : : int materialType, MP materialParams,
* Overhead of branching instructions on wide int lightType, LP lightParams)

SIMD processors {
if (geometryType == STATIC MESH)

computeStaticMeshGeometry(geomParams);

* Larger working set limits the ability of else if (geometryType == DISPLACEMENT)
d ti-th di hid computeDisplacementGeometry(geomParams) ;

naraware muiti-threading to hide memory else if (geometryType == SKELETAL_ANIM)
atency computeSkeletalAnimGeometry(geomParams) ;

if (materialType == METAL)
computeMetal (materialParams);

else if (materialType == CLOTH)
computeCloth(materialParams);

else if (materialType == GLASS)
computeGlass(materialParams);

if (lightType == SPOT_LIGHT)
computeSpotLight(lightParams);

else if (lightType == POINT_ LIGHT)
computePointLight(lightParams);

else if (lightType == SKY_LIGHT)
computeSkyLight(lightParams);



Common approach: specialize shader code for shading
features in-use

Shader Code (using preprocessor directives)

void myShader(...)
{

#elif defined(SKELETAL ANIM)
computeSkeletalAnimGeometry(geomParams);
#endif

#elif defined(CLOTH)
computeCloth(materialParams);

#if defined(SPOT_LIGHT)

compile myShader -D SKELETAL ANIM, CLOTH, SPOT LIGHT computespotLight(lightParams);

draw(myShader, ...);

#tendl1t



A shading system does two things to draw an object

Determine what code to
run on current GPUs

1

GPU Shader Code

{ A

SkeletalAnim  Cloth  SpotLight




A shading system does two things to draw an object

Determine what code to Communicate the
run on current GPUs parameters to the GPU

1

GPU Shader Code

e | E-




CPU-GPU communication model

Draw(objo)

SetParam(p5)

SetParam(pl)

SetShader(s)




Skylight
lightProbe

strength

shadowMap

Displacement

displacementMap D

normalMap

Metal Material

roughness

tint 0.4 0.4 0.4]




Skylight
lightProbe

strength

shadowMap

Displacement

displacementMap D

normalMap

roughness

tint [0.5 0.5 0.5]




Block 2

roughness

tint

[0.5 0.5 0.5]

BlockO
lightProbe

strength

shadowMap

displacementMap D
normalMap .

Block 1

roughness

tint 0.4 0.4 0.4]




SetParamBlock(l &blockl)

Draw(objo)

Block 2

roughness

tint

[0.5 0.5 0.5]

BlockO
lightProbe

strength

shadowMap

displacementMap D
normalMap .

Block 1

roughness

tint 0.4 0.4 0.4]




BlockO
lightProbe

strength

shadowMap

displacementMap D

Set ParamBlock(1, &block2) e normalMap .

(-l

Block 2 Block 1
roughness | roughness

tint [0.5 0.5 0.5] |4 tint 0.4 0.4 0.4]




Input
objo:

objl:

1. Include skylight feature in GPU

Skylight;~Metal(pl),

Displacement
Skylight, "Metal(p2),
Displacement.,

code
2. Allocate and initialize
parameter blocks

3. Ensure CPL

the parameter layout

and GPU agree on

Specialize Shader Code

void entryPoint(
............ @blocke geomParams,

@blockl materialParams

#if defined(STATIC_ MESH

@blocko TighHtParams.;.....

) e
)

computeStaticMeshGeometry(geomParams);

#elif defined(DISPLACEM

ENT)

computeDisplacementGeometry(geomParams);
#elif defined(SKELETAL ANIM)
computeSkeletalAnimGeometry(geomParams);

#if defined(METAL)
computeMetal (materia

*. #elif defined(CLOTH)

.. computeCloth(materia
#elif defined(GLASS)
computeGlass(materia

#if deFined(SPOT_LIGHT)

struct SkylightParams
1Par|{

TextureCube lightProbe;
float strength;
TextureCube shadowMap

1Par

1Par| };

compdteSpotLight(lightParams); ;f
#elif defimed(POINT_LIGHT) ’

computePdintLight(1li

#elif defineddSKY_LIGHT

EhtParams),

computeSkyLight(lightParams);
lightParams

Create Parameter Blocks

lightProbe

strength

shadowMap

displacementMap

normalMap

Block 1

roughness

tint [0.4 0.4 0.4]

Block 2

roughness

tint [0.5 0.5 0.5]
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Input
objo:

objl:

Skylight;~Metal(pl),

Displacement
Skylight, "Metal(p2),
Displacement.,

Specialize Shader Code

void entryPoint(
............ @block® geomParams,

#if defined(STATIC_MESH)
computeStaticMeshGeometry(geomParams);
#telif defined(DISPLACEMENT)
computeDisplacementGeometry(geomParams);
#telif defined(SKELETAL_ANIM)
computeSkeletalAnimGeometry(geomParams);

#if defined(METAL)

#elif defined(GLASS)

‘computeGlass(materialPar| };

#if deFined(SPOT_LIGHT)

compdteSpotLight(lightParams); ;f
#elif defimed(POINT_LIGHT) R
computePantnght(llghtParams),

@blocke TightParams............_
@blockl materialParams)

struct SkylightParams
. computeMetal (materialPar|A
*. #elif defined(CLOTH)

“,  computeCloth(materialPar

TextureCube lightProbe;
float strength;
TextureCube shadowMap

#elif definedt ) K
computeskyLight(}ightRarans);

Create Parameter Blocks

lightProbe

strength

shadowMap

displacementMap

normalMap a

Block 1

roughness

tint [0.4 0.4 0.4]

Block 2

roughness

tint [0.5 0.5 0.5]
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Recall: basic physics model

bidirectional reflectance
function (BxDF) ?

Lo — Z . Lif(a)i’ 600)

1. Material Shading
f = evalMaterial(p)

2. Light Shading
Li, Wi = light[i].illum(p)

3. Lighting Integration
Lo = integrate(Li, f, Wi, Wo);




Achieving modularity: implement shading features In
separate files

Materials Lights Light Integration

MetalMaterial.hlsl struct MetalMaterial {..}
struct MetalBxDF {..}

MetalBxDF evalMaterial(MetalMaterial mat) {..}
float bxdf(MetalBxDF f) {..}

BrickMaterial.hlsl



Specialize shader by linking different files via #include

MyShader Variantl.hlsl

#include "MetalMa .hlsl”
typedef MetalMaterial Material;
typedef MetalBxDF BxDF;
#include "LightEnv.hlsl"
#include "MyShader.hlsl”

v

MetalMaterial.hlsl

struct MetalMaterial {..}

struct MetalBxDF {..}

MetalBxDF evalMaterial(MetalMaterial mat) {..}
t bxdf(MetalBxDF f) {..}

MyShader.h$sl

float3 myShader(Material mat, LightEnv lightEnv)

{
BXDF f = evalMaterial(mat);

return evallLighting(lightEnv, f);




Specialize shader by linking different files via #include

MyShader Variantl.hlsl

#include "MetalMaterial.hlsl”
typedef MetalMaterial Material;
typedef MetalBxDF BxDF;
#include "LightEnv.hlsl"
#include "MyShader.hlsl”

MetalMaterial.hlsl

struct MetalMaterial {..}

struct MetalBxDF {..}

MetalBxDF evalMaterial(MetalMaterial mat) {..}
float bxdf(MetalBxDF f) {..}

No compiler help to ensure correctness

Shader entry point is not ¢
specialized variant is comp

necked until a

lled

MyShader.hlsl

float3 myShader(Material mat, LightEnv lightEnv)

{
BXDF f = evalMaterial(mat);

return evallLighting(lightEnv, f);




Specialize shader by linking different files via #include

MyShader Variantl.hlsl

#include "MetalMa
typedef MetalMaterial Material;
typedef MetalBxDF BxDF;

#include "LightEnv.hlsl"
#include "MyShader.hlsl”

.hlsl”

'

No compiler help to ensure correctness

Shac

spec

Assumptions to make a valid entry point is

lalized variant is comp

er entry point is not c

necked until a

lled

never explicitly stated in code

What types and functions should | provide to

Implement a new material?

MetalMaterial.hlsl

struct MetalMaterial {..}

struct MetalBxDF {..}

MetalBxDF evalMaterial(MetalMaterial mat) {..}
t bxdf(MetalBxDF f) {..}

MyShader.h$sl

return evallLighting(lightEnv, f);




Next time (Foley and He visiting from NVIDIA)

m Can we do better?

- Can we achieve modularity and type safety of modern languages
- But retain the performance expectations of modern GPU code?

- No overhead of dynamic dispatch / worst-cast thread register allocation
- Efficient bulk CPU-GPU communication

Stanford C5348K, Spring 2022



