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Lecture 15:

Real Time Ray Tracing Workload 
(Ray-scene intersection)



This image was rendered in real-time on a single high-end GPU
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So was this
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Modern real-time ray tracing
Exciting example of co-design of algorithms, specialized hardware, and software 
abstractions 

It is clear that the near future of real-time graphics will involve large amounts of ray 
tracing

NVIDIA GeForce RTX 3080 GPU
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But !rst… a few positive things to say about rasterization
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The visibility problem (as rasterization)
What scene geometry is visible at each screen sample? 
- What scene geometry projects onto screen sample points? (coverage) 
- Which geometry is visible from the camera at each sample? (occlusion)

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

x/z
-z axis

x-axis
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Sample coverage at pixel centers
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Simple OpenGL/Direct3D graphics pipeline
* Several stages of the modern OpenGL pipeline are omitted

Vertex Processing

Fragment Generation 
(Rasterization)

Fragment Processing

Screen sample operations 
(depth and color) 

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on 
vertices

Operations on 
primitives 
(triangles, lines, etc.)

Operations on  
fragments

Operations on 
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized 
coordinate space 

Input: vertices in 3D space1

2

3
4
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Basic rasterization algorithm
Sample = 2D point 
Coverage: 2D triangle/sample tests  (does projected triangle cover 2D sample point) 
Occlusion: depth bu"er

“Given a triangle, !nd the samples it covers” 
(!nding the samples is relatively easy since they are distributed uniformly on screen) 

More e#cient hierarchical rasterization: 
For each TILE of image 
    If triangle overlaps tile, check all samples in tile

initialize z_closest[] to INFINITY             // store closest-surface-so-far for all samples  
initialize color[]                             // store scene color for all samples 
for each triangle t in scene:                  // loop 1: over triangles 
    t_proj = project_triangle(t) 
    for each 2D sample s in frame buffer:      // loop 2: over visibility samples 
        if (t_proj covers s)  
            Evaluate shader to compute color of triangle at sample 
            if (depth of t at s is closer than z_closest[s]) 
                update z_closest[s] and color[s]
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The visibility problem (as ray tracing)
In terms of casting rays from the camera: 
- Is a scene primitive hit by a ray originating from a point on the virtual sensor and traveling through the 

aperture of the pinhole camera? (coverage) 

- What primitive is the !rst hit along that ray? (occlusion)

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

o,do,d
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Basic ray casting algorithm
Sample = a ray in 3D 
Coverage: 3D ray-triangle intersection tests  (does ray “hit” triangle) 
Occlusion: closest intersection along ray

Compared to rasterization approach: just a reordering of the loops! 
“Given a ray, !nd the closest triangle it hits.”

initialize color[]                                 // store scene color for all samples 
for each sample s in frame buffer:                 // loop 1: over visibility samples (rays) 
    r = ray from s on sensor through pinhole aperture 
    r.min_t = INFINITY                             // only store closest-so-far for current ray 
    r.tri = NULL; 
    for each triangle tri in scene:                  // loop 2: over triangles 
        if (intersects(r, tri)) {                    // 3D ray-triangle intersection test 
            if (intersection distance along ray is closer than r.min_t) 
                update r.min_t and r.tri = tri; 
        } 
    color[s] = compute surface color of triangle r.tri at hit point  
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Basic rasterization vs. ray casting
Rasterization: 
- Proceeds in triangle order (for all triangles) 

- Store entire depth bu"er (requires access to 2D array of !xed size) 

- Given triangle, “!nd” samples it covers in 2D bu"er 

- Do not have to store entire scene geometry in memory 

- Naturally supports unbounded size scenes 

Ray casting: 
- Proceeds in screen sample order (for all rays) 

- Do not have to store closest depth so far for the entire screen (just the current ray) 

- Must store entire scene geometry for fast access (!nd the hit) 

- Given ray, “!nd” closest triangle it intersects 

- Challenging, since a ray may go anywhere in the scene
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Ray tracing in one class

Take that Pete Shirley!
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The “visibility problem” in computer graphics
Stated in terms of casting rays from a simulated camera: 
- What scene primitive is “hit” by a ray originating from a point on the virtual sensor and traveling through the 

aperture of the pinhole camera? (coverage) 

- What scene primitive is the !rst hit along that ray? (occlusion)

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

o,do,d
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In this class: scene geometry = triangles



Stanford CS348K, Spring 2022

Why do we trace rays?
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What object is visible to the camera? 
What light sources are visible from a point on a surface (is a surface in shadow?) 
What re$ection is visible on a surface?

Generality of ray-scene queries

Virtual 
Sensor
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Shadows

Image credit: Grand Theft Auto V
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How to compute if a surface point is in shadow?

x

P

L1

L2

Assume you have an algorithm 
for ray-scene intersection…
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A simple shadow computation algorithm
Trace ray from point P to 
location Li of light source 
If ray hits scene object before 
reaching light source… then P 
is in shadow

x

P

L1

L2
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Scene with many light sources
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Soft shadows

Image credit: Pixar

Hard shadows 
(created by point light source)

Soft shadows 
(created by ???)
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Shadow cast by an area light
Based on ray tracing… 
Trace ray from point P to location Li of 
light source 
If ray hits scene object before reaching 
light source… then P is in shadow

x

P1

P2

Notice that a fraction of the light from 
an area light may reach a point.

(Fully lit)

(Partially lit)



Stanford CS348K, Spring 2022

Sampling based algorithm

x

P

PLGoal: estimate the amount of light from area 
source arriving at a surface point P

▪ For all samples: 
- Randomly pick a point PL on the area light: 
- Determine if surface point P is in shadow with respect to PL 

- Compute contribution to illumination from PL

Implication: must trace many rays per pixel!
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4 area light samples 
(high variance in irradiance estimate)
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16 area light samples 
(lower variance in irradiance estimate)

Implication: must trace a lot of shadow rays to reduce noise in rendered image
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Re$ections

Image credit: NVIDIA



Stanford CS348K, Spring 2022

Re$ections
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Perfect mirror re$ection

x

P1

P2

P3

Light re$ected from P1 in direction of P0 is 
incident on P1 from re$ection about surface 
normal at P1.

p0



Stanford CS348K, Spring 2022

Direct illumination + re$ection + transparency

Image credit: Henrik Wann Jensen
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Global illumination solution

Image credit: Henrik Wann Jensen
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Sampling light paths

Image credit: Wann Jensen, Hanrahan
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Indirect illumination

Pinhole x

y

p
!o

!i

Lo(p,!o)

Light can arrive at a surface from any direction.  
Implication: even more ray tracing per pixel! 
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Direct illumination

p
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One-bounce global illumination

p
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Sixteen-bounce global illumination

p
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Direct illumination
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Global Illumination
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Importance of indirect illumination
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1024 samples per pixel
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One path per pixel

Low sample rate: 1 path per pixel
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32 paths per pixel
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1024 paths per pixel

High sample rate: 1024 path per pixel
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Takeaway: 
Must trace many rays per pixel through complex scenes to 

render realistic images in real time
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Ray-scene intersection preliminaries: 
  

Does a ray (in 3D) hit a triangle (in 3D)?
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Ray equation
Recall, can express ray as:

“time”
point along ray

origin unit direction
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Review: matrix form of a line (and a plane)
Line is de!ned by: 

- Its normal: N 
- A point x0 on the line

X
N

x0

The line (in 2D) is all points x, 
where x - x0 is orthogonal to N.

(And a plane (in 3D) is all points x where x - x0 is orthogonal to N.) 

(N, x, x0 are 2-vectors)

(N, x, x0 are 3-vectors)
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Now solve for t: 

And plug t back into ray equation:

Ray-plane intersection
Suppose we have a plane NTx = c 
- N - unit normal 
- c - o"set 
How do we !nd intersection with ray r(t) = o + td?

Replace the point x with the ray equation t:
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Barycentric coordinates (as ratio of areas)
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Why must coordinates sum to one?

Barycentric coords are signed areas:

Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

AC =
1

2
(b� a)⇥ (x� a)Area of triangle formed 

by points: a, b, x 
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Ray-triangle intersection
Algorithm: 
- Compute ray-plane intersection 
- Compute barycentric coordinates of hit point 
- If barycentric coordinates are all positive, point is in triangle 

Many di"erent techniques if you care about e#ciency
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Takeaway: 
Ray-triangle intersection is an arithmetically 

rich operation
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Ray-scene intersection preliminaries: 
  

How to e#ciently !nd the closest hit using 
BVH acceleration structures (“indices”)
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Bounding volume hierarchy (BVH)

Root
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Bounding volume hierarchy (BVH)
BVH partitions each node’s primitives into disjoints sets 
- Note: the sets can overlap in space (see example below) 
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Bounding volume hierarchy (BVH)
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C D

B

Bounding volume hierarchy (BVH)

A

A
B

C

D

Leaf nodes: 
- Contain small list of primitives 
Interior nodes: 
- Proxy for a large subset of primitives 
- Stores bounding box for all primitives in subtree
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Bounding volume hierarchy (BVH)

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21
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F G

A

B C

D E F G
1,2,3 

4,5
6,7,8, 

9,10,11
12,13,14, 
15, 16,17

18,19,20, 
21,22
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AB C

D E
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A

B C

D F E G
1,2,3 

4,5
6,7,8, 

9,10,11
12,13,14, 
15,16,17

18,19,20, 
21,22

Two di"erent BVH organizations of 
the same scene containing 22 
primitives.  

Is one BVH better than the other?
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Ray-scene intersection using a BVH
struct BVHNode {
   bool leaf;  // true if node is a leaf
   BBox bbox;  // min/max coords of enclosed primitives
   BVHNode* child1; // “left” child (could be NULL)
   BVHNode* child2; // “right” child (could be NULL)
   Primitive* primList; // for leaves, stores primitives
};

struct HitInfo {
   Primitive* prim;  // which primitive did the ray hit?
   float t;          // at what t value along ray?
};

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {
   HitInfo hit = intersect(ray, node->bbox);  // test ray against node’s bounding box
   if (hit.t > closest.t)
      return; // don’t update the hit record

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim != NULL && hit.t < closest.t) {
            closest.prim = p;
            closest.t = t;
         }
      }
   } else {
      find_closest_hit(ray, node->child1, closest);
      find_closest_hit(ray, node->child2, closest);
   }}

Can this occur if ray hits the box? 
(assume hit.t is INF if ray misses box)

node

child1
child2
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Improvement: “front-to-back” traversal

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {

   if (node->leaf) {
      for (each primitive p in node->primList) {
         hit = intersect(ray, p);
         if (hit.prim != NULL && t < closest.t) {
            closest.prim = p;
            closest.t = t;
         }
      }
   } else {
      HitInfo hit1 = intersect(ray, node->child1->bbox);
      HitInfo hit2 = intersect(ray, node->child2->bbox);

      NVHNode* first = (hit1.t <= hit2.t) ? child1 : child2;
      NVHNode* second = (hit1.t <= hit2.t) ? child2 : child1;

      find_closest_hit(ray, first, closest);
      if (second child’s t is closer than closest.t)
         find_closest_hit(ray, second, closest);
    }
}

“Front to back” traversal. 
Traverse to closest child node !rst. 
Why? 

node

child1

child2

New invariant compared to last slide: 
assume !nd_closest_hit() is only called for nodes where ray intersects bbox.

Why might we still need to traverse to second child if 
there was a hit with geometry in the !rst child?
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BVH traversal workload in a nutshell
Fetch left/right node bbox data from memory (data loads) 
Ray-bbox intersection (computation) 
Depending on results, move to left or right child node 
- Unpredictable what to load next (depends on ray) 
Repeat…

As always, let’s focus 
here on the data access 
part of the algorithm.
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Takeaway: 
Ray-BVH traversal generates unpredictable (data-
dependent) access to an irregular data structure
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Understanding ray coherence during BVH traversal
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Ray traversal “coherence”

1 

2 
3 

4 
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C E 

F

D

B

B

C D

E F

1 2 

3 4 5 

6 

G
6 

A

A

G 

r0, r1 

r0 r1 

r0 visits nodes: A, B, D, E… 
r1 visits nodes: A, B, D, E… 

Bandwidth reduction: BVH nodes (and triangles) loaded into cache 
for computing scene intersection with r0 are cache hits for r1

Program explicitly intersects a collection of rays against BVH at once 
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Ray traversal “divergence”
Program explicitly intersects a 
collection of rays against BVH at 
once 

1 

2 
3 

4 

5 

C E 
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D

B

B

C D

E F
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3 4 5 

6 

G
6 

A

A

G 

r0 

r0 visits nodes: A, B, D, E… 
r1 visits nodes: A, B, D, E… 

r1 

r2

r2 

r3 

r2 visits nodes: A, B, D, E, C… 
r3 visits nodes: A, B, D, E, G… 

R2 and R3 require di"erent BVH nodes and triangles 

r3
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Incoherent rays
Incoherence is a property of both the rays and the scene

Example: random rays are “coherent” with respect to the BVH if the scene is one big triangle!
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Incoherent rays
Incoherence is a property of both the rays and the scene

Similarly oriented rays from the same point become “incoherent” with 
respect to lower nodes in the BVH if a scene is overly detailed 

(Side note: this suggests the importance of choosing the right geometric level of detail)
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Incoherent rays = bandwidth bound

1 

2 
3 

4 
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C E 
F

D

B

B
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E F
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3 4 5 
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G
6 

A

A
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R0 

R1 

R2 

Di"erent threads may access di"erent BVH nodes at the same time: 
Note how R0/R2 are accessing D while R1 is accessing C
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Ray throughput decreases with increasing numbers of bounces 
(aka increasing ray incoherence)

Ylitie et al 2017
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Idea 1: use compression to reduce data transfer
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Reduce bandwidth requirements with BVH compression
Example: store child bboxes as quantized values in local coordinate frame de!ned by parent node’s bbox

plo

phi = plo + 2ei (2Nq -1)
ei encodes 8 bit exponent that de!nes “scale” of the parent bbox so 
that quantized Nq-bit values can be used to represent points in 
local coordinate frame 

So 3D coordinate frame is de!ned by 3 fp32 values (plo) and 3 8-bit 
extent exponents ei

Planes of child bboxes stored as Nq bit values. Here Nq = 4 for 
illustration, in practice Nq = 8 
(note quantization expands actual box, reducing e#ciency of BVH 
structure)

phi

0 151 2 3 4 5 …3 4
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BVH compression
Example: store child bboxes as quantized values in local coordinate frame de!ned by parent node’s bbox 
Use wider BVHs to: 
- Amortize storage of local coordinate frame de!nition across multiple child nodes 
- Reduce number of BVH node requests during traversal

Amortized 10 bytes per child 
(3.2x compression over standard BVH formats)
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Idea 2: reorder computation to increase locality
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Queue-based global ray reordering
Idea: dynamically batch up rays that must traverse the same part of the scene.  Process these rays 
together to increase locality in BVH access

Partition BVH into treelets 
(treelets sized for L1 or L2 cache) 

1. When ray (or packet) enters treelet, add rays to treelet queue 

2. When treelet queue is su#ciently large, intersect enqueued rays 
with treelet 
(amortize treelet load over all enqueued rays) 

Bu"ering overhead to global ray reordering: must store per-ray 
“stack” (need not be entire call stack, but must contain traversal 
history) for many rays. 

Per-treelet ray queues sized to !t in caches 
(or in dedicated ray bu"er SRAM)

[Pharr 1997, Navratil 07, Alia 10]
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SIMD implications of ray tracing
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Parallelizing single ray-scene queries
(Intra-ray parallelism)
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Parallelize ray-box, ray-triangle intersection
Given one ray and one bounding box, there are opportunities for SIMD processing 
- Can use 3 of 4 vector lanes (e.g., xyz work, multiple point-plane tests, etc.) 

Similar SIMD parallelism in ray-triangle test at BVH leaf 

If BVH leaf nodes contain multiple triangles, can parallelize ray-triangle intersection across 
these triangles 
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Parallelize over BVH child nodes
Idea: use wider-branching BVH (test single ray against multiple child node bboxes in parallel) 
- Empirical result: BVH with branching factor four has similar work e#ciency to branching factor two 
- BVH with branching factor 8 or 16 is less work e#cient (diminished bene!t of leveraging SIMD 

execution) 

[Wald et al. 2008]

Note: wider branching factor also reduces height of tree.   
Reduced number of requests out to memory 
Wider memory transactions
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SPMD ray tracing (GPU-style)

stack<BVHNode> tovisit; 
tovisit.push(root); 
while (ray not terminated) 

   // ray is traversing interior nodes 
   while (not reached leaf node) 
     traverse node // pop stack, perform 
                   // ray-box test, push 
                   // children to stack 

   // ray is now at leaf 
   while (not done testing tris in leaf) 
     ray-triangle test

stack<BVHNode> tovisit; 
tovisit.push(root); 
while (ray not terminated) 
   node = tovisit.pop(); 
   if (node is not a leaf) 
      traverse node // perform ray-box test, 
                    // push children to stack 

   else (not done testing tris in leaf) 
      ray-triangle test

Algorithm 1 Algorithm 2

Each work item (e.g., CUDA thread) carried out processing for one ray. 
SIMD parallelism comes from executing multiple threads in a WARP 
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Ray packet tracing (CPU-style SIMD ray tracing)
Program explicitly intersects a collection of rays against BVH at once 
RayPacket 
{ 
    Ray rays[PACKET_SIZE]; 
    bool active[PACKET_SIZE]; 
}; 

trace(RayPacket rays, BVHNode node, ClosestHitInfo packetHitInfo) 
{ 
   if (!ANY_ACTIVE_intersect(rays, node.bbox) || 
       (closest point on box (for all active rays) is farther than hitInfo.distance)) 
      return; 

   update packet active mask 

   if (node.leaf) { 
      for (each primitive in node) { 
         for (each ACTIVE ray r in packet) { 
            (hit, distance) = intersect(ray, primitive); 
            if (hit && distance < hitInfo.distance) { 
               hitInfo[r].primitive = primitive; 
               hitInfo[r].distance = distance; 
            } 
         } 
      } 
   } else { 
     trace(rays, node.leftChild, hitInfo); 
     trace(rays, node.rightChild, hitInfo); 
   } 
}

[Wald et al. 2001]
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Ray packet tracing
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Blue = active rays after node box test

r0 
r1 r2 r3 r4 r5 r6 

r7 

Note: r6 does not pass node F box test due to closest-
so-far check, and thus does not visit F



Stanford CS348K, Spring 2022

Performance advantages of packets

Wide SIMD execution 
- One vector lane per ray 

Amortize BVH data fetch: all rays in packet visit node at same time 
- Load BVH node once for all rays in packet (not once per ray) 
- Note: there is value to making packets bigger than SIMD width! (e.g., size = 64) 

Amortize work (packets are hierarchies over rays) 
- Use interval arithmetic to conservatively test entire set of rays against node bbox (e.g., think of a packet as a beam) 
- Further arithmetic optimizations possible when all rays share origin  
- Note: there is value to making packets much bigger than SIMD width!
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Disadvantages of packets
Program explicitly intersects a collection of rays against BVH at once 
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Blue = active ray after node box test

▪ If any ray must visit a node, it drags all rays in the 
packet along with it) 

▪ Loss of e#ciency: node traversal, intersection, etc. 
amortized over less than a packet’s worth of rays 

▪ Not all SIMD lanes doing useful work
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Ray packet tracing: incoherent rays
Program explicitly intersects a collection of rays against BVH at once 
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When rays are incoherent, bene!t of packets can decrease 
signi!cantly.  This example: packet visits all tree nodes. 
(So all eight rays visit all tree nodes! No culling bene!t!) 
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Packet tracing best practices
Use large packets for eye/re$ection/point light shadow rays or 
higher levels of BVH 
- Ray coherence always high at the top of the tree 

Switch to single ray (intra-ray SIMD) when packet utilization 
drops below threshold 
- For wide SIMD machine, a branching-factor-4 BVH works well for both packet 

traversal and single ray traversal 

Can use packet reordering to postpone time of switch 
- Reordering allows packets to provide bene!t deeper into tree  
- Not often used in practice due to high implementation complexity

[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]
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Ray incoherence impacts e#ciency of shading
Nearby rays may hit di"erent surfaces, with di"erent “shaders”
Consider implications for SIMD processing
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When rays hit di"erent surfaces…
Surface shading incoherence: 
Di"erent code paths needed to compute the re$ectance of di"erent materials 
[OR] use same highly parameterized “ubershader” (“megakernel”) for all surfaces
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Ray tracing performance challenges
To simulate advanced e"ects renderer must trace many rays per pixel to reduce variance 
(noise) that results from numerical integration (via Monte Carlo sampling) 

3D ray-triangle intersection math is expensive

Ray-scene intersection requires traversal through bounding volume hierarchy 
acceleration structure 

- Unpredictable data access 
- Rays are essentially randomly oriented after enough bounces

Not discussed today: building the BVH structure each frame

Incoherent shading
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Real-time ray tracing APIs
(Recurring theme in this course: increase level of abstraction 

to enable optimized implementations)
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D3D12’s DXR ray tracing “stages”
Ray tracing is abstracted as a graph of programmable “stages” 
TraceRay() is a blocking function in some of those stages

Acceleration 
structure

Can call TraceRay()

Can call TraceRay()

Can call TraceRay()
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GPU understands format of BVH acceleration structure 
and “shader table”
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Hardware acceleration for ray tracing
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NVIDIA Ampere SM (RTX 3xxx series)
Hardware support for ray-triangle intersection and ray-
BVH intersection (“RT core”) 

Very little public documentation of architectural details 
at this time


