
Visual Computing Systems
Stanford CS348K, Spring 2022

Lecture 15:

Real Time Ray Tracing Workload
(Ray-scene intersection)

This image was rendered in real-time on a single high-end GPU

Stanford CS348K, Spring 2022

So was this

Stanford CS348K, Spring 2022

Stanford CS348K, Spring 2022

Modern real-time ray tracing
Exciting example of co-design of algorithms, specialized hardware, and software
abstractions

It is clear that the near future of real-time graphics will involve large amounts of ray
tracing

NVIDIA GeForce RTX 3080 GPU

Stanford CS348K, Spring 2022

But !rst… a few positive things to say about rasterization

Stanford CS348K, Spring 2022

The visibility problem (as rasterization)
What scene geometry is visible at each screen sample?
- What scene geometry projects onto screen sample points? (coverage)
- Which geometry is visible from the camera at each sample? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

x/z
-z axis

x-axis

Stanford CS348K, Spring 2022

Sample coverage at pixel centers

Stanford CS348K, Spring 2022

Simple OpenGL/Direct3D graphics pipeline
* Several stages of the modern OpenGL pipeline are omitted

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Screen sample operations
(depth and color)

Primitive Processing

Vertex stream

Primitive stream

Fragment stream

Shaded fragment stream

Operations on
vertices

Operations on
primitives
(triangles, lines, etc.)

Operations on
fragments

Operations on
screen samples

Triangles positioned on screen

Fragments (one fragment per covered sample)

Shaded fragments

Output: image (pixels)

Vertices in positioned in normalized
coordinate space

Input: vertices in 3D space1

2

3
4

Stanford CS348K, Spring 2022

Basic rasterization algorithm
Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth bu"er

“Given a triangle, !nd the samples it covers”
(!nding the samples is relatively easy since they are distributed uniformly on screen)

More e#cient hierarchical rasterization:
For each TILE of image
 If triangle overlaps tile, check all samples in tile

initialize z_closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles
 t_proj = project_triangle(t)
 for each 2D sample s in frame buffer: // loop 2: over visibility samples
 if (t_proj covers s)
 Evaluate shader to compute color of triangle at sample
 if (depth of t at s is closer than z_closest[s])
 update z_closest[s] and color[s]

Stanford CS348K, Spring 2022

The visibility problem (as ray tracing)
In terms of casting rays from the camera:
- Is a scene primitive hit by a ray originating from a point on the virtual sensor and traveling through the

aperture of the pinhole camera? (coverage)

- What primitive is the !rst hit along that ray? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

o,do,d

Stanford CS348K, Spring 2022

Basic ray casting algorithm
Sample = a ray in 3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, !nd the closest triangle it hits.”

initialize color[] // store scene color for all samples
for each sample s in frame buffer: // loop 1: over visibility samples (rays)
 r = ray from s on sensor through pinhole aperture
 r.min_t = INFINITY // only store closest-so-far for current ray
 r.tri = NULL;
 for each triangle tri in scene: // loop 2: over triangles
 if (intersects(r, tri)) { // 3D ray-triangle intersection test
 if (intersection distance along ray is closer than r.min_t)
 update r.min_t and r.tri = tri;
 }
 color[s] = compute surface color of triangle r.tri at hit point

Stanford CS348K, Spring 2022

Basic rasterization vs. ray casting
Rasterization:
- Proceeds in triangle order (for all triangles)

- Store entire depth bu"er (requires access to 2D array of !xed size)

- Given triangle, “!nd” samples it covers in 2D bu"er

- Do not have to store entire scene geometry in memory

- Naturally supports unbounded size scenes

Ray casting:
- Proceeds in screen sample order (for all rays)

- Do not have to store closest depth so far for the entire screen (just the current ray)

- Must store entire scene geometry for fast access (!nd the hit)

- Given ray, “!nd” closest triangle it intersects

- Challenging, since a ray may go anywhere in the scene

Stanford CS348K, Spring 2022

Ray tracing in one class

Take that Pete Shirley!

Stanford CS348K, Spring 2022

The “visibility problem” in computer graphics
Stated in terms of casting rays from a simulated camera:
- What scene primitive is “hit” by a ray originating from a point on the virtual sensor and traveling through the

aperture of the pinhole camera? (coverage)

- What scene primitive is the !rst hit along that ray? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

o,do,d

Stanford CS348K, Spring 2022

In this class: scene geometry = triangles

Stanford CS348K, Spring 2022

Why do we trace rays?

Stanford CS348K, Spring 2022

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What re$ection is visible on a surface?

Generality of ray-scene queries

Virtual
Sensor

Stanford CS348K, Spring 2022

Shadows

Image credit: Grand Theft Auto V

Stanford CS348K, Spring 2022

How to compute if a surface point is in shadow?

x

P

L1

L2

Assume you have an algorithm
for ray-scene intersection…

Stanford CS348K, Spring 2022

A simple shadow computation algorithm
Trace ray from point P to
location Li of light source
If ray hits scene object before
reaching light source… then P
is in shadow

x

P

L1

L2

Stanford CS348K, Spring 2022

Scene with many light sources

Stanford CS348K, Spring 2022

Soft shadows

Image credit: Pixar

Hard shadows
(created by point light source)

Soft shadows
(created by ???)

Stanford CS348K, Spring 2022

Shadow cast by an area light
Based on ray tracing…
Trace ray from point P to location Li of
light source
If ray hits scene object before reaching
light source… then P is in shadow

x

P1

P2

Notice that a fraction of the light from
an area light may reach a point.

(Fully lit)

(Partially lit)

Stanford CS348K, Spring 2022

Sampling based algorithm

x

P

PLGoal: estimate the amount of light from area
source arriving at a surface point P

▪ For all samples:
- Randomly pick a point PL on the area light:
- Determine if surface point P is in shadow with respect to PL

- Compute contribution to illumination from PL

Implication: must trace many rays per pixel!

Stanford CS348K, Spring 2022

4 area light samples
(high variance in irradiance estimate)

Stanford CS348K, Spring 2022

16 area light samples
(lower variance in irradiance estimate)

Implication: must trace a lot of shadow rays to reduce noise in rendered image

Stanford CS348K, Spring 2022

Re$ections

Image credit: NVIDIA

Stanford CS348K, Spring 2022

Re$ections

Stanford CS348K, Spring 2022

Perfect mirror re$ection

x

P1

P2

P3

Light re$ected from P1 in direction of P0 is
incident on P1 from re$ection about surface
normal at P1.

p0

Stanford CS348K, Spring 2022

Direct illumination + re$ection + transparency

Image credit: Henrik Wann Jensen

Stanford CS348K, Spring 2022

Global illumination solution

Image credit: Henrik Wann Jensen

Stanford CS348K, Spring 2022

Sampling light paths

Image credit: Wann Jensen, Hanrahan

Stanford CS348K, Spring 2022

Indirect illumination

Pinhole x

y

p
!o

!i

Lo(p,!o)

Light can arrive at a surface from any direction.
Implication: even more ray tracing per pixel!

Stanford CS348K, Spring 2022

Direct illumination

p

Stanford CS348K, Spring 2022

One-bounce global illumination

p

Stanford CS348K, Spring 2022

Sixteen-bounce global illumination

p

Stanford CS348K, Spring 2022

Direct illumination

Stanford CS348K, Spring 2022

Global Illumination

Stanford CS348K, Spring 2022

Importance of indirect illumination

Stanford CS348K, Spring 2022

1024 samples per pixel

Stanford CS348K, Spring 2022

One path per pixel

Low sample rate: 1 path per pixel

Stanford CS348K, Spring 2022

32 paths per pixel

Stanford CS348K, Spring 2022

1024 paths per pixel

High sample rate: 1024 path per pixel

Stanford CS348K, Spring 2022

Takeaway:
Must trace many rays per pixel through complex scenes to

render realistic images in real time

Stanford CS348K, Spring 2022

Ray-scene intersection preliminaries:

Does a ray (in 3D) hit a triangle (in 3D)?

Stanford CS348K, Spring 2022

Ray equation
Recall, can express ray as:

“time”
point along ray

origin unit direction

Stanford CS348K, Spring 2022

Review: matrix form of a line (and a plane)
Line is de!ned by:

- Its normal: N
- A point x0 on the line

X
N

x0

The line (in 2D) is all points x,
where x - x0 is orthogonal to N.

(And a plane (in 3D) is all points x where x - x0 is orthogonal to N.)

(N, x, x0 are 2-vectors)

(N, x, x0 are 3-vectors)

Stanford CS348K, Spring 2022

Now solve for t:

And plug t back into ray equation:

Ray-plane intersection
Suppose we have a plane NTx = c
- N - unit normal
- c - o"set
How do we !nd intersection with ray r(t) = o + td?

Replace the point x with the ray equation t:

Stanford CS348K, Spring 2022

Barycentric coordinates (as ratio of areas)

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

a� b� c

b� a� c� a

2

x

AC

AB
AA

x2D =
⇥
xx/�xz xy/�xz

⇤T

tan(✓/2)

aspect⇥ tan(✓/2)

f = cot(✓/2)

x1 � x2 � x3 � x4 � x5 � x6 � x7 � x8

tan(✓/2)

aspect

P =

2

6664

f
aspect 0 0 0

0 f 0 0

0 0 zfar+znear
znear�zfar

2⇥zfar⇥znear
znear�zfar

0 0 �1 0

3

7775

Triangles:

b� a� c� a

x = a+ �(b� a) + �(c� a) = (1� � � �)a+ �b+ �c = ↵a+ �b+ �c

↵+ � + � = 1

↵ = AA/A

� = AB/A

� = AC/A

2

Why must coordinates sum to one?

Barycentric coords are signed areas:

Why must coordinates be between 0 and 1?

Useful: Heron’s formula:

AC =
1

2
(b� a)⇥ (x� a)Area of triangle formed

by points: a, b, x

Stanford CS348K, Spring 2022

Ray-triangle intersection
Algorithm:
- Compute ray-plane intersection
- Compute barycentric coordinates of hit point
- If barycentric coordinates are all positive, point is in triangle

Many di"erent techniques if you care about e#ciency

Stanford CS348K, Spring 2022

Takeaway:
Ray-triangle intersection is an arithmetically

rich operation

Stanford CS348K, Spring 2022

Ray-scene intersection preliminaries:

How to e#ciently !nd the closest hit using
BVH acceleration structures (“indices”)

Stanford CS348K, Spring 2022

Bounding volume hierarchy (BVH)

Root

Stanford CS348K, Spring 2022

Bounding volume hierarchy (BVH)
BVH partitions each node’s primitives into disjoints sets
- Note: the sets can overlap in space (see example below)

Stanford CS348K, Spring 2022

Bounding volume hierarchy (BVH)

Stanford CS348K, Spring 2022

C D

B

Bounding volume hierarchy (BVH)

A

A
B

C

D

Leaf nodes:
- Contain small list of primitives
Interior nodes:
- Proxy for a large subset of primitives
- Stores bounding box for all primitives in subtree

Stanford CS348K, Spring 2022

Bounding volume hierarchy (BVH)

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

A

B

C

D E

F G

A

B C

D E F G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15, 16,17

18,19,20,
21,22

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

AB C

D E

F G

A

B C

D F E G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15,16,17

18,19,20,
21,22

Two di"erent BVH organizations of
the same scene containing 22
primitives.

Is one BVH better than the other?

Stanford CS348K, Spring 2022

Ray-scene intersection using a BVH
struct BVHNode {
 bool leaf; // true if node is a leaf
 BBox bbox; // min/max coords of enclosed primitives
 BVHNode* child1; // “left” child (could be NULL)
 BVHNode* child2; // “right” child (could be NULL)
 Primitive* primList; // for leaves, stores primitives
};

struct HitInfo {
 Primitive* prim; // which primitive did the ray hit?
 float t; // at what t value along ray?
};

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {
 HitInfo hit = intersect(ray, node->bbox); // test ray against node’s bounding box
 if (hit.t > closest.t)
 return; // don’t update the hit record

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim != NULL && hit.t < closest.t) {
 closest.prim = p;
 closest.t = t;
 }
 }
 } else {
 find_closest_hit(ray, node->child1, closest);
 find_closest_hit(ray, node->child2, closest);
 }}

Can this occur if ray hits the box?
(assume hit.t is INF if ray misses box)

node

child1
child2

Stanford CS348K, Spring 2022

Improvement: “front-to-back” traversal

void find_closest_hit(Ray* ray, BVHNode* node, HitInfo* closest) {

 if (node->leaf) {
 for (each primitive p in node->primList) {
 hit = intersect(ray, p);
 if (hit.prim != NULL && t < closest.t) {
 closest.prim = p;
 closest.t = t;
 }
 }
 } else {
 HitInfo hit1 = intersect(ray, node->child1->bbox);
 HitInfo hit2 = intersect(ray, node->child2->bbox);

 NVHNode* first = (hit1.t <= hit2.t) ? child1 : child2;
 NVHNode* second = (hit1.t <= hit2.t) ? child2 : child1;

 find_closest_hit(ray, first, closest);
 if (second child’s t is closer than closest.t)
 find_closest_hit(ray, second, closest);
 }
}

“Front to back” traversal.
Traverse to closest child node !rst.
Why?

node

child1

child2

New invariant compared to last slide:
assume !nd_closest_hit() is only called for nodes where ray intersects bbox.

Why might we still need to traverse to second child if
there was a hit with geometry in the !rst child?

Stanford CS348K, Spring 2022

BVH traversal workload in a nutshell
Fetch left/right node bbox data from memory (data loads)
Ray-bbox intersection (computation)
Depending on results, move to left or right child node
- Unpredictable what to load next (depends on ray)
Repeat…

As always, let’s focus
here on the data access
part of the algorithm.

Stanford CS348K, Spring 2022

Takeaway:
Ray-BVH traversal generates unpredictable (data-
dependent) access to an irregular data structure

Stanford CS348K, Spring 2022

Understanding ray coherence during BVH traversal

Stanford CS348K, Spring 2022

Ray traversal “coherence”

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

r0, r1

r0 r1

r0 visits nodes: A, B, D, E…
r1 visits nodes: A, B, D, E…

Bandwidth reduction: BVH nodes (and triangles) loaded into cache
for computing scene intersection with r0 are cache hits for r1

Program explicitly intersects a collection of rays against BVH at once

Stanford CS348K, Spring 2022

Ray traversal “divergence”
Program explicitly intersects a
collection of rays against BVH at
once

1

2
3

4

5

C E
F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

r0

r0 visits nodes: A, B, D, E…
r1 visits nodes: A, B, D, E…

r1

r2

r2

r3

r2 visits nodes: A, B, D, E, C…
r3 visits nodes: A, B, D, E, G…

R2 and R3 require di"erent BVH nodes and triangles

r3

Stanford CS348K, Spring 2022

Incoherent rays
Incoherence is a property of both the rays and the scene

Example: random rays are “coherent” with respect to the BVH if the scene is one big triangle!

Stanford CS348K, Spring 2022

Incoherent rays
Incoherence is a property of both the rays and the scene

Similarly oriented rays from the same point become “incoherent” with
respect to lower nodes in the BVH if a scene is overly detailed

(Side note: this suggests the importance of choosing the right geometric level of detail)

Stanford CS348K, Spring 2022

Incoherent rays = bandwidth bound

1

2
3

4

5

C E
F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

R0

R1

R2

Di"erent threads may access di"erent BVH nodes at the same time:
Note how R0/R2 are accessing D while R1 is accessing C

Stanford CS348K, Spring 2022

Ray throughput decreases with increasing numbers of bounces
(aka increasing ray incoherence)

Ylitie et al 2017

Stanford CS348K, Spring 2022

Idea 1: use compression to reduce data transfer

Stanford CS348K, Spring 2022

Reduce bandwidth requirements with BVH compression
Example: store child bboxes as quantized values in local coordinate frame de!ned by parent node’s bbox

plo

phi = plo + 2ei (2Nq -1)
ei encodes 8 bit exponent that de!nes “scale” of the parent bbox so
that quantized Nq-bit values can be used to represent points in
local coordinate frame

So 3D coordinate frame is de!ned by 3 fp32 values (plo) and 3 8-bit
extent exponents ei

Planes of child bboxes stored as Nq bit values. Here Nq = 4 for
illustration, in practice Nq = 8
(note quantization expands actual box, reducing e#ciency of BVH
structure)

phi

0 151 2 3 4 5 …3 4

Stanford CS348K, Spring 2022

BVH compression
Example: store child bboxes as quantized values in local coordinate frame de!ned by parent node’s bbox
Use wider BVHs to:
- Amortize storage of local coordinate frame de!nition across multiple child nodes
- Reduce number of BVH node requests during traversal

Amortized 10 bytes per child
(3.2x compression over standard BVH formats)

Stanford CS348K, Spring 2022

Idea 2: reorder computation to increase locality

Stanford CS348K, Spring 2022

Queue-based global ray reordering
Idea: dynamically batch up rays that must traverse the same part of the scene. Process these rays
together to increase locality in BVH access

Partition BVH into treelets
(treelets sized for L1 or L2 cache)

1. When ray (or packet) enters treelet, add rays to treelet queue

2. When treelet queue is su#ciently large, intersect enqueued rays
with treelet
(amortize treelet load over all enqueued rays)

Bu"ering overhead to global ray reordering: must store per-ray
“stack” (need not be entire call stack, but must contain traversal
history) for many rays.

Per-treelet ray queues sized to !t in caches
(or in dedicated ray bu"er SRAM)

[Pharr 1997, Navratil 07, Alia 10]

Stanford CS348K, Spring 2022

SIMD implications of ray tracing

Stanford CS348K, Spring 2022

Parallelizing single ray-scene queries
(Intra-ray parallelism)

Stanford CS348K, Spring 2022

Parallelize ray-box, ray-triangle intersection
Given one ray and one bounding box, there are opportunities for SIMD processing
- Can use 3 of 4 vector lanes (e.g., xyz work, multiple point-plane tests, etc.)

Similar SIMD parallelism in ray-triangle test at BVH leaf

If BVH leaf nodes contain multiple triangles, can parallelize ray-triangle intersection across
these triangles

Stanford CS348K, Spring 2022

Parallelize over BVH child nodes
Idea: use wider-branching BVH (test single ray against multiple child node bboxes in parallel)
- Empirical result: BVH with branching factor four has similar work e#ciency to branching factor two
- BVH with branching factor 8 or 16 is less work e#cient (diminished bene!t of leveraging SIMD

execution)

[Wald et al. 2008]

Note: wider branching factor also reduces height of tree.
Reduced number of requests out to memory
Wider memory transactions

Stanford CS348K, Spring 2022

SPMD ray tracing (GPU-style)

stack<BVHNode> tovisit;
tovisit.push(root);
while (ray not terminated)

 // ray is traversing interior nodes
 while (not reached leaf node)
 traverse node // pop stack, perform
 // ray-box test, push
 // children to stack

 // ray is now at leaf
 while (not done testing tris in leaf)
 ray-triangle test

stack<BVHNode> tovisit;
tovisit.push(root);
while (ray not terminated)
 node = tovisit.pop();
 if (node is not a leaf)
 traverse node // perform ray-box test,
 // push children to stack

 else (not done testing tris in leaf)
 ray-triangle test

Algorithm 1 Algorithm 2

Each work item (e.g., CUDA thread) carried out processing for one ray.
SIMD parallelism comes from executing multiple threads in a WARP

Stanford CS348K, Spring 2022

Ray packet tracing (CPU-style SIMD ray tracing)
Program explicitly intersects a collection of rays against BVH at once
RayPacket
{
 Ray rays[PACKET_SIZE];
 bool active[PACKET_SIZE];
};

trace(RayPacket rays, BVHNode node, ClosestHitInfo packetHitInfo)
{
 if (!ANY_ACTIVE_intersect(rays, node.bbox) ||
 (closest point on box (for all active rays) is farther than hitInfo.distance))
 return;

 update packet active mask

 if (node.leaf) {
 for (each primitive in node) {
 for (each ACTIVE ray r in packet) {
 (hit, distance) = intersect(ray, primitive);
 if (hit && distance < hitInfo.distance) {
 hitInfo[r].primitive = primitive;
 hitInfo[r].distance = distance;
 }
 }
 }
 } else {
 trace(rays, node.leftChild, hitInfo);
 trace(rays, node.rightChild, hitInfo);
 }
}

[Wald et al. 2001]

Stanford CS348K, Spring 2022

Ray packet tracing

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active rays after node box test

r0
r1 r2 r3 r4 r5 r6

r7

Note: r6 does not pass node F box test due to closest-
so-far check, and thus does not visit F

Stanford CS348K, Spring 2022

Performance advantages of packets

Wide SIMD execution
- One vector lane per ray

Amortize BVH data fetch: all rays in packet visit node at same time
- Load BVH node once for all rays in packet (not once per ray)
- Note: there is value to making packets bigger than SIMD width! (e.g., size = 64)

Amortize work (packets are hierarchies over rays)
- Use interval arithmetic to conservatively test entire set of rays against node bbox (e.g., think of a packet as a beam)
- Further arithmetic optimizations possible when all rays share origin
- Note: there is value to making packets much bigger than SIMD width!

Stanford CS348K, Spring 2022

Disadvantages of packets
Program explicitly intersects a collection of rays against BVH at once

B

C D

E F

1 2

3 4 5

G
6

A

Blue = active ray after node box test

▪ If any ray must visit a node, it drags all rays in the
packet along with it)

▪ Loss of e#ciency: node traversal, intersection, etc.
amortized over less than a packet’s worth of rays

▪ Not all SIMD lanes doing useful work

Stanford CS348K, Spring 2022

Ray packet tracing: incoherent rays
Program explicitly intersects a collection of rays against BVH at once

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active ray after node box test

r0

r1

r3

r3

r4

r5

r6

r7

When rays are incoherent, bene!t of packets can decrease
signi!cantly. This example: packet visits all tree nodes.
(So all eight rays visit all tree nodes! No culling bene!t!)

Stanford CS348K, Spring 2022

Packet tracing best practices
Use large packets for eye/re$ection/point light shadow rays or
higher levels of BVH
- Ray coherence always high at the top of the tree

Switch to single ray (intra-ray SIMD) when packet utilization
drops below threshold
- For wide SIMD machine, a branching-factor-4 BVH works well for both packet

traversal and single ray traversal

Can use packet reordering to postpone time of switch
- Reordering allows packets to provide bene!t deeper into tree
- Not often used in practice due to high implementation complexity

[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]

Stanford CS348K, Spring 2022

Ray incoherence impacts e#ciency of shading
Nearby rays may hit di"erent surfaces, with di"erent “shaders”
Consider implications for SIMD processing

Stanford CS348K, Spring 2022

When rays hit di"erent surfaces…
Surface shading incoherence:
Di"erent code paths needed to compute the re$ectance of di"erent materials
[OR] use same highly parameterized “ubershader” (“megakernel”) for all surfaces

Stanford CS348K, Spring 2022

Ray tracing performance challenges
To simulate advanced e"ects renderer must trace many rays per pixel to reduce variance
(noise) that results from numerical integration (via Monte Carlo sampling)

3D ray-triangle intersection math is expensive

Ray-scene intersection requires traversal through bounding volume hierarchy
acceleration structure

- Unpredictable data access
- Rays are essentially randomly oriented after enough bounces

Not discussed today: building the BVH structure each frame

Incoherent shading

Stanford CS348K, Spring 2022

Real-time ray tracing APIs
(Recurring theme in this course: increase level of abstraction

to enable optimized implementations)

Stanford CS348K, Spring 2022

D3D12’s DXR ray tracing “stages”
Ray tracing is abstracted as a graph of programmable “stages”
TraceRay() is a blocking function in some of those stages

Acceleration
structure

Can call TraceRay()

Can call TraceRay()

Can call TraceRay()

Stanford CS348K, Spring 2022

GPU understands format of BVH acceleration structure
and “shader table”

Stanford CS348K, Spring 2022

Hardware acceleration for ray tracing

Stanford CS348K, Spring 2022

NVIDIA Ampere SM (RTX 3xxx series)
Hardware support for ray-triangle intersection and ray-
BVH intersection (“RT core”)

Very little public documentation of architectural details
at this time

