Lecture 16:

Real Time Ray Tracing 2 +
More on advanced rasterization

Visual Computing Systems
Stanford C5348K, Spring 2022

Real-time ray tracing performance challenges

To simulate advanced effects renderer must trace many rays per pixel to reduce variance (noise) that
results from numerical integration (via Monte Carlo sampling)

Ray-scene intersection requires traversal through bounding volume hierarchy acceleration
structure

- Unpredictable data access
- Rays are essentially randomly oriented after enough bounces

Incoherent shading

Not discussed last time: building the BVH acceleration structure

Stanford C5348K, Spring 2022

Today

m Finish up real-time ray tracing:
- Fast BVH construction
- Real time ray tracing APIs and hardware
- Role of neural post-processing to improve images

m Small amount of prep for Tuesday’s speaker (Brian Karis, Epic)

Stanford C5348K, Spring 2022

A quick discussion of how to build BVHs

Stanford C5348K, Spring 2022

Bounding volume hierarchy (BVH)

/ Left: two different BVH organizations of
A\ the same scene containing 22
ADA primitives.

B A C Is one BVH better than the other for

& 4ol THIS PARTICULAR RAY?

1,23 6,7,8, 12,13,14, 18,19,20, 1,2,3 6,7,8, 12,13,14, 18,19,20,
4,5 910,11 15,16,17 21,22 4,5 910,11 15,16,17 21,22

Stanford C5348K, Spring 2022

For a given set of primitives, there are many possible BVHs

(2N ways to partition N primitives into two groups)

6D 6D
N7 Nep

Intuition about a “good” partition?
e

b A'AA
4

[v 'AA

4

Better partition
Intuition: avoid bboxes with significant empty space

Which partition is fastest?

What is the cost of tracing a ray through a subtree rooted by “node”?

Cost(node)=C trav
+ Prob(hit L)*Cost(L)
+ Prob(hit R)*Cost(R)

C_trav = cost of traversing a node (e.g., loading node data, computing ray-box intersection)
Cost(L) = cost of traversing left child
Cost(R) = cost of traversing right child

Stanford C5348K, Spring 2022

Basic “top-down” greedy BVH build

Partition(list of prims) {
if (termination criteria reached) {
// make leaf node

(prim_list 1, prim_list2) = find cost minimizing split point(list of prims);

left _child = Partition(prim_list 1)
right child = Partition(prim _list 2)

Stanford C5348K, Spring 2022

Modern, fast and high quality BVH construction schemes

m Step 1: build low-quality BVH quickly

m Step 2: Use initial BVH to accelerate construction of high-quality BVH

Stanford C5348K, Spring 2022

[Lauterbach 09, Pantaleoni 10]

Building a low-quality BVH quickly

1. Discretize each dimension of scene into 28 cells

2. [DATA PARALLEL] Compute index of centroid of bounding box of each primitive: (c_i, 2D Morton Order
c_j,c k)
3. Interleave bits of c_i, ¢_j, ¢_k to get 3B bit-Morton code

B=1 B=2

00 01
4. [DATA-PARALLEL] Sort primitives by Morton code (primitives now ordered with high ——
locality in 3D space: in a space-filling curve!)
= O(N) parallel radix sort
10 11
Leads to simple, highly parallelizable BVH build: |
Partition(int i, primitives): AL AL LAt
P A e o | - =
node.bbox = bbox(primitives) AN AT /- £
(left, right) = partition prims by bit i —7;}2"7}'%7’ | |ZZEZ Rz 22
if there are more bits: =g i B o >
AT AR

Partition(left, i+l); :]]

Partition(right, i+1); B= B=4
else:

make a leaf node

Stanford C5348K, Spring 2022

[Karras 13]

Karras 2013 bottom up treelet-based construction

Step 1: (top down) build low quality BVH quickly using Morton codes
Step 2: (bottom up) walk from leaves toward root forming small treeless

For each treelet, exhaustively try all possible combinations to find optimal (cost minimizing) treelet
- Brute force search implemented using dynamic programming method

ooo@éééo

Shaded region: After optimization: this is the optimal treelet for
treelet with 7 leaf nodes these nodes (minimal cost)

Stanford C5348K, Spring 2022

Can afford to build a better BVH if you are shooting many rays (can amortize cost)

m The graph below plots effective ray throughput (Mrays/sec) as a function of the number of rays traced per BVH build
— More rays = can amortize costs of BVH build across many ray trace operations

[High quality HLBVH + bottom up
top-down + splitting] [Morton code based] treelet reoptimization

SBVH e H[BVH sssssss [Karras 13]

Mrays/s
450

400
350
300
250
200
150
100
50
0

1M 10M 100M 1G 10G 100G 1T
Number of rays

Stanford C5348K, Spring 2022

Two-level BVHs

m Many scene objects do not move from frame-to-frame, or only move rigidly

m Approach: two-level BVH: build a BVH over per-object BVHs
- Only rebuild this top level BVH each frame as objects move

Top Level BVH BVH for object A BVH for object B BVH for object C
C
A B
Contains hundreds Each per-object BVH might contains tens’s of thousands of triangles.
of scene objects If object’s geometry does not undergo relative change

(other than rotation/translation in world)

the BVH can be built once and remain applicable.
Stanford C5348K, Spring 2022

Real-time ray tracing APIs

(Recurring theme in this course: increase level of abstraction
to enable optimized implementations)

Stanford C5348K, Spring 2022

D3D12’s DXR ray tracing “stages”

m Raytracing is abstracted as a graph of programmable “stages”
m TraceRay() is a blocking function in some of those stages

[Ray Generation J e [e
structure
TraceRay()
- y N [Any Hit] Can call TraceRay()
Acceleration

Structure ?

Traversal
- J [Intersection]

Y

NoO /Hlt’P\ Yes

L

Can call TraceRay() [Miss]

[Closest Hit J Can call TraceRay()

Stanford C5348K, Spring 2022

Example: ray generation shader (camera rays)

(// Thlis represents the geometry of our scene.
RaytracingAccelerationStructure scene register(t5);
[shader ("raygeneration")]
void RayGenMain/()
{
// Get the location within the dispatched 2D grid of work items
// (often maps to pixels, so this could represent a pixel coordinate).
uint2 launchIndex = DispatchRaysIndex();
// Define a ray, consisting of origin, direction, and the t-interval
// we're interested in.
RayDesc ray;
ray.Origin = SceneConstants.cameraPosition.
ray.Direction = computeRayDirection(launchIndex); // assume this function exists
ray.TMin = 0;
ray.TMax = 100000;
Payload payload;
// Trace the ray using the payload type we've defined.
// Shaders that are triggered by this must operate on the same payload type.
TraceRay(scene, 0 /*flags*/, OXFF /*mask*/, 0 /*hit group offset*/,
1 /*hit group index multiplier*/, 0 /*miss shader index*/, ray, payload);
outputTexture|launchIndex.xy] =|payload.color;
}

Example “hit shader”: Runs on ray hit to fill in payload

// Attributes contain hit information and are filled in by the intersection shader.
// For the built-in triangle intersection shader, the attributes always consist of
// the barycentric coordinates of the hit point.

struct Attributes

{
float2 barys;

}i

[shader("closesthit")]
void ClosestHitMain(inout Payload payload, in Attributes attr)
{
// Read the intersection attributes and write a result into the payload.
payload.color = float4(attr.barys.x, attr.barys.y,
1l - attr.barys.x - attr.barys.y, 1);

// Demonstrate one of the new HLSL intrinsics: query distance along current ray
payload.hitDistance & RayTCurrent();

Stanford C5348K, Spring 2022

GPU understands format of BVH acceleration structure
and “shader table”

I
l
l

/// /
7 / \
// / \
/ &
F P \
v 4 N
/ s

—

—

—

Top-Level AS

o0

XN
Y A

N

N
N
N
\ \
\ X
[Bottom- Level AS / 7 Bottom-Level AS \ \\ Bottom-Level AS
|
/ | \ [;>
Zﬁk[>2<7 | , JPAN <7
| | | <<X
\\ d | / | 2\
\ | / |
\ | / |
\ I l
\ v Y

Shader Table

Root
Table

CBV
UAV

Constant Constant
Constant
Descriptor Table

Descriptor Table

Stanford C5348K, Spring 2022

Implementation: NVIDIA Ampere SM (RTX 3xxx series)

m Hardware support for ray-triangle intersection and ray-BVH
intersection (“RT core”)

m Very little public documentation of architectural details at
this time

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR TENSOR
(od0] 4 CORE
3rd Gen 3rd Gen

Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

TENSOR TENSOR
CORE CORE
3rd Gen 3rd Gen

128KB L1 Data Cache / Shared Memory

Tex Tex

RT CORE
2nd Generation

Stanford C5348K, Spring 2022

m But the RT hardware is not the only fixed-function hardware on a GPU that is important

for real-time raytracing...

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,3§&

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

LO i-Cache + Warp Scheduler + Dispatch (32 thread/clk)

Register File (16,384 x 32-bit)

TENSOR
CORE
3rd Gen

LD/ST LD/ST LD/ST LD/ST

128KB L1 Data Cache / Shared Memory

Tex

Stanford (5348K, Spring 2022

Denoising ray traced images

Stanford C5348K, Spring 2022

U KITCEIAIEUD

(A
A

UM
BIARER L

- AL b %.u\&.\\gww hlwt\..sw

IS

l o

uriace noriiid

>

b

#
R E
T

-

S e

e

A

.. . i .Ja..uu.-...‘]ﬂﬂwmm 5

-
%
i

—r
o.l
o

!

-

G

e

Oy

e T

T

R Tt SL e M) T § Ve T AT

ro»HL ST T 2
S T o G a2 A TR

a2
®

.ru%w 3!

AT e
.

A
AR

S
= Anr., h

, ..,?,Wwoo.
AT

Denoised results

Stanford C5348K, Spring 2022

16 paths/pixel (denoised)

——

e —

e AR
AR e
L ﬁ.ﬁ E Q

o «

a4
o

- -
-

—

= e

——— iy

Xel (denoised)
b
-

1]

paths/)

~
0

25

1024 paths/pixel (denoised)
b

v

F_

4096 paths/pixel (denoised)
.

w

.
ga
8

oA
T i

(8 [

i
P

s

A

(TR

Deep learning-based denoising

m (an we “learn” to turn noisy images into clean ones?

m ldea: Use neural image-to-image transfer methods to convert cheaper to compute (but

noisy) ray traced images into higher quality images that look like they were produced by
tracing many rays per pixel

Stanford C5348K, Spring 2022

[Chaitanya 17]

Example: neural denoiser DNN

o — — — — — — — — — — — — — —— — — — — — — — — — —

Encoder Decoder
L il

Input to network is noisy RGB image * + additional normal, depth, and roughness channels
(These are cheap to compute inputs help network identify silhouettes, sharp structure)

Depth Normal Roughness Albedo

- | e " S

* Actually the input is RGB demodulated by (divided by) texture albedo (don’t force network to learn what texture was)
Stanford C5348K, Spring 2022

4000 spp [Chaitanya 1 7]
Denoised (ground truth)

Denoising results

CoRrNELLBOX

SPONZA

CLASSROOM

Stanford C5348K, Spring 2022

[Chaitanya 17]

Denoising results (challenging)

4000 spp
Denoised (ground truth)

Stanford C5348K, Spring 2022

More denoising examples

Original (noisy)

~Original

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (S348K, Spring 2022

https://openimagedenoise.github.io/

More denoising examples

Denoised

Denoised

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (S348K, Spring 2022

https://openimagedenoise.github.io/

ore denoising examples

Oi |g|naV(n0|sy)__

J"Lj]" C

o cunalenliiing., ot

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (S348K, Spring 2022

https://openimagedenoise.github.io/

More denoising examples
Dénoised™ . |\ ‘

!

-

TR

/‘2

->

Jenolsec

e o

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/ Stanford (5348K, Spring 2022

https://openimagedenoise.github.io/

Aside: upsampling low-resolution
Images to higher resolution images

(This is upsampling, not reducing Monte Carlo noise.)

Examples: NVIDIA's DLSS (performs both anti-aliasing and upsampling)

Stanford C5348K, Spring 2022

[Xiao 20]

Neural upsamplmg (haIIucmatmg detall)

+ auxiliary inputs

LOW-—-RESOLUTION INPUT

MOTION VECTORS
Stanford C5348K, Spring 2022

[Xiao 20]

Neura&upsamplmg (haIIucmatmg detall)

16X SUPERSAMPLING
4x4 upsampled result (16x more pixels)

Stanford C5348K, Spring 2022

[Xiao 20]

Neural upsampling pipeline

Frame i
(Cument)
RGB to Feature 7ero } Reconstructed Frame i
- YCbCr Extraction Upsampling a (Current)
Lero W @
: >
Upsampling | <
§
Feature Zero Backward =
Extraction Upsampling Warping = §
e
Frame i-2 - —— = 9
e 7 Accumulative [o)
: . . ero Backward | —» g
Extraction Upsampling Warsin 3
\ PINg ' X | —»
e — 2
ST ; Accumulative 2 —
Ex’rrcclfrion J ' U erol. I g :
psampling _ Waping L
Faalure 7 g Accumulative b
o ero Backward
Extraction Upsampling Warsin
N png) | ,

Main idea: gain resolution by aligning and merging multiple recent frames

Alignment vectors provided by renderer
Learn model that determines weights for aligned features (“feature reweighting”)
Then decode with neural decoder (“reconstruction”) Stanford (348K, Spring 2022

[Xiao 20]

Closer look

Reference Stanford (5S348K, Spring 2022

Technologies that are making real-time ray tracing possible

m Better algorithms: fast parallel BVH construction and ray-BVH traversal algorithms for GPUs and
multi-core CPUs (many SIGGRAPH/HPG papers circa 2010-2017)

m Main ideas of traversal: compressed, wider BVHs
m Main ideas of BVH construction: two level BVH (don’t rebuild everything), two phase top-down + bottom

up build (high performance + high quality)
m Emergence of GPU hardware acceleration:

- HW acceleration of ray-triangle intersection, BVH traversal
- Increasingly flexible aspects of traditional GPU pipeline (bindless textures/resources)

m DNN-based image post-processing (denoising)
- Can make plausible images using small(er) number of rays per pixel
- Makes use of existing DNN hardware acceleration

Stanford C5348K, Spring 2022

Real time ray tracing: what's next

m Continued development of specialized HW
- More transistors = more RT cores = more rays/sec

- Currently no hardware acceleration in game consoles (disincentive to making games completely based on
RT)

m Continued application developer work to integrate tech into games

- Application developers want a smooth adoption path (can't just throw out their current game engines and
replace with a ray tracer)

m Substantial algorithmic innovation to reduce required ray counts
- Key challenge: picking the most important directions for which to sample incoming light
- Interesting recent results rendering scenes with many lights and with indirect illumination
- Improvements to neural denoising techniques

Stanford C5348K, Spring 2022

Y 4 ,

W|th many Ilght sou’rces

‘ (;glvi ,

Challenges of high geometric detail scenes

Stanford C5348K, Spring 2022

Rendering complex geometry

m How should we represent the geometry?
- Triangle mesh? Volume (density+rgb), Subdivision surface?

Close: want geometry

1181

1111

Stanford (5348K, Spring 2022

Another example: subdivision surfaces

m Subdivide coarse mesh into finer-scale mesh depending on distance to camera

Loop subdivision

Loop with Sharp Creases

AN
IR AR)

Catmull-Clark control mesh
and limit surface

Stanford (5348K, Spring 2022

Displaced subdivision surfaces

Control cage Limit surface
(Coarse triangle mesh) (Renders from fine Displaced surface
triangle mesh)

[Lee 2000]

Stanford (S348K, Spring 2022

Result: high-resolution surface detail

% _1
!
. |

Stanford C5348K, Spring 2022

Result: high-resolution surface detail

\

6M triangles after tessellation and displacement

Stanford (5348K, Spring 2022

Challenge: cracks

AAAANAN

(Surface parametric

Stanford C5348K, Spring 2022

Crack fixing solutions

Key idea: Adjacent regions agree on tessellation along edge
Complicates parallel processing!

NN
NN
N
N
NN

NN
NN
NN
NN
NNNNNN

NNV
NNNNNN

e
e e

Generate irregular topology

NANNNNNN

5x5 regular vertex grid
matching constraints on top
& left edge of 3 segments
(Vertices moves to create
degenerate triangles)

Stanford (5348K, Spring 2022

Challenges of high-resolution geometry

m Visibility: have to rasterize large amounts of geometry
- For each triangle... rasterize, shade triangles

- Need techniques for building an acceleration structure over scene primitives to quickly
discard large numbers of off-screen or occluded primitives

- Fixed-function rasterization hardware in modern GPUs tends to be optimize for triangles that
are at least a few pixels in size.

m Level of detail: how to represent geometry at level of detail needed for current viewing
conditions

- Adaptive level-of-detail introduces challenges of cracks, “popping’, etc.

Stanford C5348K, Spring 2022

T -

%
N

-

"\
P~

S
2

C
P)

"?-?'

