
Visual Computing Systems
Stanford CS348K, Spring 2022

Lecture 16:

Real Time Ray Tracing 2 +
More on advanced rasterization

Stanford CS348K, Spring 2022

Real-time ray tracing performance challenges
To simulate advanced e!ects renderer must trace many rays per pixel to reduce variance (noise) that
results from numerical integration (via Monte Carlo sampling)

Ray-scene intersection requires traversal through bounding volume hierarchy acceleration
structure

- Unpredictable data access
- Rays are essentially randomly oriented after enough bounces

Not discussed last time: building the BVH acceleration structure

Incoherent shading

Stanford CS348K, Spring 2022

Today
Finish up real-time ray tracing:
- Fast BVH construction
- Real time ray tracing APIs and hardware
- Role of neural post-processing to improve images

Small amount of prep for Tuesday’s speaker (Brian Karis, Epic)

Stanford CS348K, Spring 2022

A quick discussion of how to build BVHs

Stanford CS348K, Spring 2022

Bounding volume hierarchy (BVH)

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

A

B

C

D E

F G

A

B C

D E F G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15, 16,17

18,19,20,
21,22

1 2

3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

22

AB C

D E

F G

A

B C

D F E G
1,2,3

4,5
6,7,8,

9,10,11
12,13,14,
15,16,17

18,19,20,
21,22

Left: two di!erent BVH organizations of
the same scene containing 22
primitives.

Is one BVH better than the other for
THIS PARTICULAR RAY?

Stanford CS348K, Spring 2022

For a given set of primitives, there are many possible BVHs

(2N ways to partition N primitives into two groups)

! !

Stanford CS348K, Spring 2022

Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition
Intuition: avoid bboxes with signi"cant empty space

Stanford CS348K, Spring 2022

Which partition is fastest?
What is the cost of tracing a ray through a subtree rooted by “node”?

Cost(node)= C_trav

 + Prob(hit L)*Cost(L)

 + Prob(hit R)*Cost(R)

C_trav = cost of traversing a node (e.g., loading node data, computing ray-box intersection)

Cost(L) = cost of traversing left child

Cost(R) = cost of traversing right child

Stanford CS348K, Spring 2022

Basic “top-down” greedy BVH build
Partition(list of prims) {

 if (termination criteria reached) {

 // make leaf node

 }

 (prim_list_1, prim_list2) = find_cost_minimizing_split_point(list of prims);

 // recursive calls can execute in parallel

 left_child = Partition(prim_list_1)

 right_child = Partition(prim_list_2)

}

Stanford CS348K, Spring 2022

Modern, fast and high quality BVH construction schemes

Step 1: build low-quality BVH quickly

Step 2: Use initial BVH to accelerate construction of high-quality BVH

Stanford CS348K, Spring 2022

Building a low-quality BVH quickly

00 01

10 11

B=1 B=2

B=3 B=4

1. Discretize each dimension of scene into 2B cells
2. [DATA PARALLEL] Compute index of centroid of bounding box of each primitive: (c_i,

c_j, c_k)
3. Interleave bits of c_i, c_j, c_k to get 3B bit-Morton code
4. [DATA-PARALLEL] Sort primitives by Morton code (primitives now ordered with high

locality in 3D space: in a space-"lling curve!)
- O(N) parallel radix sort

Partition(int i, primitives):
 node.bbox = bbox(primitives)
 (left, right) = partition prims by bit i
if there are more bits:
 Partition(left, i+1);
 Partition(right, i+1);
else:
 make a leaf node

2D Morton Order

Leads to simple, highly parallelizable BVH build:

[Lauterbach 09, Pantaleoni 10]

Stanford CS348K, Spring 2022

Karras 2013 bottom up treelet-based construction

Shaded region:
treelet with 7 leaf nodes

After optimization: this is the optimal treelet for
these nodes (minimal cost)

[Karras 13]

Step 1: (top down) build low quality BVH quickly using Morton codes

Step 2: (bottom up) walk from leaves toward root forming small treeless

For each treelet, exhaustively try all possible combinations to "nd optimal (cost minimizing) treelet
￭ Brute force search implemented using dynamic programming method

Stanford CS348K, Spring 2022

Can a!ord to build a better BVH if you are shooting many rays (can amortize cost)
The graph below plots e!ective ray throughput (Mrays/sec) as a function of the number of rays traced per BVH build
- More rays = can amortize costs of BVH build across many ray trace operations

[Morton code based]
[Karras 13]

[High quality
top-down + splitting]

HLBVH + bottom up
treelet reoptimization

Stanford CS348K, Spring 2022

Two-level BVHs
Many scene objects do not move from frame-to-frame, or only move rigidly
Approach: two-level BVH: build a BVH over per-object BVHs
- Only rebuild this top level BVH each frame as objects move

A B

C

BVH for object A BVH for object B BVH for object CTop Level BVH

Contains hundreds
of scene objects

Each per-object BVH might contains tens’s of thousands of triangles.
If object’s geometry does not undergo relative change

(other than rotation/translation in world)
the BVH can be built once and remain applicable.

Stanford CS348K, Spring 2022

Real-time ray tracing APIs
(Recurring theme in this course: increase level of abstraction

to enable optimized implementations)

Stanford CS348K, Spring 2022

D3D12’s DXR ray tracing “stages”
Ray tracing is abstracted as a graph of programmable “stages”
TraceRay() is a blocking function in some of those stages

Acceleration
structure

Can call TraceRay()

Can call TraceRay()

Can call TraceRay()

Stanford CS348K, Spring 2022

Example: ray generation shader (camera rays)

Example “hit shader”: Runs on ray hit to "ll in payload

Stanford CS348K, Spring 2022

GPU understands format of BVH acceleration structure
and “shader table”

Stanford CS348K, Spring 2022

Implementation: NVIDIA Ampere SM (RTX 3xxx series)
Hardware support for ray-triangle intersection and ray-BVH
intersection (“RT core”)

Very little public documentation of architectural details at
this time

Stanford CS348K, Spring 2022

But the RT hardware is not the only "xed-function hardware on a GPU that is important
for real-time raytracing…

Stanford CS348K, Spring 2022

Denoising ray traced images

Stanford CS348K, Spring 2022

Stanford CS348K, Spring 2022

Surface Albedo

Stanford CS348K, Spring 2022

Surface normals

Stanford CS348K, Spring 2022

16 paths/pixel

Recall: numerical integration of light (via Monte Carlo sampling) su!ers from high
variance, resulting in images with “noise”

Stanford CS348K, Spring 2022

64 paths/pixel

Stanford CS348K, Spring 2022

256 paths/pixel

Stanford CS348K, Spring 2022

1024 paths/pixel

Stanford CS348K, Spring 2022

4096 paths/pixel

Stanford CS348K, Spring 2022

Denoised results

Stanford CS348K, Spring 2022

16 paths/pixel

Stanford CS348K, Spring 2022

16 paths/pixel (denoised)

Stanford CS348K, Spring 2022

64 paths/pixel (denoised)

Stanford CS348K, Spring 2022

256 paths/pixel (denoised)

Stanford CS348K, Spring 2022

1024 paths/pixel (denoised)

Stanford CS348K, Spring 2022

4096 paths/pixel (denoised)

Stanford CS348K, Spring 2022

4096 paths/pixel (NOT DENOISED)

Stanford CS348K, Spring 2022

Deep learning-based denoising
Can we “learn” to turn noisy images into clean ones?

Idea: Use neural image-to-image transfer methods to convert cheaper to compute (but
noisy) ray traced images into higher quality images that look like they were produced by
tracing many rays per pixel

Stanford CS348K, Spring 2022

Example: neural denoiser DNN

Depth Normal Roughness

Input to network is noisy RGB image * + additional normal, depth, and roughness channels
(These are cheap to compute inputs help network identify silhouettes, sharp structure)

* Actually the input is RGB demodulated by (divided by) texture albedo (don’t force network to learn what texture was)

Albedo

[Chaitanya 17]

Stanford CS348K, Spring 2022

Denoising results
[Chaitanya 17]

1 spp (input)
4000 spp

(ground truth)Denoised

Stanford CS348K, Spring 2022

Denoising results (challenging)
[Chaitanya 17]

1 spp (input)
4000 spp

(ground truth)Denoised

Stanford CS348K, Spring 2022

More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Original (noisy)

https://openimagedenoise.github.io/

Stanford CS348K, Spring 2022

More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Denoised

https://openimagedenoise.github.io/

Stanford CS348K, Spring 2022

More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Original (noisy)

https://openimagedenoise.github.io/

Stanford CS348K, Spring 2022

More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Denoised

https://openimagedenoise.github.io/

Stanford CS348K, Spring 2022

Aside: upsampling low-resolution
images to higher resolution images

(This is upsampling, not reducing Monte Carlo noise.)

Examples: NVIDIA’s DLSS (performs both anti-aliasing and upsampling)

Stanford CS348K, Spring 2022

Neural upsampling (hallucinating detail)

 + auxiliary inputs

[Xiao 20]

Stanford CS348K, Spring 2022

Neural upsampling (hallucinating detail)

4x4 upsampled result (16x more pixels)

[Xiao 20]

Stanford CS348K, Spring 2022

Neural upsampling pipeline

Main idea: gain resolution by aligning and merging multiple recent frames

Alignment vectors provided by renderer
Learn model that determines weights for aligned features (“feature reweighting”)
Then decode with neural decoder (“reconstruction”)

[Xiao 20]

Stanford CS348K, Spring 2022

Closer look
[Xiao 20]

Stanford CS348K, Spring 2022

Technologies that are making real-time ray tracing possible
Better algorithms: fast parallel BVH construction and ray-BVH traversal algorithms for GPUs and
multi-core CPUs (many SIGGRAPH/HPG papers circa 2010-2017)

Main ideas of traversal: compressed, wider BVHs
Main ideas of BVH construction: two level BVH (don’t rebuild everything), two phase top-down + bottom
up build (high performance + high quality)

Emergence of GPU hardware acceleration:
- HW acceleration of ray-triangle intersection, BVH traversal
- Increasingly #exible aspects of traditional GPU pipeline (bindless textures/resources)

DNN-based image post-processing (denoising)
- Can make plausible images using small(er) number of rays per pixel
- Makes use of existing DNN hardware acceleration

Stanford CS348K, Spring 2022

Real time ray tracing: what’s next
Continued development of specialized HW
- More transistors = more RT cores = more rays/sec
- Currently no hardware acceleration in game consoles (disincentive to making games completely based on

RT)

Continued application developer work to integrate tech into games
- Application developers want a smooth adoption path (can’t just throw out their current game engines and

replace with a ray tracer)

Substantial algorithmic innovation to reduce required ray counts
- Key challenge: picking the most important directions for which to sample incoming light
- Interesting recent results rendering scenes with many lights and with indirect illumination
- Improvements to neural denoising techniques

Stanford CS348K, Spring 2022

Many light rendering Scene with many light sources
(Direct lighting only)

Stanford CS348K, Spring 2022

Challenges of high geometric detail scenes

Stanford CS348K, Spring 2022

Rendering complex geometry

High geometric detail

Stanford CS348K, Spring 2022

Rendering complex geometry
How should we represent the geometry?
- Triangle mesh? Volume (density+rgb), Subdivision surface?

Close: want geometryFar?

CS348b Lecture 3 Pat Hanrahan, Spring 2015

Uniform Grids: When They Work Well

Uniform grids work well for large collections of objects that are
uniform in size and distribution

http://www.kevinboulanger.net/grass.html

Stanford CS348K, Spring 2022

Another example: subdivision surfaces
Subdivide coarse mesh into "ner-scale mesh depending on distance to camera

Loop subdivision

Catmull-Clark control mesh
and limit surface

Stanford CS348K, Spring 2022

Displaced subdivision surfaces

Control cage
(Coarse triangle mesh)

Limit surface
(Renders from fine

triangle mesh)
Displaced surface

[Lee 2000]

Stanford CS348K, Spring 2022

Result: high-resolution surface detail

(one pixel)

Stanford CS348K, Spring 2022

Result: high-resolution surface detail

6M triangles after tessellation and displacement

Stanford CS348K, Spring 2022

2

1

Challenge: cracks

2

1

(Surface parametric
domain)

Stanford CS348K, Spring 2022

Crack "xing solutions

Generate irregular topology 5x5 regular vertex grid
matching constraints on top
& left edge of 3 segments
(Vertices moves to create

degenerate triangles)

Key idea: Adjacent regions agree on tessellation along edge
Complicates parallel processing!

Stanford CS348K, Spring 2022

Challenges of high-resolution geometry
Visibility: have to rasterize large amounts of geometry
- For each triangle… rasterize, shade triangles
- Need techniques for building an acceleration structure over scene primitives to quickly

discard large numbers of o!-screen or occluded primitives
- Fixed-function rasterization hardware in modern GPUs tends to be optimize for triangles that

are at least a few pixels in size.

Level of detail: how to represent geometry at level of detail needed for current viewing
conditions
- Adaptive level-of-detail introduces challenges of cracks, “popping”, etc.

Stanford CS348K, Spring 2022

Next time: Unreal Nanite renderer
Modern solutions to rendering high resolution geometry on modern GPUs

