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Lecture 16:

Real Time Ray Tracing 2 + 
More on advanced rasterization
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Real-time ray tracing performance challenges
To simulate advanced e!ects renderer must trace many rays per pixel to reduce variance (noise) that 
results from numerical integration (via Monte Carlo sampling) 

Ray-scene intersection requires traversal through bounding volume hierarchy acceleration 
structure 

- Unpredictable data access 
- Rays are essentially randomly oriented after enough bounces

Not discussed last time: building the BVH acceleration structure

Incoherent shading
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Today
Finish up real-time ray tracing: 
- Fast BVH construction 
- Real time ray tracing APIs and hardware 
- Role of neural post-processing to improve images 

Small amount of prep for Tuesday’s speaker (Brian Karis, Epic)
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A quick discussion of how to build BVHs
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Bounding volume hierarchy (BVH)
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Left: two di!erent BVH organizations of 
the same scene containing 22 
primitives.  

Is one BVH better than the other for 
THIS PARTICULAR RAY?
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For a given set of primitives, there are many possible BVHs 

(2N ways to partition N primitives into two groups) 

! !
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Intuition about a “good” partition?

Partition into child nodes with equal numbers of primitives

Better partition 
Intuition: avoid bboxes with signi"cant empty space



Stanford CS348K, Spring 2022

Which partition is fastest? 
What is the cost of tracing a ray through a subtree rooted by “node”?

Cost(node)= C_trav 

              + Prob(hit L)*Cost(L) 

              + Prob(hit R)*Cost(R)

C_trav = cost of traversing a node (e.g., loading node data, computing ray-box intersection) 

Cost(L) = cost of traversing left child 

Cost(R) = cost of traversing right child
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Basic “top-down” greedy BVH build
Partition(list of prims) { 

  if (termination criteria reached) { 

    // make leaf node 

  } 

   

  (prim_list_1, prim_list2) = find_cost_minimizing_split_point(list of prims);  

  // recursive calls can execute in parallel 

  left_child = Partition(prim_list_1) 

  right_child = Partition(prim_list_2) 

}
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Modern, fast and high quality BVH construction schemes

Step 1: build low-quality BVH quickly 

Step 2: Use initial BVH to accelerate construction of high-quality BVH
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Building a low-quality BVH quickly

00 01

10 11

B=1 B=2

B=3 B=4

1. Discretize each dimension of scene into 2B cells 
2. [DATA PARALLEL] Compute index of centroid of bounding box of each primitive: (c_i, 

c_j, c_k) 
3. Interleave bits of c_i, c_j, c_k to get 3B bit-Morton code 
4. [DATA-PARALLEL] Sort primitives by Morton code (primitives now ordered with high 

locality in 3D space: in a space-"lling curve!) 
- O(N) parallel radix sort

Partition(int i, primitives): 
 node.bbox = bbox(primitives) 
 (left, right) = partition prims by bit i 
if there are more bits: 
   Partition(left, i+1); 
   Partition(right, i+1); 
else: 
   make a leaf node

2D Morton Order

Leads to simple, highly parallelizable BVH build:

[Lauterbach 09, Pantaleoni 10]
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Karras 2013 bottom up treelet-based construction

Shaded region: 
treelet with 7 leaf nodes

After optimization: this is the optimal treelet for 
these nodes (minimal cost)

[Karras 13]

Step 1: (top down) build low quality BVH quickly using Morton codes 

Step 2: (bottom up) walk from leaves toward root forming small treeless 

For each treelet, exhaustively try all possible combinations to "nd optimal (cost minimizing) treelet 
￭ Brute force search implemented using dynamic programming method



Stanford CS348K, Spring 2022

Can a!ord to build a better BVH if you are shooting many rays (can amortize cost)
The graph below plots e!ective ray throughput (Mrays/sec) as a function of the number of rays traced per BVH build 
- More rays = can amortize costs of BVH build across many ray trace operations

[Morton code based]
[Karras 13]

[High quality 
top-down + splitting]

HLBVH + bottom up 
treelet reoptimization 
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Two-level BVHs
Many scene objects do not move from frame-to-frame, or only move rigidly 
Approach: two-level BVH: build a BVH over per-object BVHs 
- Only rebuild this top level BVH each frame as objects move

A B

C

BVH for object A BVH for object B BVH for object CTop Level BVH

Contains hundreds 
of scene objects

Each per-object BVH might contains tens’s of thousands of triangles. 
If object’s geometry does not undergo relative change 

(other than rotation/translation in world) 
the BVH can be built once and remain applicable.
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Real-time ray tracing APIs
(Recurring theme in this course: increase level of abstraction 

to enable optimized implementations)
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D3D12’s DXR ray tracing “stages”
Ray tracing is abstracted as a graph of programmable “stages” 
TraceRay() is a blocking function in some of those stages

Acceleration 
structure

Can call TraceRay()

Can call TraceRay()

Can call TraceRay()
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Example: ray generation shader (camera rays)

Example “hit shader”: Runs on ray hit to "ll in payload
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GPU understands format of BVH acceleration structure 
and “shader table”
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Implementation: NVIDIA Ampere SM (RTX 3xxx series)
Hardware support for ray-triangle intersection and ray-BVH 
intersection (“RT core”) 

Very little public documentation of architectural details at 
this time
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But the RT hardware is not the only "xed-function hardware on a GPU that is important 
for real-time raytracing…
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Denoising ray traced images
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Surface Albedo
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Surface normals
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16 paths/pixel

Recall: numerical integration of light (via Monte Carlo sampling) su!ers from high 
variance, resulting in images with “noise”
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64 paths/pixel
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256 paths/pixel
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1024 paths/pixel
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4096 paths/pixel
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Denoised results



Stanford CS348K, Spring 2022

16 paths/pixel
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16 paths/pixel (denoised)
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64 paths/pixel (denoised)
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256 paths/pixel (denoised)
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1024 paths/pixel (denoised)
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4096 paths/pixel (denoised)
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4096 paths/pixel (NOT DENOISED)
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Deep learning-based denoising
Can we “learn” to turn noisy images into clean ones? 

Idea: Use neural image-to-image transfer methods to convert cheaper to compute (but 
noisy) ray traced images into higher quality images that look like they were produced by 
tracing many rays per pixel
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Example: neural denoiser DNN

Depth Normal Roughness

Input to network is noisy RGB image * + additional normal, depth, and roughness channels 
(These are cheap to compute inputs help network identify silhouettes, sharp structure)

* Actually the input is RGB demodulated by (divided by) texture albedo  (don’t force network to learn what texture was)

Albedo

[Chaitanya 17]
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Denoising results
[Chaitanya 17]

1 spp (input)
4000 spp 

(ground truth)Denoised
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Denoising results (challenging)
[Chaitanya 17]

1 spp (input)
4000 spp 

(ground truth)Denoised
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More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Original (noisy)

https://openimagedenoise.github.io/
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More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Denoised

https://openimagedenoise.github.io/
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More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Original (noisy)

https://openimagedenoise.github.io/
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More denoising examples

Image credit: Intel Open Image Denoise : https://openimagedenoise.github.io/

Denoised

https://openimagedenoise.github.io/
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Aside: upsampling low-resolution 
images to higher resolution images

(This is upsampling, not reducing Monte Carlo noise.)

Examples: NVIDIA’s DLSS (performs both anti-aliasing and upsampling)
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Neural upsampling (hallucinating detail)

 + auxiliary inputs

[Xiao 20]
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Neural upsampling (hallucinating detail)

4x4 upsampled result (16x more pixels)

[Xiao 20]
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Neural upsampling pipeline

Main idea: gain resolution by aligning and merging multiple recent frames 

Alignment vectors provided by renderer 
Learn model that determines weights for aligned features (“feature reweighting”) 
Then decode with neural decoder (“reconstruction”)

[Xiao 20]
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Closer look
[Xiao 20]
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Technologies that are making real-time ray tracing possible
Better algorithms: fast parallel BVH construction and ray-BVH traversal algorithms for GPUs and 
multi-core CPUs (many SIGGRAPH/HPG papers circa 2010-2017) 

Main ideas of traversal: compressed, wider BVHs 
Main ideas of BVH construction: two level BVH (don’t rebuild everything), two phase top-down + bottom 
up build (high performance + high quality) 

Emergence of GPU hardware acceleration: 
- HW acceleration of ray-triangle intersection, BVH traversal 
- Increasingly #exible aspects of traditional GPU pipeline (bindless textures/resources) 

DNN-based image post-processing (denoising) 
- Can make plausible images using small(er) number of rays per pixel 
- Makes use of existing DNN hardware acceleration
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Real time ray tracing: what’s next
Continued development of specialized HW 
- More transistors = more RT cores = more rays/sec 
- Currently no hardware acceleration in game consoles (disincentive to making games completely based on 

RT) 

Continued application developer work to integrate tech into games 
- Application developers want a smooth adoption path (can’t just throw out their current game engines and 

replace with a ray tracer)  

Substantial algorithmic innovation to reduce required ray counts 
- Key challenge: picking the most important directions for which to sample incoming light  
- Interesting recent results rendering scenes with many lights and with indirect illumination 
- Improvements to neural denoising techniques
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Many light rendering Scene with many light sources 
(Direct lighting only)
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Challenges of high geometric detail scenes
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Rendering complex geometry

High geometric detail
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Rendering complex geometry
How should we represent the geometry? 
- Triangle mesh? Volume (density+rgb), Subdivision surface?

Close: want geometryFar?

CS348b Lecture 3 Pat Hanrahan, Spring 2015

Uniform Grids: When They Work Well

Uniform grids work well for large collections of objects that are 
uniform in size and distribution

http://www.kevinboulanger.net/grass.html
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Another example: subdivision surfaces
Subdivide coarse mesh into "ner-scale mesh depending on distance to camera

Loop subdivision

Catmull-Clark control mesh 
and limit surface
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Displaced subdivision surfaces

Control cage 
(Coarse triangle mesh)

Limit surface 
(Renders from fine 

triangle mesh)
Displaced surface

[Lee 2000]
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Result: high-resolution surface detail

(one pixel)
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Result: high-resolution surface detail

6M triangles after tessellation and displacement
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2

1

Challenge: cracks

2

1

(Surface parametric 
domain)
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Crack "xing solutions

Generate irregular topology 5x5 regular vertex grid 
matching constraints on top 
& left edge of 3 segments 
(Vertices moves to create 

degenerate triangles)

Key idea: Adjacent regions agree on tessellation along edge
Complicates parallel processing!
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Challenges of high-resolution geometry
Visibility: have to rasterize large amounts of geometry 
- For each triangle… rasterize, shade triangles 
- Need techniques for building an acceleration structure over scene primitives to quickly 

discard large numbers of o!-screen or occluded primitives 
- Fixed-function rasterization hardware in modern GPUs tends to be optimize for triangles that 

are at least a few pixels in size.  

Level of detail: how to represent geometry at level of detail needed for current viewing 
conditions 
- Adaptive level-of-detail introduces challenges of cracks, “popping”, etc.
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Next time: Unreal Nanite renderer
Modern solutions to rendering high resolution geometry on modern GPUs


