Efficiently Scheduling Image Processing Pipelines

Visual Computing Systems Stanford CS348K, Spring 2023

Lecture 5:

Today's themes

- Techniques for efficiently mapping image processing applications (that we've discussed in the first class) to multi-core CPUs and GPUs
- applications

The design of programming abstractions that facilitate efficient image processing

Reminder: key aspect in the design of any system Choosing the "right" representations for the job

- Good representations are productive to use:
 - Embody the natural way of thinking about a problem
- Good representations enable the system to provide useful services:
 - Validating/providing certain guarantees (correctness, resource bounds, conversion of quantities, type checking)
 - Performance optimizations (parallelization, vectorization, use of specialized hardware)
 - Implementations of common, difficult-to-implement functionality (complex array indexing code, texture mapping in 3D graphics, auto-differentiation, etc.)

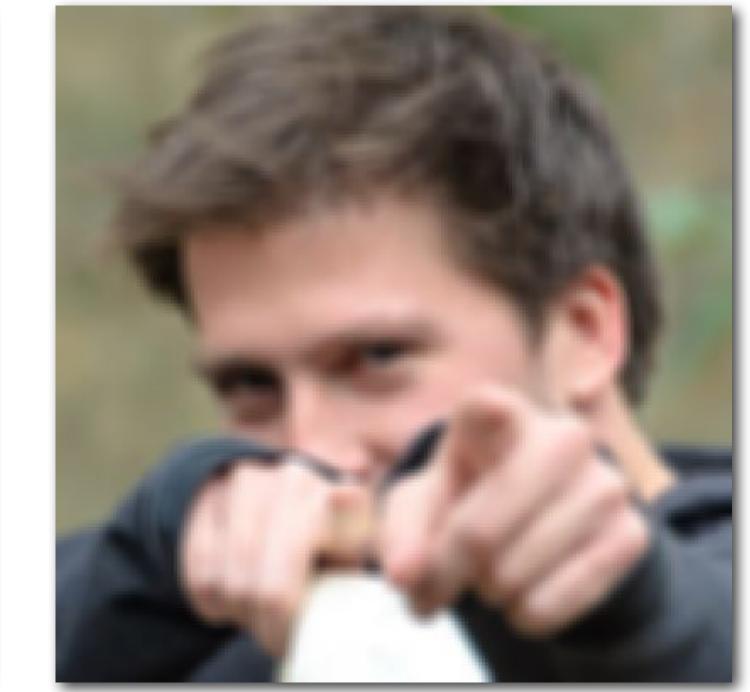
Reminder: what does this C code do?

int WIDTH = 1024;int HEIGHT = 1024;float input[(WIDTH+2) * (HEIGHT+2)]; float output[WIDTH * HEIGHT];

```
float weights[] = {1.f/9, 1.f/9, 1.f/9,
                   1.f/9, 1.f/9, 1.f/9,
                   1.f/9, 1.f/9, 1.f/9};
```

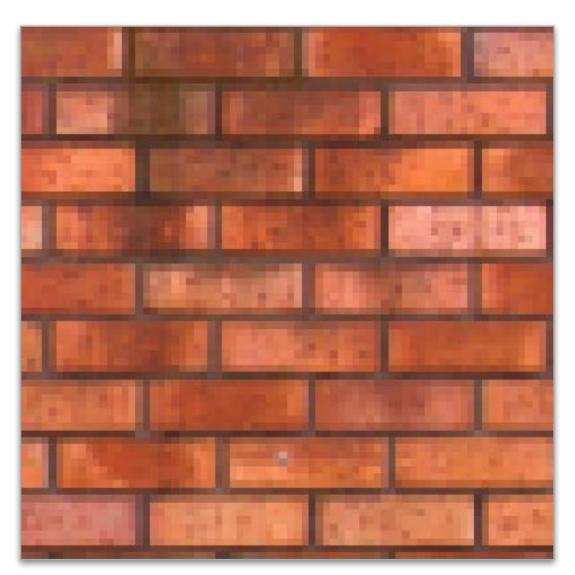
```
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      for (int ii=0; ii<3; ii++)</pre>
        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
    output[j*WIDTH + i] = tmp;
```


The code on the previous slide performed a 3x3 box blur



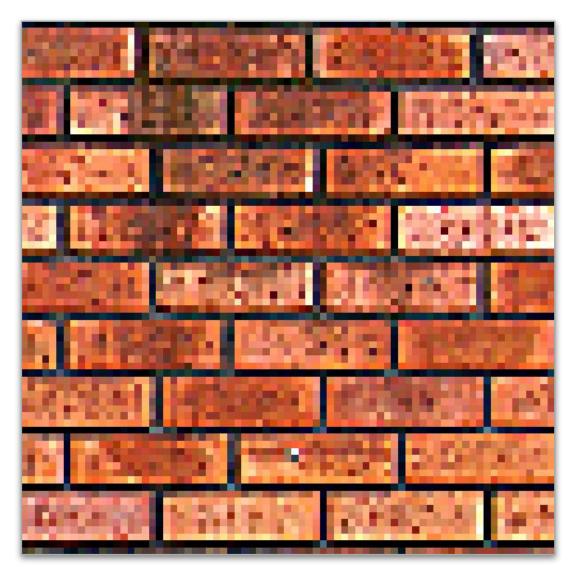
(Zoomed view)

Consider a single task: sharpening an image



Input

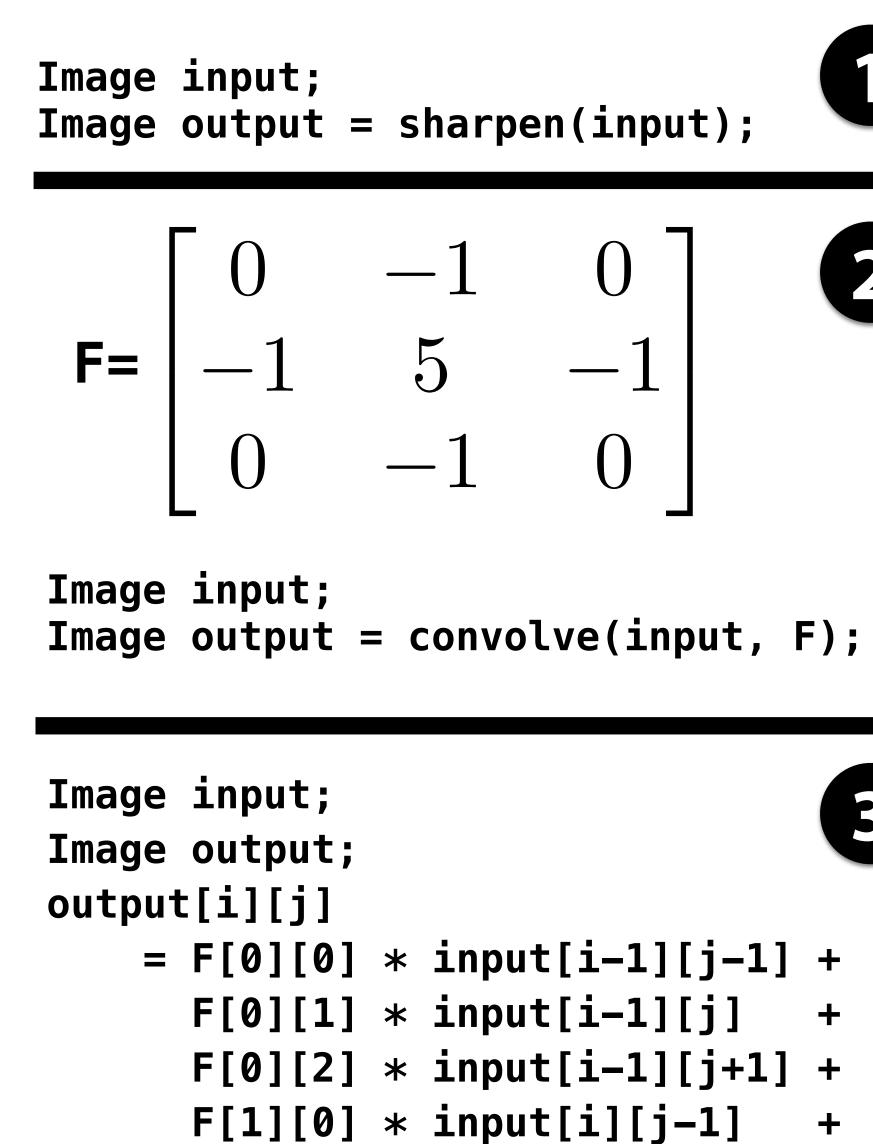
What would the interface to your system be?



Output

Question: imagine you were asked to design a system for executing sharpen as efficiently as possible on a variety of parallel processors (CPUs, GPUs, etc.)

Four different representations of sharpen

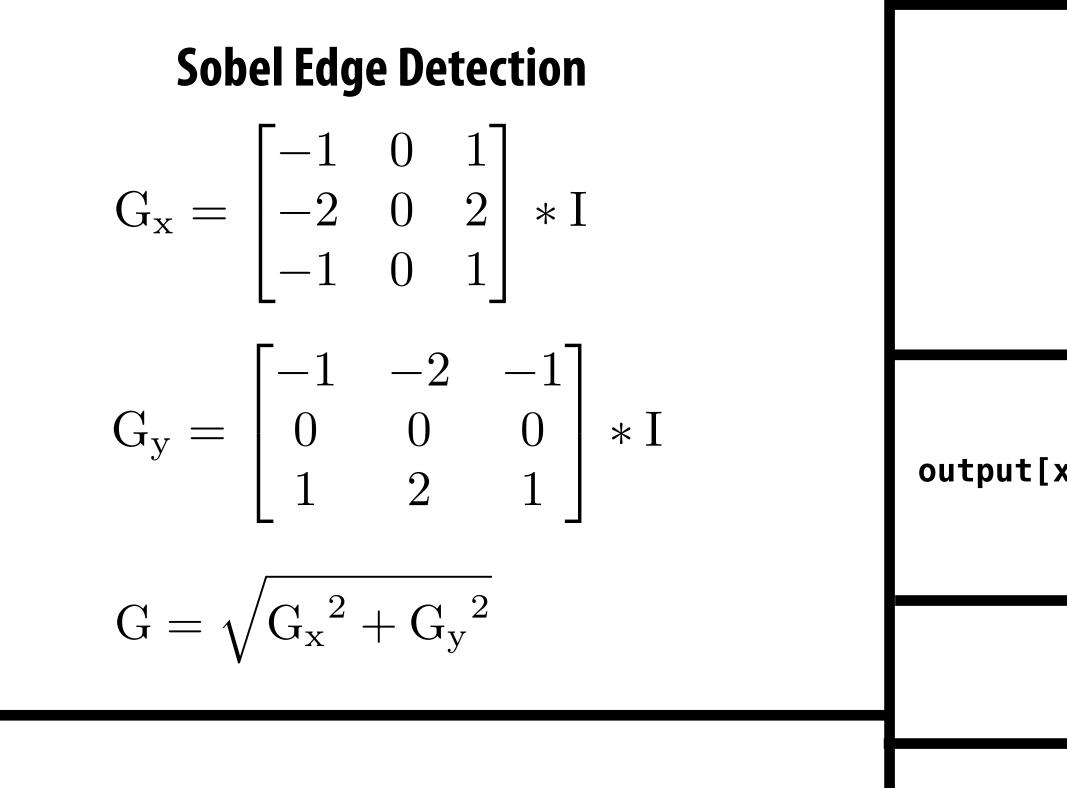


F[1][1] * input[i][j]

+

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

A few image processing tasks from previous lectures



Local Pixel Clamp

```
float f(image input) {
   float min_value = min( min(input[x-1][y], input[x+1
                     min(input[x][y-1], input[x][y+1])
   float max_value = max( max(input[x-1][y], input[x+1
                     max(input[x][y-1], input[x][y+1])
output[x][y] = clamp(min_value, max_value, input[x][y]
output[x][y] = f(input);
```

3x3 Gaussian blur

	[.075	.124	.075
F=	.124	.204	.124
	.075	.124	.075

2x2 downsample (via averaging)

output[x][y] = (input[2x][2y] + input[2x+1][2y] +input[2x][2y+1] + input[2x+1][2y+1]) / 4.f;

Gamma Correction

output[x][y] = pow(input[x][y], 0.5f);

LUT-based correction

output[x][y] = lookup_table[input[x][y]];

1][y]),)); 1][y]),));]);	<pre>Histogram bin[input[x][y]]++;</pre>

Image processing workload characteristics

- **Structure: sequences (more precisely: DAGs) of operations on images**
- Natural to think about algorithms in terms of their local behavior: e.g., output at pixel (x,y) is function of input pixels in neighborhood around (x,y)
- Common case: computing value of output pixel (x,y) depends on access to a bounded local "window" of input image pixels around (x,y)... (e.g. convolution)
- Some algorithms require data-dependent data access (e.g., data-dependent access to lookup tables) Upsampling/downsampling (e.g., to create image pyramids)
- Computations that reduce information across many pixels (e.g., building a histogram, computing maximum brightness pixel in an image)
- FFTs on small patches of an image

Halide language for image processing

Halide goals

- - e.g., all the components of a modern camera RAW pipeline

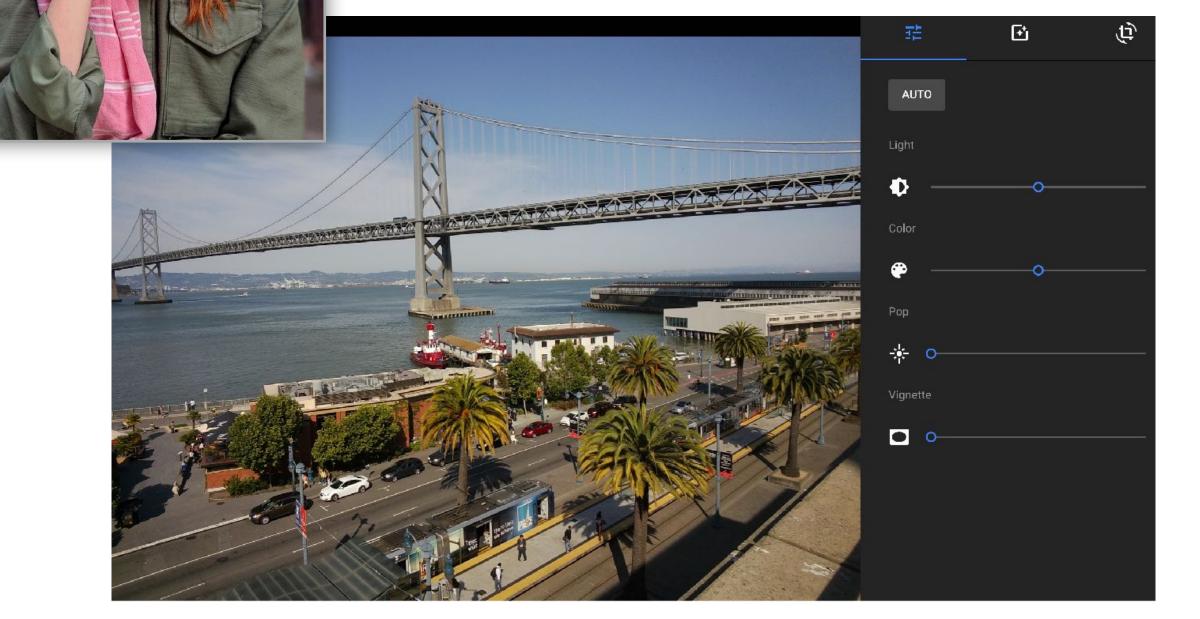
processing resources of modern CPUs and GPUs, and is memory bandwidth efficient

Expressive: facilitate intuitive expression of a broad class of image processing applications

High performance: want to generate code that efficiently utilizes the multi-core and SIMD

Halide used in practice

- Halide used to implement camera processing pipelines on Google phones
 - HDR+, aspects of portrait mode, etc...
- Industry usage at Instagram, Adobe, etc.



Halide language

Simple domain-specific language embedded in C++ for describing sequences of image processing operations

Var x, y; Func blurx, blury, bright, out; Halide::Buffer<uint8_t> in = load_image("myimage.jpg");

// perform 3x3 box blur in two-passes blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y))blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// brighten blurred result by 25%, then clamp bright(x,y) = min(blury(x,y) * 1.25f, 255);

// access lookup table to contrast enhance out(x,y) = lookup(bright(x,y));

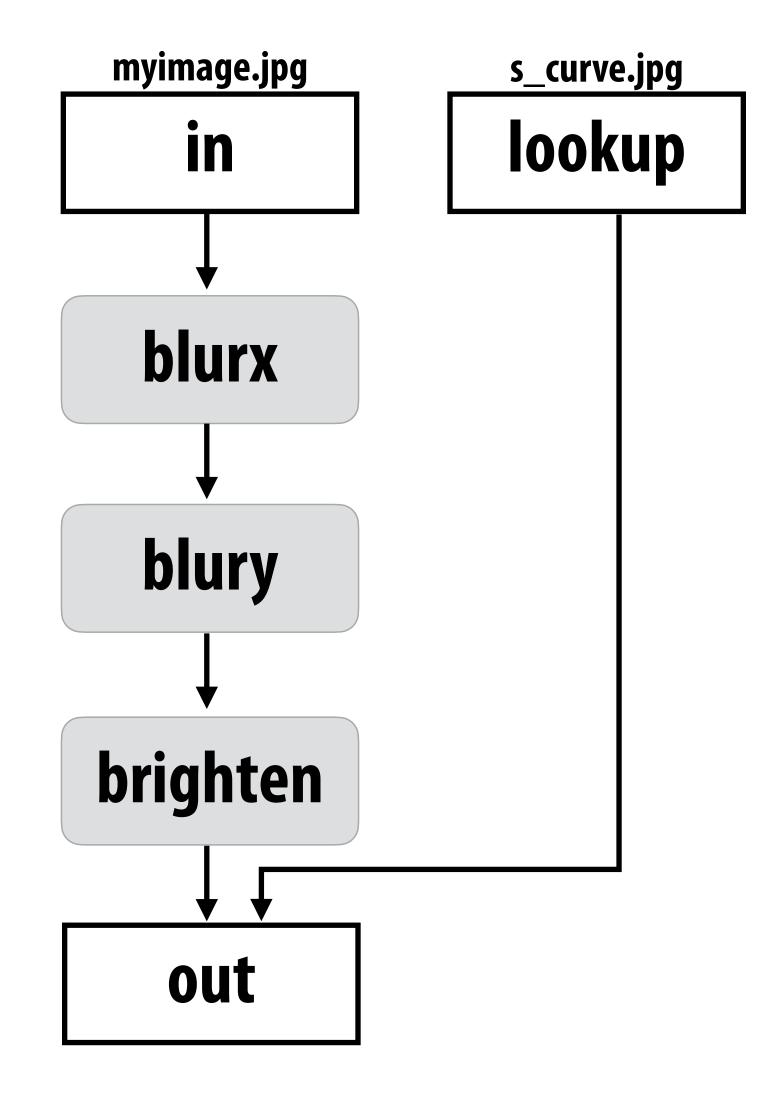
// execute pipeline to materialize values of out in range (0:800,0:600) Halide::Buffer<uint8_t> result = out.realize(800, 600);

Halide function: an infinite (but discrete) set of values defined on N-D domain Halide expression: a side-effect free expression that describes how to compute a function's value at a point in its domain in terms of the values of other functions.

[Ragan-Kelley / Adams 2012]

```
Functions map integer coordinates to values
                                                                    (e.g., colors of corresponding pixels)
Halide::Buffer<uint8_t> lookup = load_image("s_curve.jpg"); // 255-pixel 1D image
                                                          + in(x+1,y)); 🗲
                                                                        Value of blurx at coordinate (x,y)
                                                                        is given by expression accessing
                                                                        three values of in
```


Image processing as a DAG



Simple domain-specific language embedded in C++ for describing sequences of image processing operations

More Halide language (multi-stage functions)

Var x; Func histogram, average; Halide::buffer<uint8_t> in = load_image("myimage.jpg");

// declare "reduction domain" to be size of input image RDom r(0, in.width(), 0, in.height());

// compute avg of image pixels

average(0) = 0; // initialize average to 0

```
// "update definitions" on average: for all points in domain r do update
average(0) += in(r.x, r.y);
average(0) /= in.width() * in.height();
Halide::Buffer<uint8_t> avg_result = avg.realize(1);
```

// Compute a histogram

histogram(x) = 0; // clear all bins of the histogram to 0

// "update definition" on histogram: for all points in domain r, increment // appropriate histogram bin histogram(in(r.x, r.y)) += 1; Halide::Buffer<uint8_t> hist_result = histogram.realize(256);

Update definitions modify function values

Reduction domains provide the ability to iterate

Key aspects of representation

- **Intuitive expression:**
 - Adopts local "point wise" view of expressing algorithms
 - what values in domain are stored!
 - It only defines what operations are needed to compute these values.
 - Iteration over domain points is implicit (no explicit loops)

```
Var x, y;
Func blurx, out;
Halide::Buffer<uint8_t> in = load_image("myimage.jpg");
```

// perform 3x3 box blur in two-passes

// execute pipeline on domain of size 800x600 Halide::Buffer<uint8_t> result = out.realize(800, 600);

- Halide language is declarative. It does not define order of iteration over elements in a domain, or even

```
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
out(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));
```


Efficiently executing Halide programs

Quick review of memory bandwidth

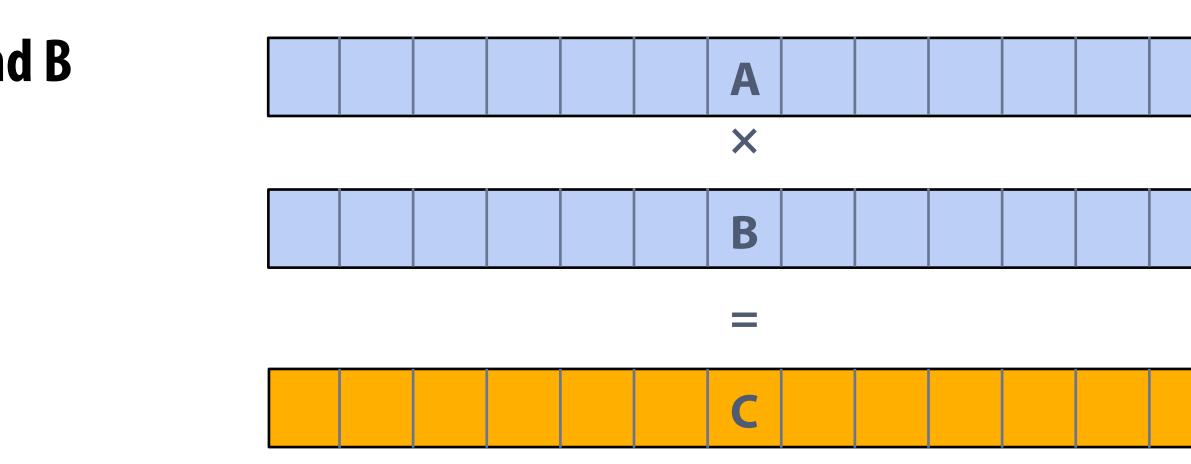
Thought experiment

Task: element-wise multiplication of two vectors A and B Assume vectors contain millions of elements

- Load input A[i]
- Load input B[i]
- Compute A[i] × B[i]
- Store result into C[i]

Three memory operations (12 bytes) for every MUL NVIDIA V100 GPU can do 5120 fp32 MULs per clock (@ 1.6 GHz) Need ~98 TB/sec of bandwidth to keep functional units busy

<1% GPU efficiency... but still 12x faster than eight-core CPU! (3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus: ~3% efficiency on this computation)



Bandwidth limited!

This computation is bandwidth limited!

If processors request data at too high a rate, the memory system cannot keep up.

Overcoming bandwidth limits is often the most important challenge facing software developers targeting modern throughput-optimized systems.

Which program performs better?

Program 1

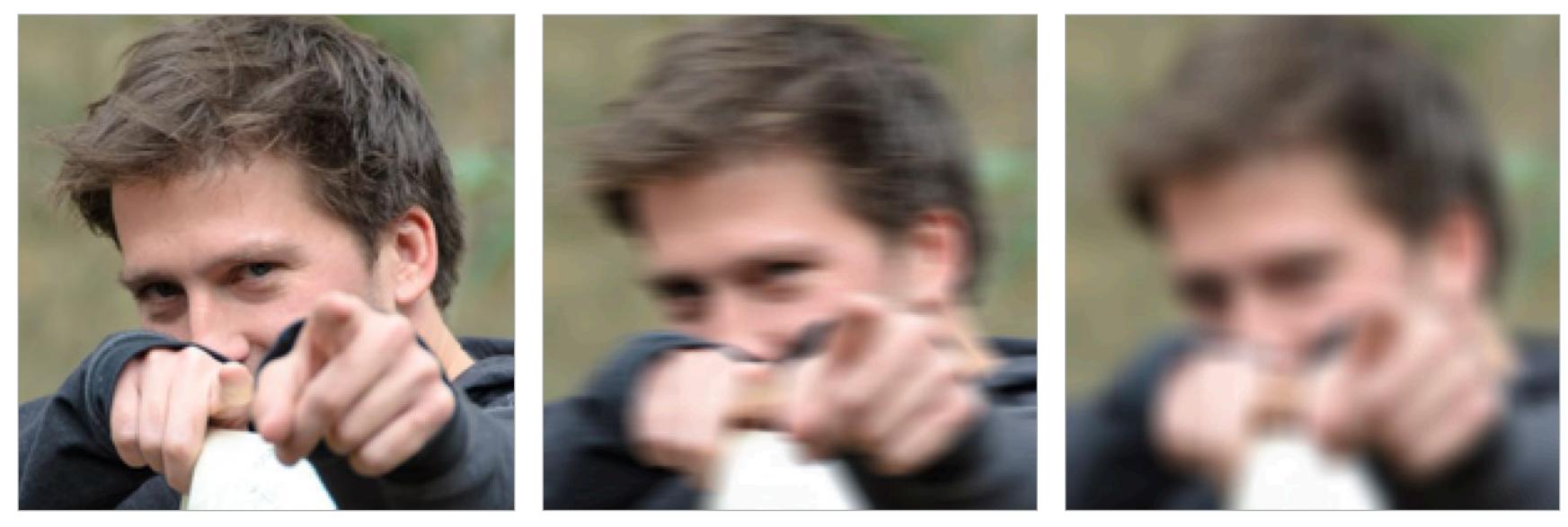
```
void add(int n, float* A, float* B, float* C) {
    for (int i=0; i<n; i++)</pre>
       C[i] = A[i] + B[i];
}
void mul(int n, float* A, float* B, float* C) {
    for (int i=0; i<n; i++)</pre>
       C[i] = A[i] * B[i];
}
float* A, *B, *C, *D, *E, *tmp1, *tmp2;
// assume arrays are allocated here
// compute E = D + ((A + B) * C)
add(n, A, B, tmp1);
mul(n, tmp1, C, tmp2);
add(n, tmp2, D, E);
```

Program 2

```
void fused(int n, float* A, float* B, float* C, float* D, float* E) {
    for (int i=0; i<n; i++)</pre>
       E[i] = D[i] + (A[i] + B[i]) * C[i];
}
// compute E = D + (A + B) * C
fused(n, A, B, C, D, E);
```

Which code structuring style would you rather write?

Two-pass blur A 2D separable filter (such as a box filter) can be evaluated via two 1D filtering operations



Input

Horizontal Blur

Vertical Blur

Note: I've exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

Two-pass 3x3 blur

```
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = {1.f/3, 1.f/3, 1.f/3};
for (int j=0; j<(HEIGHT+2); j++)</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int ii=0; ii<3; ii++)</pre>
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp_buf[j*WIDTH + i] = tmp;
  }
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
```

Total work per image = 6 x WIDTH x HEIGHT For NxN filter: 2N x WIDTH x HEIGHT WIDTH x HEIGHT extra storage 2x lower arithmetic intensity than 2D blur. Why?

input (W+2)x(H+2)**1D horizontal blur** tmp_buf W x (H+2) **1D vertical blur** output W x H

Two-pass image blur: locality

```
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];
float weights[] = {1.f/3, 1.f/3, 1.f/3};
for (int j=0; j<(HEIGHT+2); j++)</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int ii=0; ii<3; ii++)</pre>
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
    tmp_buf[j*WIDTH + i] = tmp;
  }
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
                                            weights[jj];
      tmp += tmp_buf[(j+jj)*WIDTH + i]
                                          *
    output[j*WIDTH + i] = tmp;
```

Intrinsic bandwidth requirements of blur algorithm: Application must read each element of input image and must write each element of output image.

Data from input reused three times. (immediately reused in next two i-loop iterations after first load, never loaded again.)

- Perfect cache behavior: never load required data more than once
- Perfect use of cache lines (don't load unnecessary data into cache)

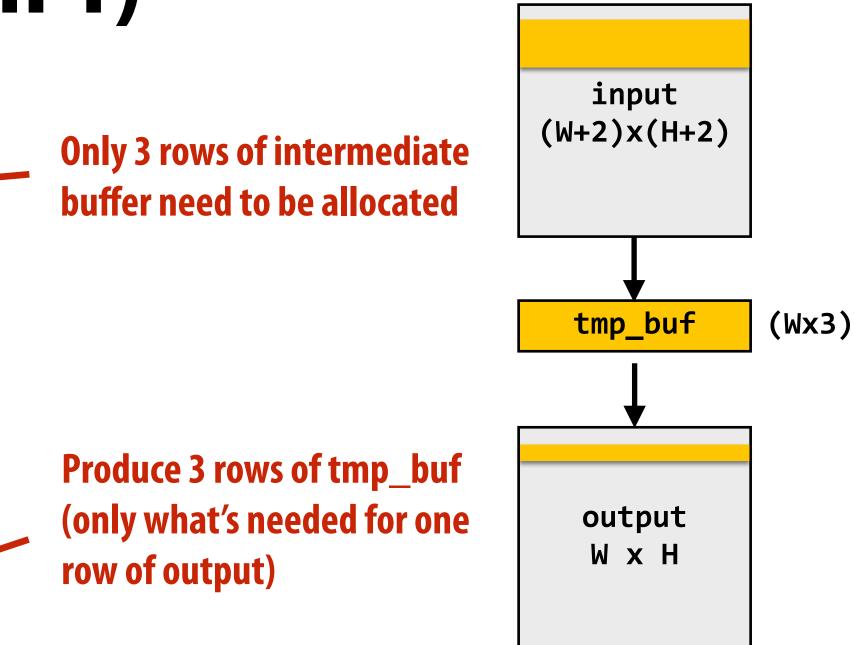
Two pass: loads/stores to tmp_buf are overhead (this memory traffic is an artifact of the two-pass implementation: it is not intrinsic to computation being performed)

Data from tmp_buf reused three times (but three rows of image data are accessed in between)

- Never load required data more than once... if cache has capacity for <u>three rows of image</u>
- Perfect use of cache lines (don't load unnecessary data into cache)

Two-pass image blur, "chunked" (version 1)

```
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * 3];
float output[WIDTH * HEIGHT];
float weights[] = {1.f/3, 1.f/3, 1.f/3};
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int j2=0; j2<3; j2++)</pre>
    for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int ii=0; ii<3; ii++)</pre>
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
      tmp_buf[j2*WIDTH + i] = tmp;
  for (int i=0; i<WIDTH; i++) {</pre>
    float tmp = 0.f;
    for (int jj=0; jj<3; jj++)</pre>
      tmp += tmp_buf[jj*WIDTH + i] * weights[jj];
    output[j*WIDTH + i] = tmp;
```





Combine them together to get one row of output

Total work per row of output:

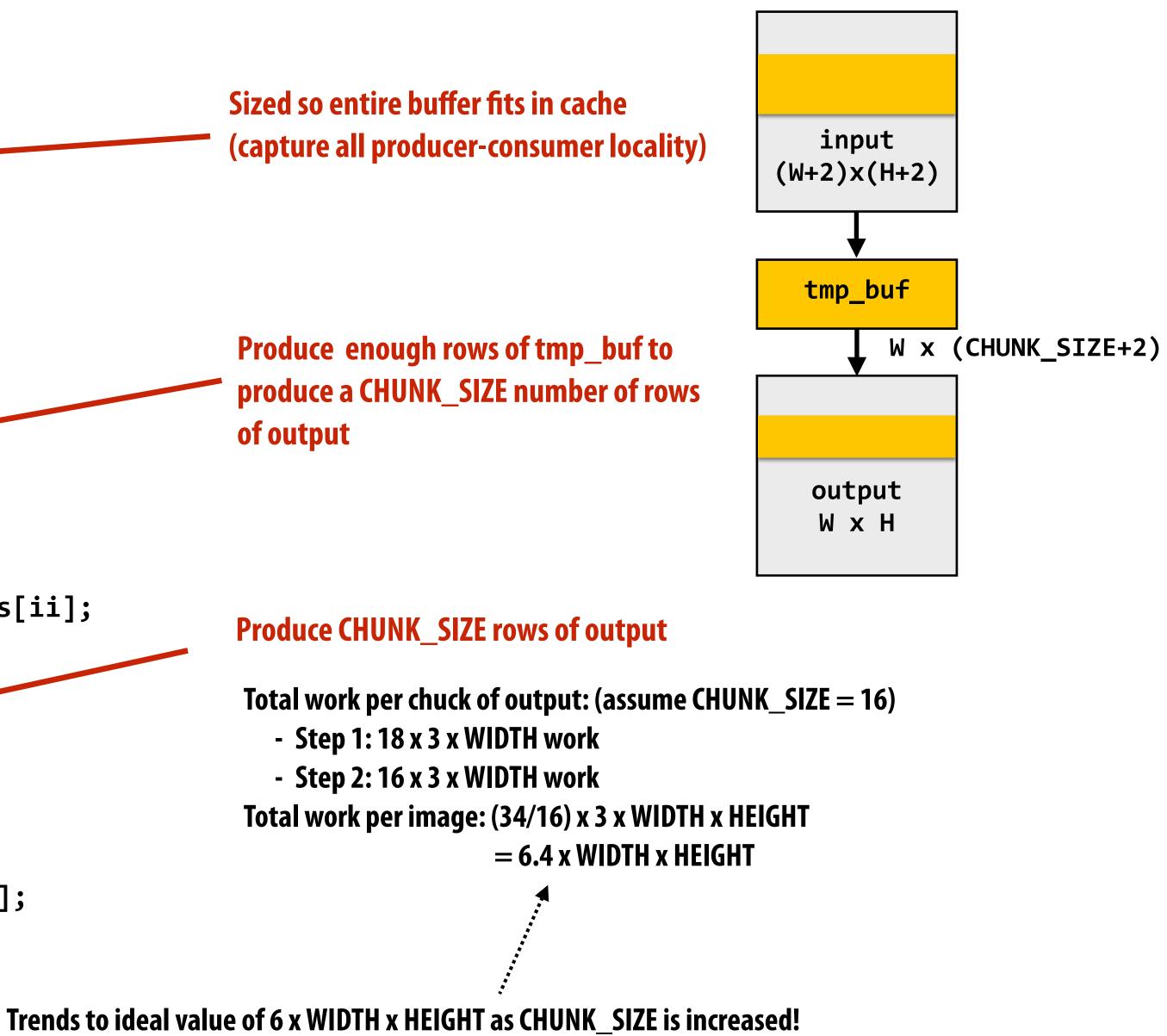
- step 1: 3 x 3 x WIDTH work
- step 2: 3 x WIDTH work

Total work per image = 12 x WIDTH x HEIGHT ????

Loads from tmp_buffer are cached (assuming tmp_buffer fits in cache)

Two-pass image blur, "chunked" (version 2)

```
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (CHUNK_SIZE+2)];
float output[WIDTH * HEIGHT];
float weights[] = {1.f/3, 1.f/3, 1.f/3};
for (int j=0; j<HEIGHT; j+CHUNK_SIZE) {</pre>
  for (int j2=0; j2<CHUNK_SIZE+2; j2++)</pre>
    for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int ii=0; ii<3; ii++)</pre>
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
      tmp_buf[j2*WIDTH + i] = tmp;
  for (int j2=0; j2<CHUNK_SIZE; j2++)</pre>
    for (int i=0; i<WIDTH; i++) {</pre>
      float tmp = 0.f;
      for (int jj=0; jj<3; jj++)</pre>
        tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj];
      output[(j+j2)*WIDTH + i] = tmp;
```



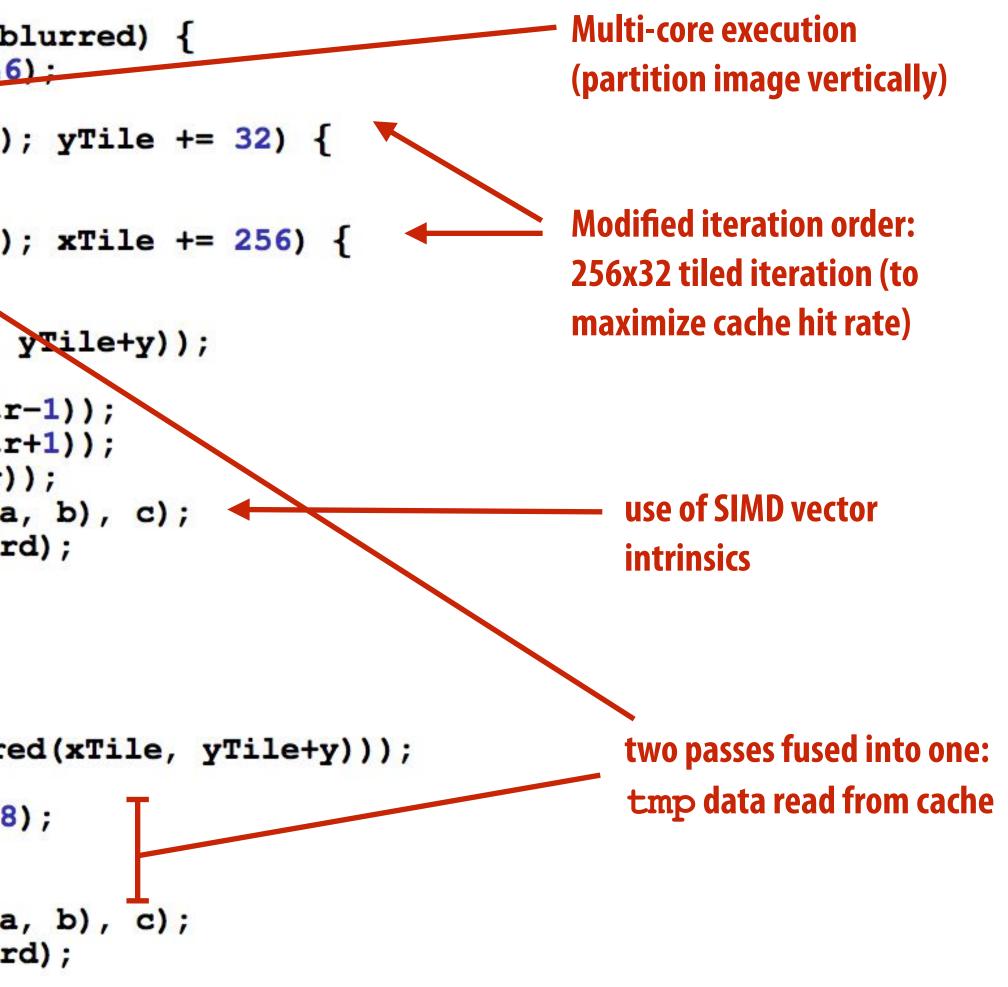
Still not done

- We have not parallelized loops for multi-core execution
- We have not used SIMD instructions to execute loops bodies
- Other basic optimizations: loop unrolling, etc...

Optimized x86 (SSE) implementation of 3x3 box blur

Good: ~10x faster on a quad-core CPU than my original two-pass code Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

```
void fast_blur(const Image &in, Image &blurred) {
 _m128i one_third = _mm_set1_epi16(21846);
 #pragma omp parallel for 
 for (int yTile = 0; yTile < in.height(); yTile += 32)</pre>
  _m128i a, b, c, sum, avg;
  _m128i tmp[(256/8)*(32+2)]; 🔨
  for (int xTile = 0; xTile < in.width(); xTile += 256) {</pre>
   _m128i *tmpPtr = tmp;
   for (int y = -1; y < 32+1; y++) {
    const uint16_t *inPtr = &(in(xTile, yTile+y));
    for (int x = 0; x < 256; x += 8) {
     a = _mm_loadu_sil28((_ml28i*)(inPtr-1));
     b = _mm_loadu_si128((_m128i*)(inPtr+1));
     c = _mm_load_sil28((_ml28i*)(inPtr));
     sum = \_mm\_add\_epi16(\_mm\_add\_epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     _mm_store_sil28(tmpPtr++, avg);
     inPtr += 8;
   }}
   tmpPtr = tmp;
   for (int y = 0; y < 32; y++) {
    _m128i *outPtr = (_m128i *) (&(blurred(xTile, yTile+y)));
    for (int x = 0; x < 256; x += 8) {
     a = _mm_load_sil28(tmpPtr+(2*256)/8);
     b = _mm_load_si128(tmpPtr+256/8);
     c = _mm_load_sil28(tmpPtr++);
     sum = _mm_add_epi16(_mm_add_epi16(a, b), c);
     avg = _mm_mulhi_epi16(sum, one_third);
     _mm_store_sil28(outPtr++, avg);
}}}}
```



Halide blur example: basic 3x3 convolution

Var x, y; Func blurx, out; Image<uint8_t> in = load_image("myimage.jpg");

// expression for computing convolution result for one output pixel out(x,y) = 1/9.f * (in(x-1,y-1) + in(x,y-1) + in(x+1,y-1) +in(x-1,y) + in(x,y) + in(x+1,y) +in(x-1,y+1) + in(x,y+1) + in(x+1,y+1));

// execute pipeline on domain of size 1024x1024 Image<uint8_t> result = out.realize(1024, 1024);

Total work per output image = 9 x WIDTH x HEIGHT For NxN filter: N² x WIDTH x HEIGHT

Halide blur example: two-pass 3x3 blur

Var x, y; Func blurx, out; Image<uint8_t> in = load_image("myimage.jpg");

// perform 3x3 box blur in two-passes (box blur is separable) blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));out(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// execute pipeline on domain of size 1024x1024 Image<uint8_t> result = out.realize(1024, 1024);

Total work per output image = 6 x WIDTH x HEIGHT

Halide language

Simple domain-specific language embedded in C++ for describing sequences of image processing operations

Var x, y; Func blurx, blury, bright, out; Halide::Buffer<uint8_t> in = load_image("myimage.jpg"); Halide::Buffer<uint8_t> lookup = load_image("s_curve.jpg"); // 255-pixel 1D image // perform 3x3 box blur in two-passes blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y)); blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));// brighten blurred result by 25%, then clamp bright(x,y) = min(blury(x,y) * 1.25f, 255);// access lookup table to contrast enhance out(x,y) = lookup(bright(x,y));

// execute pipeline to materialize values of out in range (0:1024,0:1024) Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide function: an infinite (but discrete) set of values defined on N-D domain Halide expression: a side-effect free expression that describes how to compute a function's value at a point in its domain in terms of the values of other functions.

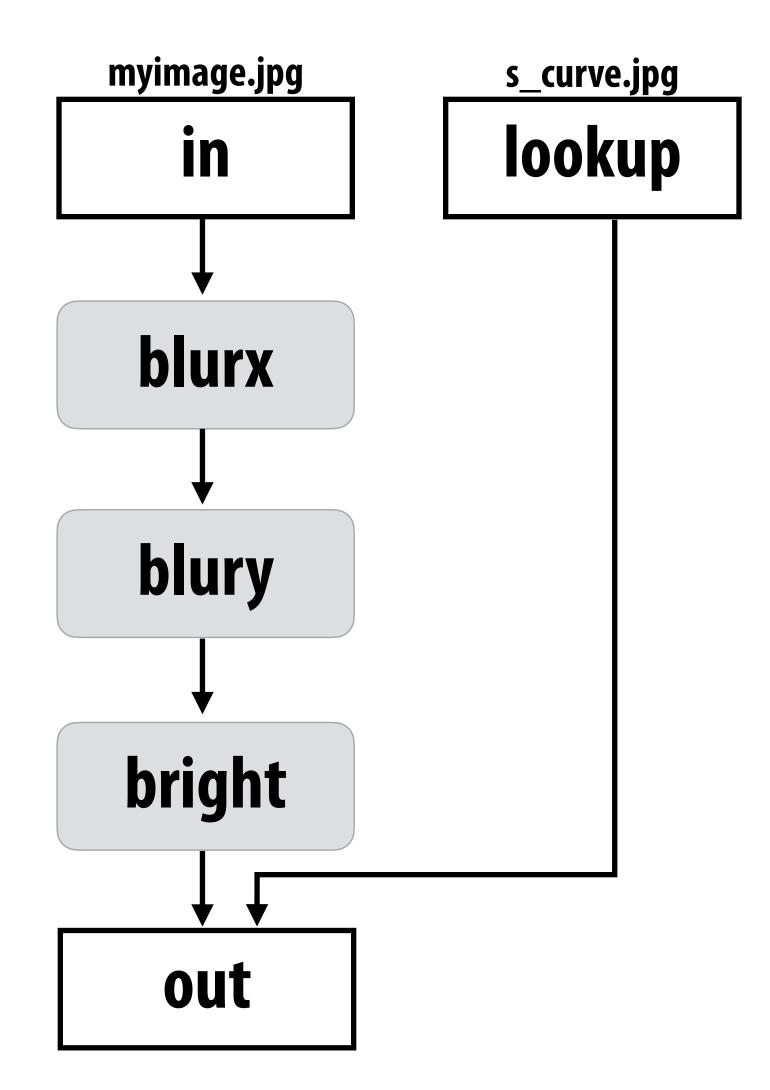
[Ragan-Kelley / Adams 2012]

"Functions" map integer coordinates to values (e.g., colors of corresponding pixels)

Value of blurx at coordinate (x,y) is given by expression accessing three values of in

Image processing application as a DAG

Simple domain-specific language embedded in C++ for describing sequences of image processing operations



Key aspects of representation

- **Intuitive expression:**
 - Adopts local "point wise" view of expressing algorithms
 - Halide language is declarative. It does not define order of iteration, or what values in domain are stored!
 - Only defines what is needed to compute these values.
 - Iteration over domain points is implicit (no explicit loops)

```
Var x, y;
Func blurx, out;
Halide::Buffer<uint8_t> in = load_image("myimage.jpg");
```

```
// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
out(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));
```

// execute pipeline on domain of size 1024x1024 Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

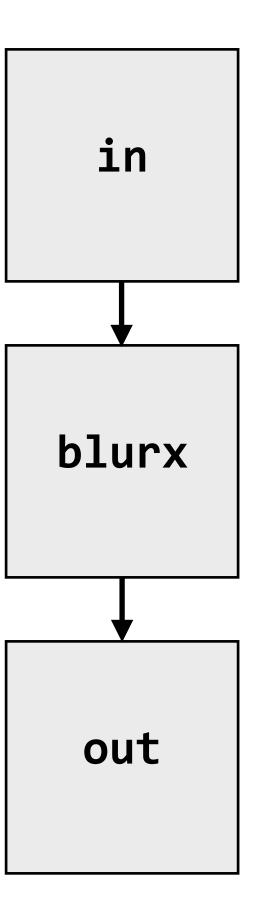


Image processing pipelines feature complex sequences of functions

Benchmark

Two-pass blur **Unsharp mask** Harris Corner detecti **Camera RAW process** Non-local means den **Max-brightness filte Multi-scale interpola Local-laplacian filter** Synthetic depth-of-fi **Bilateral filter** Histogram equalizati VGG-16 deep networ

Real-world production applications may features hundreds to thousands of functions! Google HDR+ pipeline: over 2000 Halide functions.

Number of Halide functions

	2
	9
ion	13
sing	30
noising	13
r	9
ation	52
ſ	103
ield	74
	8
ion	7
'k eval	64

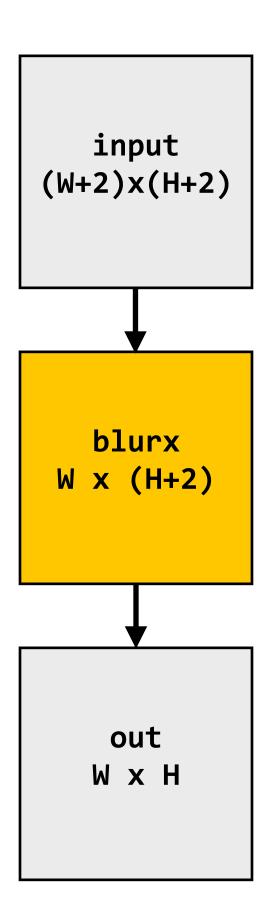
One (serial) implementation of Halide

```
Func blurx, out;
Var x, y, xi, yi;
Halide::Buffer<uint8_t> in = load_image("myimage.jpg");
// the "algorithm description" (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);
 Equivalent "C-style" loop nest:
```

```
allocate in(1024+2, 1024+2); // (width,height)... initialize from image
allocate blurx(1024,1024+2); // (width,height)
allocate out(1024,1024); // (width,height)
```

```
for y=0 to 1024:
   for x=0 to 1024+2:
      blurx(x,y) = ... compute from in
for y=0 to 1024:
   for x=0 to 1024:
```

out(x,y) = ... compute from blurx



Key aspect in the design of any system: **Choosing the "right" representations for the job**

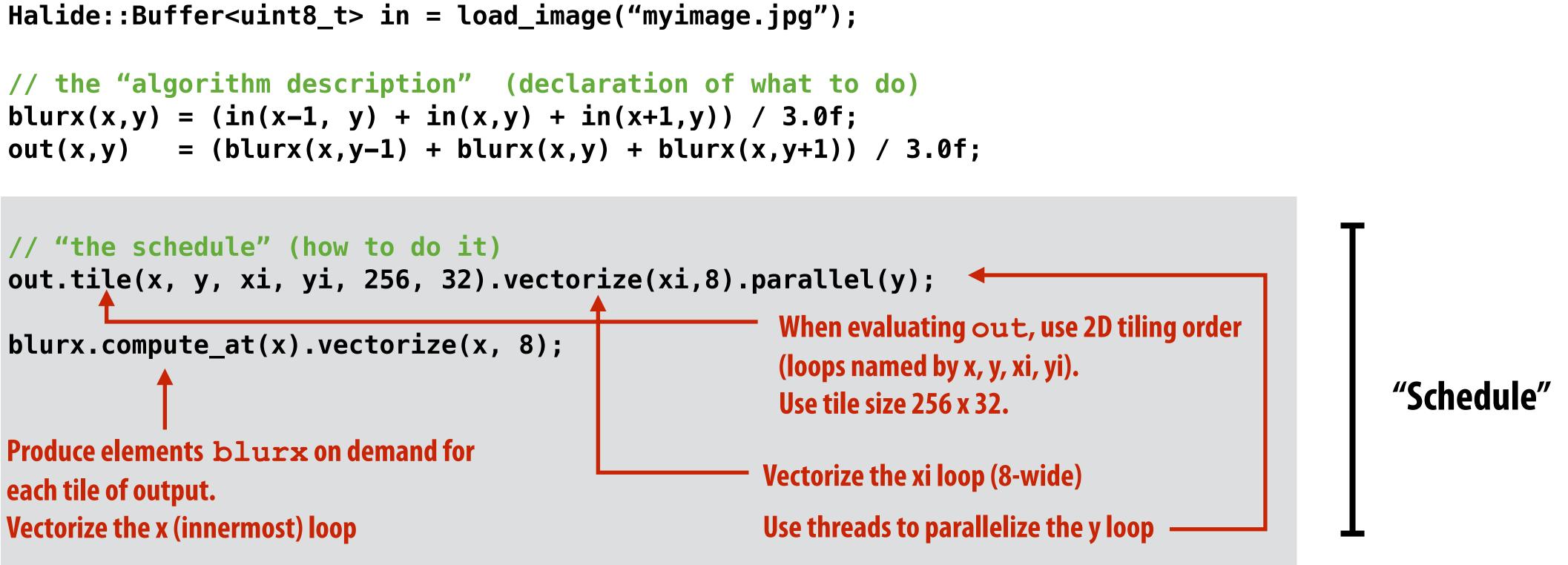
- Good representations are productive to use: Embody the natural way of thinking about a problem

 - Good representations enable the system to provide the application useful services:
 - Validating/providing certain guarantees (correctness, resource bounds, type checking)
 - **Performance (parallelization, vectorization, use of specialized hardware)**

Now the job is not expressing an image processing computation, but generating an efficient implementation of a specific Halide program.

A second set of representations for "scheduling"

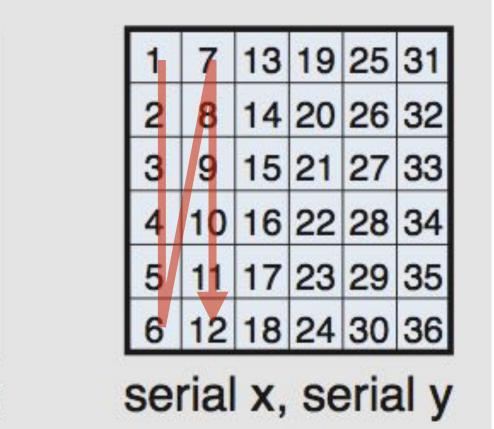
Func blurx, out; Var x, y, xi, yi;

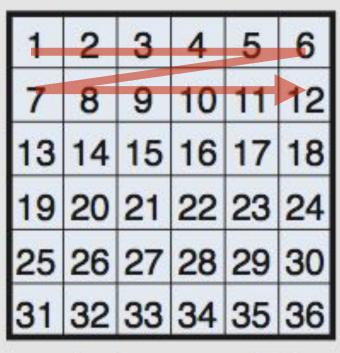


// execute pipeline on domain of size 1024x1024 Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Scheduling primitives allow the programmer to specify a high-level "sketch" of how to schedule the algorithm onto a parallel machine, but leave the details of emitting the low-level platform-specific code to the Halide compiler

Primitives for iterating over N-D domains





serial y, serial x

3

7

9

11

serial y

vectorized x

2

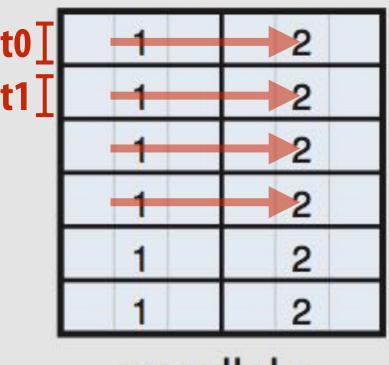
4

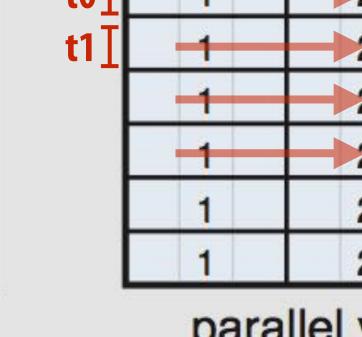
6

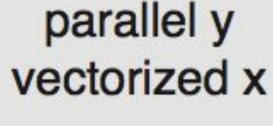
8

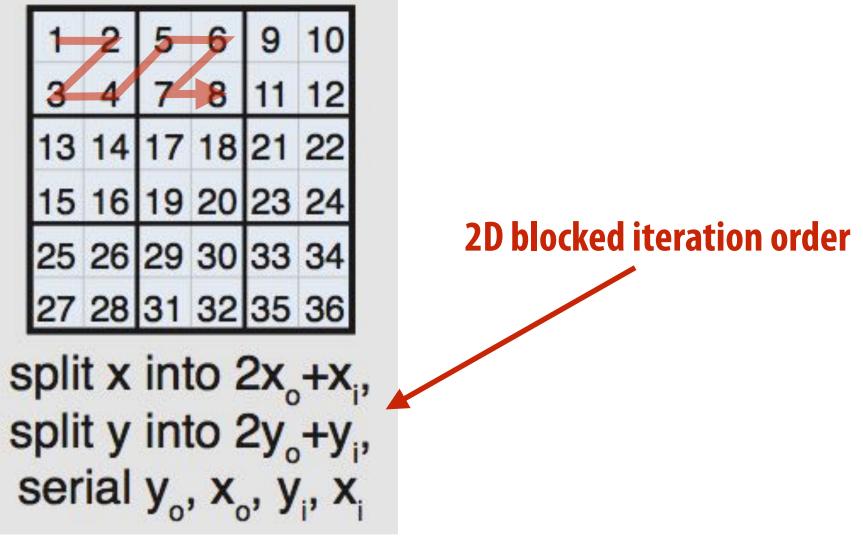
10

12









(In diagram, numbers indicate sequential order of processing within a thread)

Specify both order and how to parallelize (multi-thread, vectorize via SIMD instr)

Primitives for how to interleave producer/consumer processing

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;out.tile(x, y, xi, yi, 256, 32); Do not compute blurx within out's loop nest. blurx.compute_root(); **Compute all of blurx, then all of out** allocate buffer for all of blurx(x,y) for y=0 to HEIGHT: for x=0 to WIDTH: blurx(x,y) = ...for y=0 to num_tiles_y: for x=0 to num_tiles_x: for yi=0 to 32: for xi=0 to 256: idx_x = x*256+xi; $idx_y = y*32+yi$ out(idx_x, idx_y) = ...

all of blurx is computed here

values of blurx consumed here

Primitives for how to interleave producer/consumer processing

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

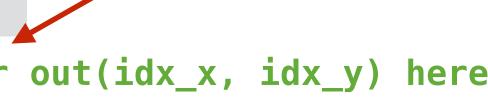
blurx.compute_at(out, xi);

within out's xi loop nest

```
for y=0 to num_tiles_y:
  for x=0 to num_tiles_x:
     for yi=0 to 32:
         for xi=0 to 256:
            idx_x = x*256+xi;
            idx y = y*32+yi
            allocate 3-element buffer for tmp_blurx
            // compute 3 elements of blurx needed for out(idx_x, idx_y) here
            for (blur_x=0 to 3)
                tmp_blurx(blur_x) = ...
            out(idx_x, idx_y) = ...
```

Compute necessary elements of blurx

Note: Halide compiler performs analysis that the output of each iteration of the xi loop required 3 elements of blurx



Primitives for how to interleave producer/consumer processing

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, x);

Compute necessary elements of blurx within out's x loop nest (all necessary elements for one tile of out)

for y=0 to num_tiles_y: for x=0 to num_tiles_x:

> allocate 258x34 buffer for tile blurx for yi=0 to 32+2: for xi=0 to 256+2: tmp_blurx(xi,yi) = // compute blurx from in

```
for yi=0 to 32:
   for xi=0 to 256:
      idx_x = x*256+xi;
      idx_y = y*32+yi
      out(idx_x, idx_y) = ...
```

tile of blurx is computed here

tile of blurx is consumed here

An interesting Halide schedule

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

Compute necessary elements of blurx within out's xi loop blurx.store_at(out, x) nest, but fill in tile-sized buffer allocated at x loop nest. blurx.compute at(out, xi);

for y=0 to num_tiles_y: for x=0 to num_tiles_x:

allocate 258x34 buffer for tile tmp_blurx

for yi=0 to 32: for xi=0 to 256: idx_x = x*256+xi; idx y = y*32+yi;// compute 3 elements of blurx needed for out(idx_x, idx_y) here for (blur_x=0 to 3) tmp_blurx(blur_x) = ... $out(idx_x, idx_y) = ...$

Can compiler be smarter?

"Sliding optimization" (reduces redundant computation)

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

Compute necessary elements of blurx within out's xi loop blurx.store_at(out, x) nest, but fill in tile-sized buffer allocated at x loop nest. blurx.compute at(out, xi);

for y=0 to num_tiles_y: for x=0 to num_tiles_x: allocate 258x34 buffer for tile tmp_blurx

> for yi=0 to 32: for xi=0 to 256: idx_x = x*256+xi; $idx_y = y*32+yi;$

> > if (yi=0) { // compute 3 elements of blurx needed for out(idx_x, idx_y) here for (blur_x=0 to 3) tmp_blurx(blur_x) = ... } else // only compute one additional element of tmp_blurx

```
out(idx_x, idx_y) = ...
```

Steady state: only one new element of tmp_blurx needs to be computed per output

"Folding optimization" (reduces intermediate storage)

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

out.tile(x, y, xi, yi, 256, 32);

Compute necessary elements of blurx within out's xi loop blurx.store at(out, x) blurx.compute_at(out, xi); nest, but fill in tile-sized buffer allocated at x loop nest.

for y=0 to num_tiles_y: for x=0 to num_tiles_x: allocate 3x256 buffer for tmp_blurx .

> for yi=0 to 32: for xi=0 to 256: idx_x = x*256+xi; idx_y = y*32+yi;

> > if (yi=0) { // compute 3 elements of blurx needed for out(idx_x, idx_y) here for (blur_x=0 to 3) tmp_blurx(blur_x) = ...

} else

// only compute one additional element of tmp_blurx

out(idx_x, idx_y) = ...

Accesses to tmp_blurx modified to access appropriate row of circular buffer: e.g., ((idx_y+1)%3)

Circular buffer of 3 rows

Steady state: only one new element of tmp_blurx needs to be computed per output

Summary of scheduling the 3x3 box blur

// the "algorithm description" (declaration of what to do) blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// "the schedule" (how to do it) out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y); blurx.compute_at(out, x).vectorize(x, 8);

Equivalent parallel loop nest:

```
for y=0 to num_tiles_y: // iters of this loop are parallelized using threads
  for x=0 to num_tiles_x:
     allocate 258x34 buffer for tile blurx
     for yi=0 to 32+2:
        for xi=0 to 256+2 BY 8:
            tmp_blurx(xi,yi) = ... // compute blurx from in using 8-wide
                                 // SIMD instructions here
     for yi=0 to 32:
        for xi=0 to 256 BY 8:
            idx_x = x*256+xi;
            idx_y = y*32+yi
            out(idx_x, idx_y) = ... // compute out from blurx using 8-wide
                                  // SIMD instructions here
```

// compiler generates boundary conditions // since 256+2 isn't evenly divided by 8

What is the philosophy of Halide

- **Programmer** is responsible for describing an image processing algorithm
- **Programmer** has knowledge to schedule application efficiently on machine (but it's slow and tedious), so give programmer another language to express their high-level scheduling decisions
 - Loop structure of code
 - **Unrolling / vectorization / multi-core parallelization**
- The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the nitty gritty details of implementing the schedule using mechanisms available on the target machine (pthreads, AVX intrinsics, CUDA code, etc.)
 - There are deviations from this philosophy in Halide? What are they?

Constraints on language (to enable compiler to provide desired services)

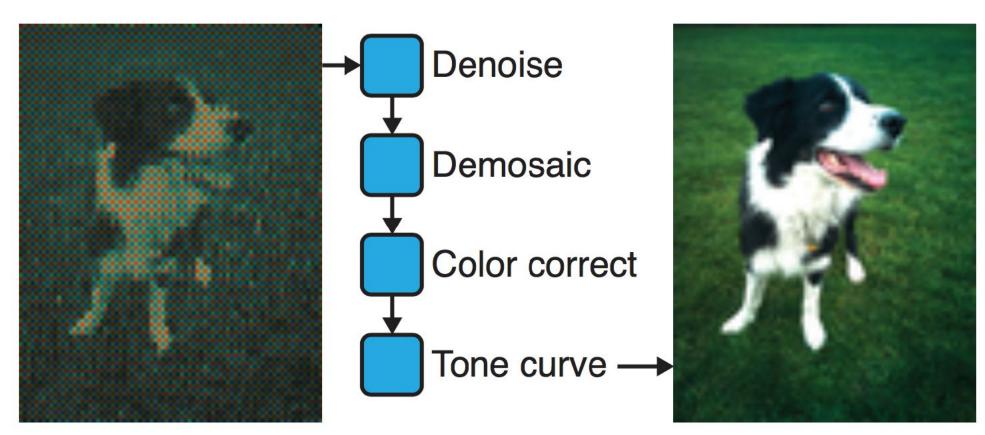
- **Application domain scope: computation on regular N-D domains**
- All dependencies inferable by compiler

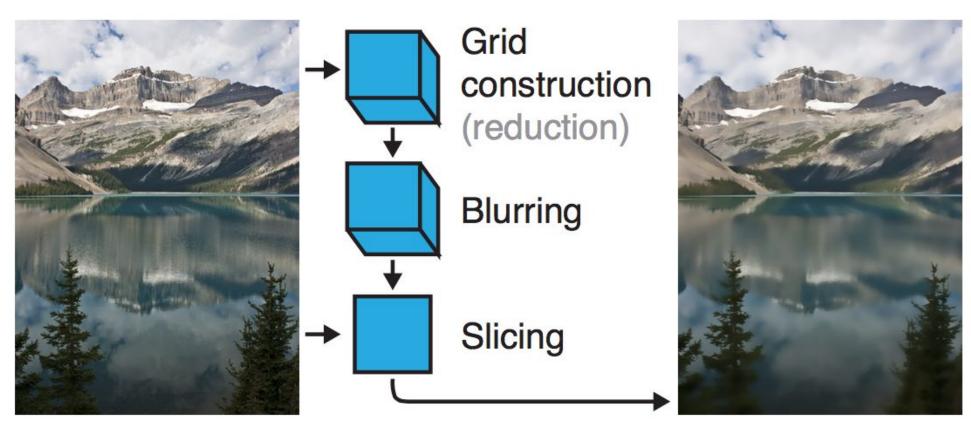
Only feed-forward pipelines (includes special support for reductions and fixed recursion depth)

Initial academic Halide results

- **Application 1: camera RAW processing pipeline** (Convert RAW sensor data to RGB image)
 - **Original: 463 lines of hand-tuned ARM NEON assembly**
 - Halide: 2.75x less code, 5% faster
- **Application 2: bilateral filter** (Common image filtering operation used in many applications)
 - **Original 122 lines of C++**
 - Halide: 34 lines algorithm + 6 lines schedule
 - **CPU implementation: 5.9x faster**
 - **GPU implementation: 2x faster than hand-written CUDA**

[Ragan-Kelley 2012]





Stepping back: what is Halide?

- Halide is a DSL for helping expert developers optimize image processing code more rapidly Halide does not decide how to optimize a program for a novice programmer (ignoring the auto scheduler) Halide provides a small number of primitives for a programmer (that has strong knowledge of code

 - optimization) to rapidly express what optimizations the system should apply
 - parallel, vector, unroll, split, reorder, store at, compute at...
 - Halide compiler carries out the mapping of that strategy to a machine

Automatically generating Halide schedules

- good Halide schedules
 - Circa 2017...80+ programmers at Google write Halide
 - Very small number trusted to write schedules
- efficient schedules for the programmer [Mullapudi 2016, Adams 2019]
 - generated by the Halide autoscheduler for a complex image processing pipeline

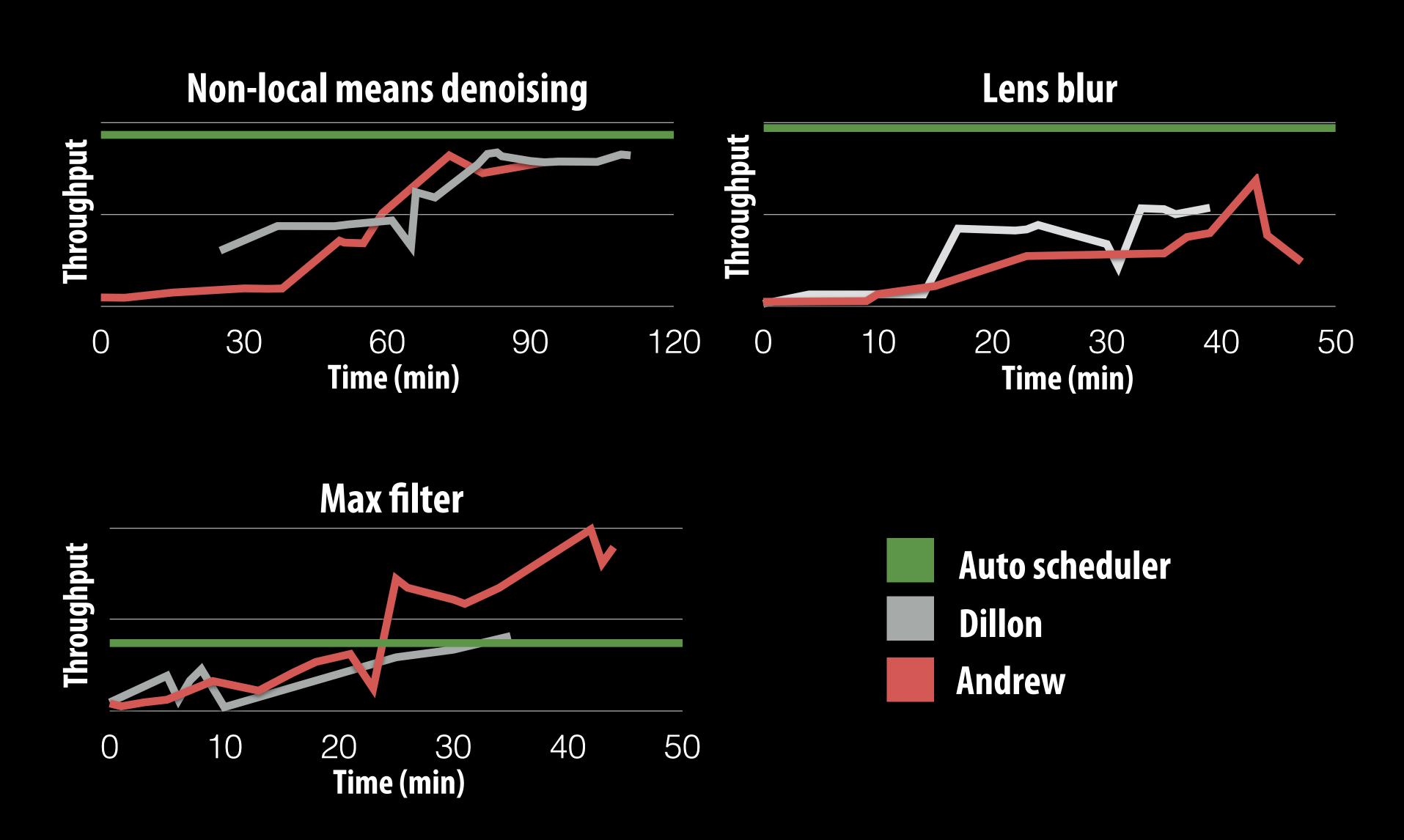
Problem: it turned out that very few programmers have the technical ability to write

Recent work: Halide compiler analyzes the Halide program to automatically generate

— As of Adams 2019, you'd have to work hard to manually author a schedule that is better than the schedule

Autoscheduling saves time for experts

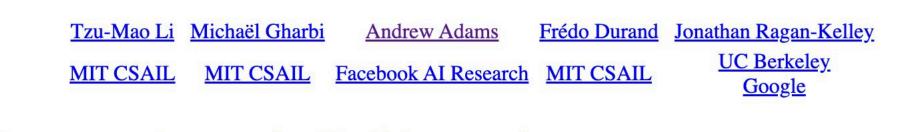
Early results from [Mullapudi 2016]

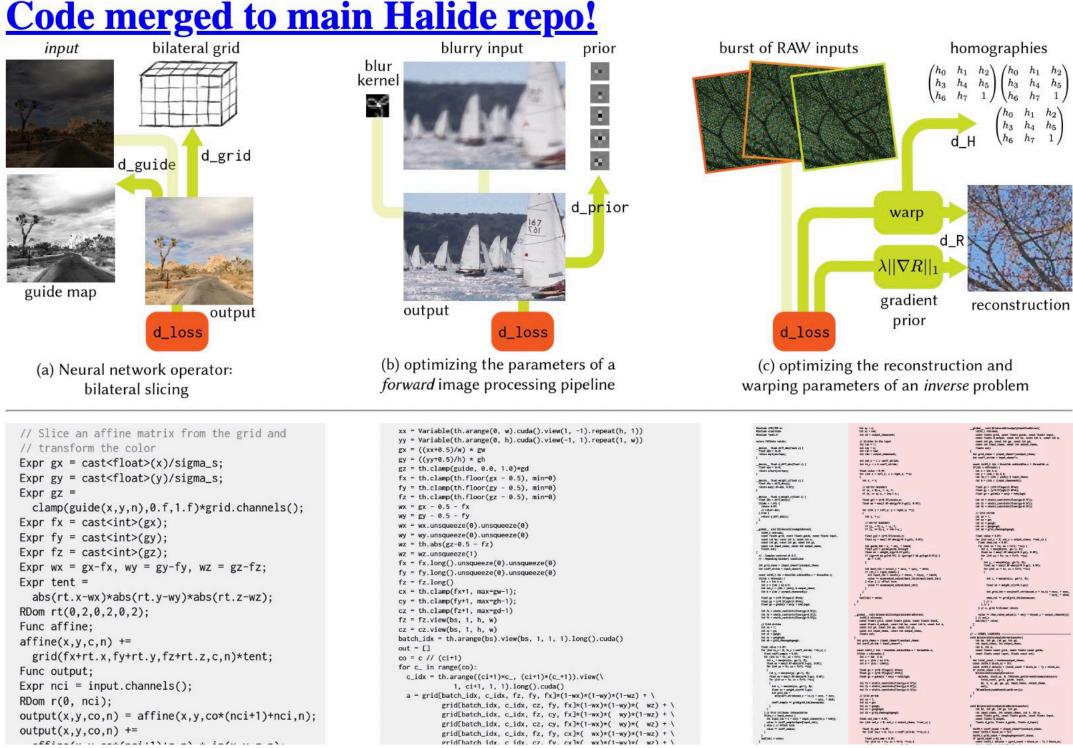


Halide extensions

[Li 2018]

Differentiable Programming for Image Processing and Deep Learning in Halide





[Anderson 2021] **Better GPU support**

Efficient Automatic Scheduling of Imaging and Vision **Pipelines for the GPU**

LUKE ANDERSON, Massachusetts Institute of Technology, USA ANDREW ADAMS, Adobe, USA KARIMA MA, Massachusetts Institute of Technology, USA TZU-MAO LI, Massachusetts Institute of Technology & University of California, San Diego, USA TIAN JIN, Massachusetts Institute of Technology, USA JONATHAN RAGAN-KELLEY, Massachusetts Institute of Technology, USA

We present a new algorithm to quickly generate high-performance GPU implementations of complex imaging and vision pipelines, directly from high-level Halide algorithm code. It is fully automatic, requiring no schedule templates or hand-optimized kernels. We address the scalability challenge of extending search-based automatic scheduling to map large real-world programs to the deep hierarchies of memory and parallelism on GPU architectures in reasonable compile time. We achieve this using (1) a two-phase search algorithm that first 'freezes' decisions for the lowest cost sections of a program, allowing relatively more time to be spent on the important stages, (2) a hierarchical sampling strategy that groups schedules based on their structural similarity, then samples representatives to be evaluated, allowing us to explore a large space with few samples, and (3) memoization of repeated partial schedules, amortizing their cost over all their occurrences. We guide the process with an efficient cost model combining machine learning, program analysis, and GPU architecture knowledge.

We evaluate our method's performance on a diverse suite of real-world imaging and vision pipelines. Our scalability optimizations lead to average compile time speedups of 49× (up to 530×). We find schedules that and the second second

first grid nos = 0.81; for (lat as = for as a far2) +tan) [

Influence on code generation for ML applications

Example: Apache TVM

Apache TVM

An End to End Machine Learning Compiler Framework for CPUs, GPUs and accelerators

□ Schedule Primitives in TVM

split

tile

fuse

reorder

bind

compute_at

compute_inline

compute_root

Summary

Reduction

Tuning Parameters of Thread Numbers

How to schedule the workload, say, 32x32 among the threads of one cuda block? Intuitively, it should be like t

```
num_thread_y = 8
num_thread_x = 8
thread_y = tvm.thread_axis((0, num_thread_y), "threadIdx.y")
thread_x = tvm.thread_axis((0, num_thread_x), "threadIdx.x")
ty, yi = s[Output].split(h_dim, nparts=num_thread_y)
tx, xi = s[Output].split(w_dim, nparts=num_thread_x)
s[Output].reorder(ty, tx, yi, xi)
s[Output].bind(ty, thread_y)
s[Output].bind(tx, thread_x)
```

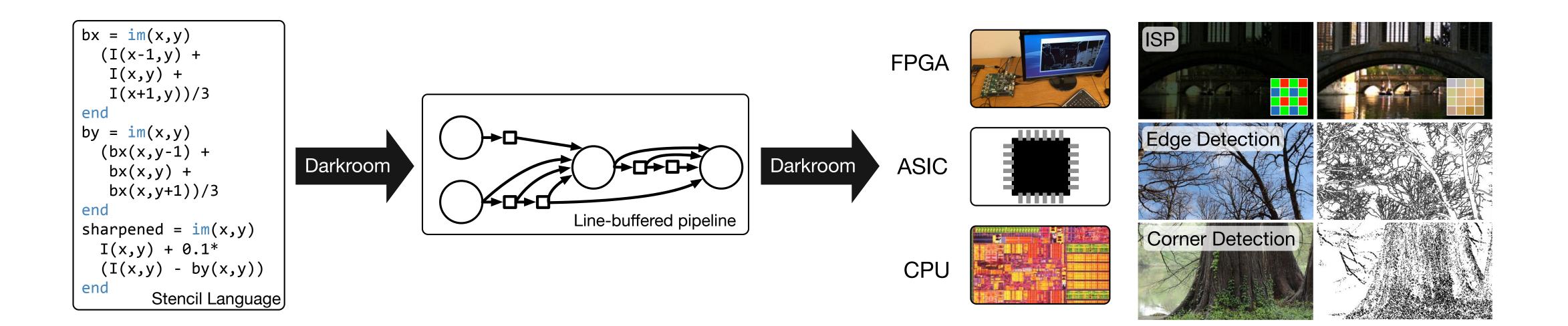
There are two parameters in the schedule: num_thread_y and num_thread_x. How to determine the optimal Below is the result with Filter = [256, 1, 3, 3] and stride = [1, 1]:

Case	Input	num_thread_y	num_thread_x
1	[1, 256, 32, 32]	8	32
2	[1, 256, 32, 32]	4	32
3	[1, 256, 32, 32]	1	32
4	[1, 256, 32, 32]	32	1

Many interesting observations from above results:

Darkroom/Rigel/Aetherling

Goal: directly synthesize ASIC or FGPA implementation of image processing pipelines from a high-level algorithm description (a constrained "Halide-like" language)



Goal: very-high efficiency image processing

