Review: diffusion-based image synthesis

Idea: iterative MCMC process to generate a sample x (an image) from distribution $p(x)$ of observed images

Forward diffusion: iterative add noise \[q(x_t|x_{t-1}) = \mathcal{N}(x_t; \sqrt{1-\beta_t}x_{t-1}, \beta_t I) \]
Review: diffusion-based image synthesis

Reverse: iteratively remove noise noise from random sample to obtain image from $p(x)$

$$x_{i+1} \leftarrow x_i + \epsilon \nabla_x \log p(x) + \sqrt{2\epsilon} \ z_i, \quad i = 0, 1, \cdots, T$$

$\mathcal{N}(0, 1)$

$x_0 \rightarrow x_1 \rightarrow x_{T-1} \rightarrow x_T$
Guided diffusion

- Assume we know $p(y \mid x)$ for random variables x and y.
 - Example: x is an image, y is a string describing the image
 - Given an image (x), infer a caption (y)

$$p(x \mid y) = p(x)p(y \mid x) / \int p(x)p(y \mid x)dx \quad \text{(Bayes Rule)}$$

Bayes for score function

$$\nabla_x \log p(x \mid y) = \nabla_x \log p(x) + \nabla_x \log p(y \mid x)$$

(Unguided score function)

(Prompt guidance)

Modify image x so that image is more likely [to come from the training set]

Modify image x to make the prompt a more likely description of the image
Controlling the output of diffusion models
img2img (enabling image-based guidance)

1. Start with a guide image (a target)
2. Add “small” amount of noise
3. Iteratively denoise to produce sample from $p(x)$

“Guide toward a visual target”
Other forms of guidance (not just text)
Inpainting (apply [new] prompt to a region)

User specifies mask for region of interest and text prompt for that region.

Image outside of region remains almost the same.
Use change in text prompt to trigger change in image

“A basket full of apples.”

Source image

apples \rightarrow cookies

apples \rightarrow oranges

apples \rightarrow chocolates

apples \rightarrow kittens

“arrest a knot of butterflies on a flower.”

Source image

flower \rightarrow bread

butterfly \rightarrow bird

butterfly \rightarrow snail

butterfly \rightarrow drone
“Masks” come from learned attention

- Use masks from original generation process to constrain what pixels can change after prompt is edited
Leveraging layer information
Prompt + a rgba per layer

- Ginger
- Edamame
- Rice
- Sushi
- Bento box
A bento box with rice, edamame, ginger, and sushi.
Leveraging layer information

“A bento box with rice, edamame, ginger, and sushi.”
Using text to describe how to change the image

“Swap sunflowers with roses”

“Add fireworks to the sky”

“Replace the fruits with cake”

“What would it look like if it were snowing?”

“Turn it into a still from a western”

“Make his jacket out of leather”
Performance/efficiency optimizations
Challenge

- Diffusion is an iterative process:
 - Many steps to convergence
 - Each step involves evaluating up to two diffusion models

Recall score function: \[\nabla_x \log p(x) + \nabla_x \log p(y \mid x) \]

Ways to improve inference efficiency

- Diffuse in latent space
- Superresolution techniques
- Learn to take bigger steps
Superresolution

- Diffusion produces low-resolution image
- Then subsequent models perform neural superresolution
 - Other diffusion models take low res to high res
 - Other other super resolution technique

Cascade of diffusion models

Bicubic upsampling vs. two forms of learned upsampling
Perform diffusion in latent space

- **Main idea:** perform diffusion in the lower dimension latent space of images, not in high-dimensional pixel space
- **After diffusing a latent representation,** “decode” latent to final image

If this latent representation is compact, then it is a compressed representation of the input image

Figure credit: https://medium.com/@birla.deepak26/autoencoders-series-daad78df9350
Perform diffusion in latent space

- Implications to both training efficiency and inference efficiency

- Per-pixel representations, can represent data well, but require significant training to learn good models

- "Sweet spot": learns good model + trains quickly

- Latent representation too compressed (cannot represent data well)
Learn to take larger steps

- Given a diffusion model, learn a new (second) diffusion model that reproduces multiple steps of the diffusion process.
- This is a form of “model distillation”: training a “student” model to emulate the output of a teacher. Here, the teacher’s output is multiple steps of the diffusion process.

Prompt: “A beautiful castle, matte painting.”
Learn to take larger steps
Summary

- Diffusion-based generation produces high quality (“plausible”) image output
 - Step 1: get generation to produce output that models the training data well

- Step 2: ongoing research on
 - New ways to help users exert guide/control over the generation process
 - Improving the efficiency of diffusion model training/evaluation

- This line of work is a great example of many of the issues and concerns we’ve discussed in this class
 - Are we optimizing for the right metrics?
 - How to achieve high performance (through better algorithms, or systems techniques)
 - What are the implications of these technologies?