
Visual Computing Systems
Stanford CS348K, Spring 2023

Lecture 3:

The Camera Image
Processing Pipeline (Part II)

Stanford CS348K, Spring 2023

Theme of previous and this lecture…
The pixels you see on screen are quite di!erent than the values recorded by the sensor in a modern digital camera.
Computation (computer graphics, image processing, and ML) is a fundamental aspect of producing high-quality
photographs.

Computation

Sensor
output

(“RAW”)

Beautiful image that impresses
your Instagram friends

Stanford CS348K, Spring 2023

Picking up from last time…

Stanford CS348K, Spring 2023

Demosiac
Produce RGB image from mosaiced input image
Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors)
More advanced algorithms:
- Bicubic interpolation (wider "lter support region… may overblur)
- Good implementations attempt to "nd and preserve edges in photo

Image credit: Mark Levoy

Stanford CS348K, Spring 2023

Demosaicing errors

What will demosaiced
result look like if this black
and white signal was
captured by the sensor?

Stanford CS348K, Spring 2023

Demosaicing errors

(Visualization of signal and
Bayer pattern)

Stanford CS348K, Spring 2023

Demosaicing errors

No red measured.

Interpolation of green
yields dark/light
pattern.

Stanford CS348K, Spring 2023

Why color fringing? What will demosaiced result
look like if this black and
white signal was captured
by the sensor?

Stanford CS348K, Spring 2023

Why color fringing?

(Visualization of
signal and Bayer
pattern)

Stanford CS348K, Spring 2023

Demosaicing errors
Common di#cult case: "ne diagonal black and white stripes
Result: moire pattern color artifacts

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

RAW data
from sensor

RGB result after
demosaic

Stanford CS348K, Spring 2023

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from grayY’

Cb

Cr

Image credit: Wikipedia

Conversion matrix from R’G’B’ to Y’CbCr:

“Gamma corrected” RGB
(primed notation indicates perceptual (non-linear) space)
We’ll describe what this means this later in the lecture.

Y’CbCr color space
Colors are represented as point in 3-space
RGB is just one possible basis for representing color
Y’CbCr separates luminance from hue in representation

Stanford CS348K, Spring 2023

Example: compression in Y’CbCr

Original picture of Kayvon

Stanford CS348K, Spring 2023

Contents of CbCr color channels downsampled by a factor of 20 in each dimension
(400x reduction in number of samples)

Example: compression in Y’CbCr

Stanford CS348K, Spring 2023

Full resolution sampling of luma (Y’)

Example: compression in Y’CbCr

Stanford CS348K, Spring 2023

Reconstructed result
(looks pretty good)

Example: compression in Y’CbCr

Stanford CS348K, Spring 2023

Better demosaic
Convert demosaic’ed RGB value to YCbCr
Low-pass "lter (blur) or median "lter CbCr channels
Combine "ltered CbCr with full resolution Y from sensor to get RGB

Trades o! spatial resolution of chroma information to avoid objectionable color fringing

Stanford CS348K, Spring 2023

White balance
Adjust relative intensity of rgb values (goal: make neutral tones in scene appear neutral in image)

The same “white” object will generate di!erent sensor response when illuminated by di!erent spectra. Camera needs to
infer what the lighting in the scene was.

output_pixel = white_balance_coeff * input_pixel
// note: in this example, white_balance_coeff is vec3
// (adjusts ratio of red-blue-green channels)

Image credit: basedigitalphotography.com

Stanford CS348K, Spring 2023

White balance example

Stanford CS348K, Spring 2023

White balance example

Stanford CS348K, Spring 2023

White balance example

Stanford CS348K, Spring 2023

White balance algorithms
White balance coe#cients depend on analysis of image contents

- Calibration based: get value of pixel of “white” object: (rw, gw, bw)
- Scale all pixels by (1/rw, 1/gw, 1/bw)

- Heuristic based: camera must guesse which pixels correspond to white objects in scene
- Gray world assumption: make average of all pixels in image gray
- Brightest pixel assumption: "nd brightest region of image, make it white ([1,1,1])

▪ Modern white-balance algorithms are based on learning
correct scaling from many “good photograph” examples
- Create database of images for which good white balance

settings are known (e.g., manually set by human)
- Learn mapping from image features to white balance settings
- When new photo is taken, use learned model to predict good

white balance settings

Scale r,g,b values so
these pixels are close
to (1,1,1)

Stanford CS348K, Spring 2023

Denoising

Denoised

Original

Stanford CS348K, Spring 2023Image credit: https://www.colorexpertsbd.com/blog/how-to-"x-blurry-photos-induced-by-camera-shake-in-photoshop

Low light conditions need long exposure…
blur due to camera shake

Stanford CS348K, Spring 2023

Low light photo: many regions underexposed
(short exposure) to avoid blur + some regions
overexposed

Stanford CS348K, Spring 2023

Brightened image to see detail in dark regions,
notice noise in dark regions

Stanford CS348K, Spring 2023

Attempt to denoise… splotchy e!ect remains

Stanford CS348K, Spring 2023

Long exposure: walking people are blurred…

Stanford CS348K, Spring 2023

Long exposure: walking people are blurred…

Stanford CS348K, Spring 2023

Also: still signi"cant noise in
dark regions

Stanford CS348K, Spring 2023

Reduce noise via image processing: denoising via downsampling

Downsample via
point sampling

(noise remains)

Downsample via averaging

Noise reduced

Like a smaller number of
bigger pixels!

Stanford CS348K, Spring 2023

Discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image
(the result of convolving f with input image I)

input image"lter

Consider a that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1 i, j 1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “"lter weights”, “"lter kernel”)

Stanford CS348K, Spring 2023

Simple 3x3 box blur in C code
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

For now: ignore boundary pixels and
assume output image is smaller than
input (makes convolution loop bounds
much simpler to write)

Stanford CS348K, Spring 2023

7x7 box blur
Original

Blurred

Stanford CS348K, Spring 2023

Gaussian blur
Obtain "lter coe#cients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

▪ Produces weighted sum of neighboring pixels (contribution
falls o! with distance)
- In practice: truncate "lter beyond certain distance for e#ciency

Note: this is a 5x5 truncated Gaussian "lter

Stanford CS348K, Spring 2023

7x7 gaussian blur
Original

Blurred

Stanford CS348K, Spring 2023

3x3 sharpen "lter
Original

Sharpened

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5

Stanford CS348K, Spring 2023

Median "lter

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 output[j*WIDTH + i] =
 // compute median of pixels
 // in surrounding 5x5 pixel window
 }
}

▪ Replace pixel with median of its neighbors
- Useful noise reduction "lter: unlike gaussian blur, one bright pixel

doesn’t drag up the average for entire region

▪ Not linear: "lter weights are 1 or 0 (depending on image
content)

▪ Basic algorithm for NxN support region:
- Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel
- Can you think of an O(N2) algorithm? What about O(N)?

Stanford CS348K, Spring 2023

Bilateral "lter

Example use of bilateral "lter: removing noise while preserving image edges

Original Processed

Stanford CS348K, Spring 2023

Bilateral "lter

The bilateral "lter is an “edge preserving” "lter: down-weight contribution of pixels on the “other side” of strong edges. f

(x) de"nes what “strong edge means”

Spatial distance weight term f (x) could itself be a gaussian

- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity di!erence. (non-linear "lter: like the
median "lter, the "lter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on di!erence
in input image pixel values

For all pixels in support region
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Wp =
X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Normalization

Stanford CS348K, Spring 2023

Bilateral "lter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral "lter

Stanford CS348K, Spring 2023

Better denoising idea: merge sequence of captures

Long exposure: reduces noise (acquires more light), but introduces blur (camera shake or scene
movement)
Short exposure: sharper image, but lower signal/noise ratio
Idea: take sequence of short full-resolution exposures, but align images in software, then
merge them into a single sharp image with high signal to noise ratio

Algorithm used in Google Pixel Phones [Hasino! 16]

Stanford CS348K, Spring 2023

Align and merge algorithm
For each image in burst, align to reference frame (use sharpest photo as reference
frame)
-Compute optical $ow "eld aligning image pair

Simple merge algorithm: warp images according to $ow, and sum
More sophisticated techniques only merge pixels where con"dence in alignment is
high (tolerate noisy reference pixels when alignment fails)

Image pair

Reference

Frame to align

Visualization of $ow

[Image credit: Hasino! 16]

Stanford CS348K, Spring 2023

Results of align and merge [Hasino! 16]

[Image credit: Hasino! 16]

Reference frame Temporal mean of
images in burst

(blurry)

Temporal mean
with alignment

Robust merge with
alignment

Fu
ll i

m
ag

e
Su

cc
es

sfu
l a

lig
nm

en
t

Al
ig

nm
en

t f
ai

lu
re

Stanford CS348K, Spring 2023

Saturated
pixels

Stanford CS348K, Spring 2023

Saturated pixels

Credit: P. Debevec

Stanford CS348K, Spring 2023

Global tone mapping
Measured image values (by camera’s sensor): 10-12 bits / pixel, but common image formats are 8-bits/pixel
How to convert 12 bit number to 8 bit number?

0

255

212

Allow many pixels to “blow
out” (detail in dark regions)

0

255

212

Allow many pixels to
clamp to black (detail

in bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Green

(a) (b)

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Blue

−5 −4 −3 −2 −1 0 1 2
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red (dashed), Green (solid), and Blue (dash−dotted) curves

(c) (d)

Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

7

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Green

(a) (b)

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Blue

−5 −4 −3 −2 −1 0 1 2
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red (dashed), Green (solid), and Blue (dash−dotted) curves

(c) (d)

Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

7

input value
ou

tp
ut

 va
lu

e

input value

ou
tp

ut
 va

lu
e

Stanford CS348K, Spring 2023

High dynamic range image (HDR)
Detail in dark and light images

Image credit: Wikipedia

Stanford CS348K, Spring 2023

Local tone adjustment

Improve picture’s aesthetics by locally adjusting
contrast, boosting dark regions, decreasing
bright regions
(no physical basis for this)

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

Weights

Combined image
(unique weights per pixel)

Image credit: Mertens 2007

Pixel values

Short Exposure Medium Exposure Long Exposure

Stanford CS348K, Spring 2023

Challenge of merging images

Four exposures (weights not shown)

Merged result (based on weight masks)
Notice heavy “banding” since absolute intensity

of di!erent exposures is di!erent

Merged result
(after blurring weight mask)

Notice “halos” near edges

Stanford CS348K, Spring 2023

Image blending
Consider a simple case where we want to blend two patterns:

Problem: not “smooth”

Slide credit: Efros

Stanford CS348K, Spring 2023

“Feather” the alpha mask
For a “smoother” look…

Iblend = ↵ Ileft + (1� ↵) Iright

<latexit sha1_base64="A/D9080pr+vxY/Nc4+grdPDr/MI=">AAACS3icbVA9SwNBFNyL3/ErammzGARFDXeiaCOINtpFMFHIhbC3eZcs7u0du+/EcNz/s7Gx80/YWChi4eajUOPAwjAzj/d2gkQKg6774hQmJqemZ2bnivMLi0vLpZXVuolTzaHGYxnr24AZkEJBDQVKuE00sCiQcBPcnff9m3vQRsTqGnsJNCPWUSIUnKGVWqXAjxh2dZRd5i0f4QEzO6naOT2hPpNJl1F/l45lJISY0x265e0NU9v/xrTodDFvlcpuxR2AjhNvRMpkhGqr9Oy3Y55GoJBLZkzDcxNsZkyj4BLyop8aSBi/Yx1oWKpYBKaZDbrI6aZV2jSMtX0K6UD9OZGxyJheFNhk/1zz1+uL/3mNFMPjZiZUkiIoPlwUppJiTPvF0rbQwFH2LGFcC3sr5V2mGUdbf9GW4P398jip71e8g8rh1UH59GxUxyxZJxtki3jkiJySC1IlNcLJI3kl7+TDeXLenE/naxgtOKOZNfILhalvN9C0Gw==</latexit>

Slide credit: Efros

Stanford CS348K, Spring 2023

E!ect of feather window size

“Ghosting” visible is feather window (transition) is too large
Slide credit: Efros

Stanford CS348K, Spring 2023

E!ect of feather window size

Seams visible is feather window (transition) is too small
Slide credit: Efros

Stanford CS348K, Spring 2023

What do we want
To avoid seams, transition window should be >= size of largest prominent feature

To avoid ghosting, transition window should be smaller than ~ 2X smallest prominent
feature

In other words, the largest and smallest features need to be within a factor of two for
feathering to generate good results

Intuition:
- Coarse structure of images (large features) should transition slowly between images
- Fine structure should blend quickly!

Slide credit: Efros, Guerzhoy

Stanford CS348K, Spring 2023

Downsample
Step 1: Remove high frequencies (aka blur)
Step 2: Sparsely sample pixels (in this example: every other pixel)

Stanford CS348K, Spring 2023

Downsample
Step 1: Remove high frequencies (convolution)
Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];

float weights[] = {1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)
 3/64, 9/64, 9/64, 3/64,
 3/64, 9/64, 9/64, 3/64,
 1/64, 3/64, 3/64, 1/64};

for (int j=0; j<HEIGHT/2; j++) {
 for (int i=0; i<WIDTH/2; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<4; jj++)
 for (int ii=0; ii<4; ii++)
 tmp += input[(2*j+jj)*(WIDTH+2) + (2*i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH/2 + i] = tmp;
 }
}

Stanford CS348K, Spring 2023

Upsample
Via bilinear interpolation of samples from low resolution image

Stanford CS248A, Winter 2023

Upsample
Via bilinear interpolation of samples from low resolution image

float input[WIDTH * HEIGHT];
float output[2*WIDTH * 2*HEIGHT];

for (int j=0; j<2*HEIGHT; j++) {
 for (int i=0; i<2*WIDTH; i++) {
 int row = j/2;
 int col = i/2;
 float w1 = (i%2) ? .75f : .25f;
 float w2 = (j%2) ? .75f : .25f;

 output[j*2*WIDTH + i] = w1 * w2 * input[row*WIDTH + col] +
 (1.0-w1) * w2 * input[row*WIDTH + col+1] +
 w1 * (1-w2) * input[(row+1)*WIDTH + col] +
 (1.0-w1)*(1.0-w2) * input[(row+1)*WIDTH + col+1];
 }
}

Stanford CS348K, Spring 2023

Gaussian pyramid

G0 = image

G1 = down(G0)

G2 = down(G1)

Each image in pyramid contains increasingly low-pass "ltered signal

down() = downsample operation

Stanford CS348K, Spring 2023

Gaussian pyramid

G0

Stanford CS348K, Spring 2023

Gaussian pyramid

G1

Stanford CS348K, Spring 2023

G2

Gaussian pyramid

Stanford CS348K, Spring 2023

Gaussian pyramid

G3

Stanford CS348K, Spring 2023

Gaussian pyramid

G4

Stanford CS348K, Spring 2023

Gaussian pyramid

G5

Stanford CS348K, Spring 2023

Laplacian pyramid

G0

G1 = down(G0)

L0 = G0 - up(G1)
[Burt and Adelson 83]

Each (increasingly numbered) level in Laplacian pyramid
represents a band of (increasingly lower) frequency
information in the image

Stanford CS348K, Spring 2023

Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

Stanford CS348K, Spring 2023

Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

L2 = G2 - up(G3)

L3 = G3 - up(G4)
L4 = G4

Question: how do you reconstruct original image
from its Laplacian pyramid?

Stanford CS348K, Spring 2023

L0 = G0 - up(G1)

Laplacian pyramid

Stanford CS348K, Spring 2023

L1 = G1 - up(G2)

Laplacian pyramid

Stanford CS348K, Spring 2023

L2 = G2 - up(G3)

Laplacian pyramid

Stanford CS348K, Spring 2023

L3 = G3 - up(G4)

Laplacian pyramid

Stanford CS348K, Spring 2023

L4 = G4 - up(G5)

Laplacian pyramid

Stanford CS348K, Spring 2023

L5 = G5

Laplacian pyramid

Stanford CS348K, Spring 2023

Gaussian/Laplacian pyramid summary
Gaussian and Laplacian pyramids are image representations where each pixel maintains
information about frequency content in a region of the image

Gi(x,y) — frequencies up to limit given by i

Li(x,y) — frequencies added to Gi+1 to get Gi

Notice: to boost the band of frequencies in image around pixel (x,y), increase coe#cient
Li(x,y) in Laplacian pyramid

Stanford CS348K, Spring 2023

Use of Laplacian pyramid in local tone mapping
Compute weights for all Laplacian pyramid levels
Merge pyramids (image features) not image pixels
Then “$atten” merged pyramid to get "nal image

Stanford CS348K, Spring 2023

Merging Laplacian pyramids

Four exposures (weights not shown)

Merged result
(based on multi-resolution pyramid merge)

Merged result
(after blurring weight mask)

Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?

Stanford CS348K, Spring 2023

Summary: simpli"ed image processing pipeline

Correct pixel defects
Align and merge (to create high signal to noise ration RAW image)
Correct for sensor bias (using measurements of optically black pixels)
Vignetting compensation
White balance
Demosaic
Denoise
Gamma Correction (non-linear mapping)
Local tone mapping
Final adjustments sharpen, "x chromatic aberrations,

 hue adjust, etc.

(10-12 bits per pixel)
1 intensity value per pixel
Pixel values linear in energy

3x10 bits per pixel
RGB intensity per pixel
Pixel values linear in energy

3x8-bits per pixel
Pixel values perceptually linear

Stanford CS348K, Spring 2023

Acknowledgements
Thanks and credit for slides to Ren Ng and Marc Levoy

