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Hardware acceleration of DNN inference/trainin
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Al chipmaker Graphcore raises $222M at a $2.77B

o
Investment in Al hardware o s s PO i
Ingrid Lunden @ingridlunden / 10:59 PM PST « December 28, 2020 =) Gommerit

SambaNova Systems Raises $676M in Series D, Surpasses $5B
Valuation and Becomes World’s Best-Funded Al Startup

SoftBank Vision Fund 2 leads round backing breakthrough platform that delivers unprecedented Al capability
and accessibility to customers worldwide

Groq Closes $300 Million Fundraise

April 13, 2021 09:00 AM Eastern Daylight Time o it y SO AM i o
PALO ALTO, Calif.--(BUSINESS WIRE)--SambaNova Systems, the company building the industry’s mo: i
) 7 o ) ) pe u . . . . . " '
hardware and services to run Al applications, today announced a $676 million Series D funding round | Artificial |nte|||gence Ch|p Startup Cerebras System s claims it has the "world's With Investment Co-Led by Tiger Global Management and D1 Capital, Groq Is Well
Fund 2*. The round includes additional new investors Temasek and GIC, plus existing backers including " . . L 4 Capitalized for Accelerated Growth
managed by BlackRock, Intel Capital, GV (formerly Google Ventures), Walden International and WRVI. faSteSt AI Su pe rcomputer, thankS tO |tS |arge Wafer Scale Englne processor
MOUNTAIN VIEW, Calif., April 14, 2021 /PRNewswire/ -- Groq Inc., a leading innovator in

compute accelerators for artificial intelligence (Al), machine learning (ML) and high

This Series D brings SambaNova'’s total funding that comes Wlth 400’000 ComPUte cores.

and rockets its valuation to maore than S5 billion. performance computing, today announced that it has closed its Series C fundraising. Groq

Aanc Nis rouna greatly Ace ales ha . . . closed $300 million in new funding, co-led by Tiger Global Management and D1 Capital, with
missicn” Now the best-funded Al systems and services pl The LOS AItOS, Callf.'based Star’[up |ntr0duced ltS CS'1 System at the : " : i

world, SambaNova will use its latest injection to

W Tweet this leqacy competitors as it continues o shatter e SUPErcomputing conference in Denver last week after raising more than $200
hardware and software currently on the market = myjlliony jn funding from investors, most recently with an $88 million Series D

solutions for private and public sectors mare acc

o | S round that was raised in November 2018, according to Andrew Feldman, the ™
“We're here to revolutionize the Al market, and this round greatly accelerates that mission,” said Rodric . .
founder and CEQ. “Traditional CPU and GPU architectures have reached their computational limits. To founder and CEO Of Cerebras WhO was preV|OUSIy an executlve at AMD

participation from The Spruce House Partnership and Addition, the venture firm founded

by Lee Fixel. This round brings Grog's total funding to $367 million, of which $300 million

has been raised since the second-half of 2020, a direct result of strong customer

endorsement since the company launched its first product.

to solve humanity’s greatest technology challenges, a new approach is needed. We've figured out that
to see a wealth of prudent investors validate that.”

Groq logo

SambaNova's flagship offering is Dataflow-as-a-Service (DaaS), a subscription-based, extensible Al services platform designed S imdge rdchia: Crephicor

to jump-start enterprise-level Al initiatives, augmenting arganizations™ Al capabilities and accelerating the work of existing data

’ s - : - : Applications based on artificial intelligence — whether they are systems running autonomous services, platforms being used
centers, allowing the organization to focus on its business objectives instead of infrastructure.

in drug development or to predict the spread of a virus, traffic management for 5G networks or something else altogether —

require an unprecedented amount of computing power ta run. And today, one of the big names in the world of designing and

NVIDIA Market Cap

$400 ] P .
2014 - 2021 Intel Acquires Artificial Intelligence
w $350 .
Chipmaker Habana Labs
s $300
= Combination Advances Intel’s Al Strategy, Strengthens Portfolio of Al
2 $250 Accelerators for the Data Center
ke
_".j SANTA CLARA Calif., Dec. 16, 2019 - Intel Corporation today announced that it has acquired
5 %200 Habana Labs, an Israel-based developer of programmable deep learning accelerators for the
] data center for approximately $2 billion. The combination strengthens Intel's artificial
g $150 ‘\,J intelligence (Al) portfolio and accelerates its efforts in the nascent, fast-growing Al silicon
é N J market, which Intel expects to be greater than $25 billion by 2024,
< /\ 4
2 $100 A/J f/\/u‘/ “This acquisition advances our Al strategy, which is to provide customers with solutions to fit
}“ every performance need - from the intelligent edge to the data center,” said Navin Shenoy,
$50 f/J\'\r executive vice president and general manager of the Data Platforms Group at Intel. “More
> specifically, Habana turbo-charges our Al offerings for the data center with a high-performance
_,Nf/ training processor family and a standards-based programming environment to address evolving

Al workloads.”
2014 2016 2018 2020
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Two computer architecture reminders
(review, one more time)

Stanford CS348K, Spring 2023



Compute specialization = energy efficiency

m Rules of thumb: compared to high-quality C code on CPU...

m Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt

- Assuming code maps well to wide data-parallel execution and is compute bound

m Fixed-function ASIC ("application-specific integrated circuit”)
Clock and Data supply

- Can approach 100-1000x or greater improvement in perf/watt C‘;;;” 28%

- Assuming code is compute bound and p—
and is not floating-point math 6%

Instruction

supply
42%

Efficient Embedded Computing [Dally et al. 08]

[Figure credit Eric Chung]

[Source: Chung et al. 2010, Dally 08] Stanford (5348K, Spring 2023



Data movement has high energy cost

m Rule of thumb in modern system design: always seek to reduce amount of data movement in a computer

m “Ballpark” numbers
- Integerop:~1pJ*
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 p)

m Implications

- Reading 10 GB/sec from memory: ~1.6 watts
- Entire power budget for mobile GPU: ~1 watt
(remember phone is also running CPU, display, radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Machook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford (348K, Spring 2023



On-chip caches locate data near processing

Processors run efficiently when data is resident in caches

Caches reduce memory access latency *
Caches reduce the energy cost of data access

L1 cache
(32 KB)

Core 1

L2 cache
(256 KB)

L1 cache
(32 KB)

CoreN

L2 cache
(256 KB)

L3 cache
(8 MB)

* Caches also provide high bandwidth data transfer to CPU

38 GB/sec

<)

Memory
DDR4 DRAM

(Gigabytes)

Stanford CS348K, Spring 2023



Memory stacking locates memory near chip

Example:
NVIDIA A100 GPU

Up to 80 GB HMB2 stacked memory

2 TB/sec memory bandwidth

Also note: A100 has 40 MB L2 cache
(increased from 6.1 MB on V100)
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Improving hardware efficiency
for DNN operations

Stanford CS348K, Spring 2023



Efficiency estimates *

m Estimated overhead of programmability (instruction stream, control, etc.)

- Half-precision FMA (fused multiply-add) 2000%
- Half-precision DP4 (vec4 dot product) 500%
- Half-precision 4x4 MMA (matrix-matrix multiply + accumulate) 7%

NVIDIA Xavier (SoC for automotive domain)

Features a Computer Vision Accelerator (CVA), a custom module for deep
learning acceleration (large matrix multiply unit)

~ 2x more efficient than NVIDIA V100 MMA instruction despite being
highly specialized component. (includes optimization of gating
multipliers if either operand is zero)

* Estimates by Bill Dally using academic numbers, SysML talk, Feb 2018 Stanford CS348K, Spring 2023
anfor s OPring



Ampere GPU SM (A100)

Each SM core has:
64 fp32 ALUs (mul-add)

32int32 ALUs
4 “tensor cores”

Execute 8x4 x 4x8 matrix mul-add instr
A x B + C for matrices A,B,(
A, B stored as fp16, accumulation with fp32 C

There are 108 SM cores in the GA100 GPU:;
6,912 fp32 mul-add ALUs

432 tensor cores
1.4 GHz max clock
=19.5 TFLOPs fp32

+ 312 TFLOPs (fp16/32 mixed) in tensor cores

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64
TENSOR CORE
INT32INT32 FP32 FP32 FP64
INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST

- LoinstructionCache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64
TENSOR CORE
INT32 INT32 FP32 FP32 FP64
INT32 INT32 FP32 FP32 FP64

INT32INT32 FP32 FP32 FP64

INT32 INT32 FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST ST ST

L1 Instruction Cache

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32  FP64

TENSOR CORE
FP32 FP32 FP64
FP32 FP32 FPe64

FP32 FP32 FPe4

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32 FP64
FP32 FP32 FP64
FP32 FP32  FP64
FP32 FP32 FP64

TENSOR CORE
FP32 FP32  FP64
FP32 FP32 FP64

FP32 FP32  FP64

FP32 FP32 FP64

LD/ LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST ST SFU

192KB L1 Data Cache / Shared Memory

Tex

Tex

Single instruction to perform
2x8x4x8 FP16 + 8x8 TF32 ops

The NVIDIA tensor core approach is
an evolutionary design: add DNN-
specificinstructions to a traditional
programmable processor

(“evolve, don't replace”)

Stanford (5348K, Spring 2023



Google TPU
(version 1)

Stanford CS348K, Spring 2023



Google’s TPU (v1)

Figure credit: Jouppi et al. 2017

14 GiB/s

PCle Gen3 x16
Interface

—

14 GiB/s

=)

Off-Chip I/O
Data Buffer

Computation

- Control

Host Interface

DDR3 DRAM Chips

O 30 GiB/s
30 GiB/s

14 GiB/s >[

10 GiB/s

=]
£
D

= —

DDR3-2133
Interfaces

A

Unified
Buffer
(Local
Activation
Storage)

4

AN

Systolic
Data
Setup

167
GiB/s

k 167 GiB/s

> |

Weight FIFO
(Weight Fetcher)

30 GiB/s

Matrix Multipl

(64K per cycle)

Accumulators

Activation

Normalize / Pool
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TPU area proportionality

Local Unified Buffer for

Matrix Multiply Unit

|:| Off-Chip /0
[:l Data Buffer
I:I Computation

D Control

Figure credit: Jouppi et al. 2017

Activations (256x256x8b=64K MA®Z)
(96Kx256x8b = 24 MiB) 24%
29% of chip
D Host Accumulators g
i Interf. 2% (4Kx256x32b =4 MiB) 6% ||
port Control 2% Activation Pipeline 6% | port
s PCle o | iy
"7 Interface 3% Misc. I/O 1%

Arithmetic units ~ 30% of chip

Key instructions:
read host memory
write host memory
read weights

r Note low area footprint of control

matrix_multiply / convolve

activate

Stanford CS348K, Spring 2023



Systolic array

(matrix vector multiplication example: y=Wx)

PE
w00

PE
w01

PE
w02

PE
w03

Weights FIFO

PE

w10

PE

wilil

PE
w12

PE

w13

+

PE

w20

PE

w21

PE
w22

PE

w23

+

Accumulators (32-bhit)

PE

w30

PE

w31

PE
w32

PE

w33
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Systolic array

(matrix vector multiplication example: y=Wx)

x0

PE
w00

PE
w01

PE
w02

PE
w03

Weights FIFO

PE

w10

PE

wilil

PE
w12

PE

w13

+

PE

w20

PE

w21

PE
w22

PE

w23

+

Accumulators (32-bhit)

PE

w30

PE

w31

PE
w32

PE

w33

Stanford CS348K, Spring 2023



Systolic array

(matrix vector multiplication example: y=Wx)

X1

PE
w00

x0 w00

PE
w01

PE
w02

PE
w03

Weights FIFO

PE

w10

PE

wilil

PE
w12

PE

w13

+

PE

w20

PE

w21

PE
w22

PE

w23

+

Accumulators (32-bhit)

PE

w30

PE

w31

PE
w32

PE

w33
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Systolic array

(matrix vector multiplication example: y=Wx)

X2

PE
w00

PE
w01

x0 w00 +

X1

X1:-w01

PE
w02

PE
w03

Weights FIFO

PE

w10

x0:w10

PE

wilil

PE
w12

PE

w13

+

PE

w20

PE

w21

PE
w22

PE

w23

+

Accumulators (32-bhit)

PE

w30

PE

w31

PE
w32

PE

w33
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Systolic array

(matrix vector multiplication example: y=Wx)

X3

PE
w00

PE
w01

PE
w02

X0 w00 +
X1:-w01 +
X2 w02 +

PE
w03

+

X2

Weights FIFO

PE

w10

PE X1
w1l

x0:-w10 +
X1-wl1

PE
w12

PE

w13

+

PE

w20

x0 w20

PE

w21

PE
w22

PE

w23

+

Accumulators (32-bhit)

PE

w30

PE

w31

PE
w32

PE

w33
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Systolic array

(matrix vector multiplication example: y=Wx)

PE
w00
PE
w01
PE
w02
PE X3
w03
X0 w00 +
x1-w01+
X2 = w02 +
+ x3 w03

Weights FIFO
PE
w10
PE
wil
PE xz
w12
X0 w10 +
X1-w11+
X2 W12 +
PE
w13
+

PE

w20

PE

X1

w21

PE

X0 w20+
X1:=w21

w22

PE

w23

+

Accumulators (32-bhit)

PE
w30

x0 w30

PE

w31

PE
w32

PE

w33
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Systolic array

(matrix matrix multiplication example: Y=WX)

Notice: need multiple 4x32bit
accumulators to hold output columns

x31

X22

x13

’E %30
w00

x30 - w00

PE 1 x21
w01

x20 w00 +
x21 w01

- x12
w02

x10 w00 +
X171 w01+
x12 w02 +

PE 1 %03

x00 - w00 +
x01 - w01+
x02 w02 +

+ x03 -w03

Weights FIFO
PE 1 x20 | PE | x10
w10 w20
x20 w10 x10 w20
PE X11 PE x01
wilil w21
Xx10 w20 + x00 w20 +
x11:w21 X071 w21

PE x02 PE
w12 w22

x00 w20 +
x01 w21+
x02 - w22 +
PE PE

w13 w23

+ +

Accumulators (32-bhit)

PE
w30

x00 - w30

PE

w31

PE
w32

PE

w33

Stanford CS348K, Spring 2023



Building larger matrix-matrix multiplies
Example: A = 8x8, B=8x4096, (=8x4096

4096 4096

C A B

Assume 4096 accumulators

Stanford CS348K, Spring 2023



Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4 4096
C A B

Assume 4096 accumulators

Stanford CS348K, Spring 2023



Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096

C

Assume 4096 accumulators

Stanford CS348K, Spring 2023



Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, (=8x4096

4096 4 4096
4 4 4
C A B

Assume 4096 accumulators

Stanford CS348K, Spring 2023



TPU Performance/Watt

B crPu/cru @ TPu/cPU B TPU/GPU |l TPUYCPU TPU'/GPU
196
n:. 200
O
3
& 150
s
m
é 100 86 83
Qs 69
&
3 41
§ 50 31 34 =
B 1 -2., I 2.1I . 1.78m 2.9
3 -
T 0
&’ Total Perf./Watt GM Total Perf./Watt WM Incremental Incremental
Perf./Watt GM Perf./Watt WM
GM = geometric mean over all apps total = cost of host machine + CPU
WM = weighted mean over all apps incremental = only cost of TPU

Figure credit: Jouppi et al. 2017 Stanford CS348K, Spring 2023



Alternative scheduling strategies

Psum = partial sum

Global Buffer TPU (v1) was “weight stationary”:
weights kept in register at PE
each PE gets different pixel

partial sum pushed through array (array has one output)

“Output stationary”:

each PE computes one output

push input pixel through array

each PE gets different weight

each PE accumulates locally into output

(b) Output Stationary

Global Buffer Takeaway: many DNN accelerators can be characterized by the data
flow of input activations, weights, and outputs through the machine.
(Just different “schedules™)

(c) No Local Reuse

Figure credit: Sze et al. 2017 Stanford (S348K, Spring 2023



Input stationary design (dense 1D conv example)

(matrix vector multiplication example: y=Wx) Stream
Order Weight
Assume: 6 w2
. 5  w(1,1)
1D lf‘P“t/ output 4 w(l,0) Stream of weights
3-wide filters 3 w02 (2 1D filters of size 3)
2 output channels (K=2) 2 ol
1  w(0,0)
v | v :
PE0 PE 1 Processing
- o elements
() (1) (implement multiply)
SN
out(0i-1)  out(0i) .~ out(0i+1)  out(0,i+2) Accumulators

4

6 ) (implement +=)

out(1,i-1) out(1,i) out(1,i+1)  out(1,i+2)

Stanford CS348K, Spring 2023



Scaling up (for training big models)

Example: GPT-3 language model

\\ 10 Very big models +

5 ‘ =

: More training
| 10

: N .
e\

4 ‘ | Better accuracy

O

N : LA
2 R 10,
E' R, ) g
S 3 RN -
.(“'-"UT' \\\‘N - 10 =
O RO =
© :\\\ n
- A 7
N 10
2 6
10
| =2 57.C-0048 Power law effect:
15 | 10° exponentially more compute to take
10° 10"  10° 10 10° 10" constant step in accuracy

Compute (PetaFLOP/s-days)

(Amount of training — note this is log scale) |
Stanford CS348K, Spring 2023



TPU v3 supercomputer

TPU v3 board One TPU v3 board
4TPU3 chips TPUs connected by
2D Torus interconnect
(g — o~ ——

r

GPU———TPU~,I—-—+----—E
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= —————— ——
N —————

r

r

3
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Additional examples of “Al chips”

Key ideas:
1. Huge numbers of compute units

2. Huge amounts of on-chip storage to maintain
input weights and intermediate values

Stanford CS348K, Spring 2023
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Cerebras Wafer-Scale Engine (WSE)

™ . . . . Chip size 46,225 mm?
- Tightly interconnected tile of chips (entire wafer)
S e i ;E" Many more transistors (1.2T) than largest single chips Cores 400,000
~ (Example: NVIDIA A100 GPU has 54B)
pittmititeiciiie . - On chi '
i . = el 18 Gigabytes
| s ;:: Memory | 9 Petabytes/S
Fabri :
¥ andeidth 100 Petabits/S

Compilation of DNN to platform involves “laying out” DNN layers in space on processing grid.

8 8 8 R R B B | B B B B B
" I c 8 S R R R B B 0 B B B B B
eural networ 8 8 R R R B B | B B B B B
8 8 8 R R B B | B B B B B
8 8 8 R R B B | B B B B B
8 8 R R R R B F B B B B B
8 8 8 R R B B | B B B 8 B
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SambaNova reconfigurable dataflow unit

Again, notice tight integration of storage and compute

ls
[ |

Stanford (S348K, Spring 2023



Another example of spatial layout

Weights Weights

/ Sample Pool . Conv 2 . Norm . Sum

Notice: inter-layer communication occurs through on-chip interconnect, not through off-chip memory.

T 1|
(Sqmple 6) We|ghts Weights PCU
‘ PMU PMU

Norm

DDR Memory
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Exploiting sparsity
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Architectural tricks for optimizing for sparsity

m Consider operation: result +=x*y
m If hardware determines the contents of register x or register y is zero...
- Don't fire ALU (save energy)
- Don’t move data from register file to ALU (save energy)
- ButALU s idle (computation doesn’t run faster, optimization only saves energy)

1 B Density (IA) 1
M Density (W —_
0.8 v (W) 0.8 o
E A Work (# of multiplies) =
< 0.6 0.6 g
> ©
= 04 04 =
7 X
0 0

pool proj

3x3 reduce
5x5 reduce

pool_proj
3x3 reduce
5x5 reduce

inception_3a inception_5b

(b) GoogLeNet Stanford CS348K, Spring 2023



Model compression

- Step 1: sparsify weights by truncating weights with small values to zero
- Step 2: compress surviving non-zeros

- Cluster weights via k-means clustering

- Compress weights by only storing index of assigned cluster (Ig(k) bits)

[Figure credit: Han ICLR16]

0.05

weights

(32 bit float)

-0.98

1.48

-0.91

-0.14

-1.08

0.09

-1.03

1.53

1.49

cluster

=

[Han etal. ]

cluster index
(2 bit uint)

0

2

centroids

2:

1.50

.1 0.00

| =71.00
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Sparse, weight-sharing fully-connected layer

n—1 Fully-connected layer:
b; = ReLU Z Wija; Matrix-vector multiplication of activation
J=0 vector a against weight matrix W

Sparse, weight-sharing representation:
lij = index for weight W;;

S[] = table of shared weight values

Xi = list of non-zero indices in row i

Y = list of non-zero indices in vector a

Note: activations are /

sparse due to RelLU

Stanford CS348K, Spring 2023



Sparse-matrix, vector multiplication

Custom hardware for decode and evaluate sparse, compressed DNNs

Represent weight matrix in compressed sparse column (CSC) format to
exploit sparsity in activation vector:

for each nonzero a_j in a:
for each nonzero M_ij in column M_j:
b i+=Mij * a j

More detailed version (assumes (SC matrix):

intl6* a_values; for j=0 to length(a):
PTR* M_j_start; if (a[j] == @) continue;
int4* M_j values; col _values = M_j values[M_j _start[j]];
int4* M _j indices; col indices = M_j indices[M j start[j]l];
intl6* lookup; col nonzeros = M_j start[j+1] - M_j start[j];
for i=0, i _count=0 to col _nonzeros:
i += col indices[i count];

b[i] += lookup[col values[i count]] * a_values[j];

Stanford CS348K, Spring 2023



Parallelization of sparse-matrix-vector product

Stride rows of matrix across processing elements

Output activations strided across processing elements
a (0 0 a2 0 a4 as 0 a7)

—

X b

PEQ /wo,oi 0 iwo,zi 0 iw0,4iw0,5iwo,6i 0 \ ( bo\ / bo \
PE1 0 wi1, 0 jwiz, 0, 0 jwig, O b1 b1
PE2[ 0 1 0 1wazr 0 1wgar 0 1 0 1wyy —by 0
PE3 0 'ws1;, 0 1 0 0O 'lwes! O ! O b3 b3
0 wg1r 0 + 0 1wgqr 0 0 0 1 O —by 0
001 0 'wsa' 0 0 ' 0 'wsy bs bs
0,0, 0 0 wssa, 0 wge, O be be
wror 0 1 0 wwrgr 0 0 0 vwrge O | | =br | mepo | O
wso' 00 0 10000 'wsy | | —bs 0
woo, 0 7 0 ; 0 0 0 jwgg wyr7 —bg 0
0«00 0 wpoae 000 b1o b1o
0 ' 0 wizg 0 ' 0 ' 0 ' 0 wiis by 0
w12,oi 0 i’w12,2i 0 i 0 iw12,5i 0 iw12,7 —b12 0
wigowiz2 0 0 10 10 wige 0 b13 b13
0 0 wig2wigszwigswias 0 | 0 b14 b14

\ 0 : 0 !’w15,2!w15,3! 0 !w15,5! 0 : 0 ) \—515) \ 0 /

Weights stored local to PEs. Must broadcast non-zero a_j’s to all PEs

Accumulation of each output b_iis local to PE
Stanford CS348K, Spring 2023



Efficient Inference Engine (EIE) for quantized
sparse/matrix vector product

Custom hardware for decoding compressed-sparse representation

Tuple representing non-zero activation (a;, j) arrives and is enqueued

NZero
Detect

Stanford CS348K, Spring 2023
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EIE efficiency

E CPU Dense (Baseline) BECPU Compressed 0 GPU Dense GPU Compressed mGPU Dense BEmMGPU Compressed BEIE
1018x

X 618

1000x 048x 507 . 210y X 189x
Q. 100x 56x 259" — 98x
=) i ' ‘
8 10x 1 § 5x s 5x s o
Q \ 3X \ \
o 1x \' 1x .1 \ 1x )
@ g I§ - B RNE I\' EANE

oo il PR N EEERRE AEEEARE e

Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean

Figure 6. Speedups of GPU, mobile GPU and EIE compared with CPU running uncompressed DNN model. There i1s no batching in all cases.

@ CPU Dense (Baseline) ®ECPU Compressed T GPU Dense GPU Compressed mGPU Dense B mMGPU Compressed BEIE

119,797x 76,784x

<., 100000x 34,522x 61,533x 14826 24,207x

% 10000x 90X 11,828x 9,485x 10,904x 8.053x

;<:_> 1000x

"ui 100x 17x 7x 12 20X " 15x 23x

i'»’ 1?X zlﬂ Llﬂ@ﬁl il I SR lgﬁl HNMI o g@l ol I 1xlﬂ@l [ gﬁl

- Alex-6 Alex-7 Alex-8 VGG-6 VGG-7 VGG-8 NT-We NT-Wd NT-LSTM Geo Mean
CPU: Corei7 5930k (6 cores) .
GPU: GTX Titan X Warning: these are not end-to-end numbers:
mGPU: Tegra K1 just results on fully connected layers!

Sources of energy savings:
= Compression allows all weights to be stored in SRAM (reduce DRAM loads)

Low-precision 16-bit fixed-point math (5x more efficient than 32-bit fixed math)

= Skip math on input activations that are zero (65% less math)
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Reminder: input stationary design (dense 1D)

(matrix vector multiplication example: y=Wx) Stream
Order Weight

. 6 w12
Ass.ume. 5 w(1,1)
1D input/output 4 w(1,0 Stream of weights
3-wide filters ; ngf; (2 1D filters of size 3)
2 output channels (K=2) 1 w00)

y | v :

PEO PE 1 Processing
o o elements
n () (implement multiply)
5N
out(0,i-1) out(0,i) out(0,i+1)  out(0,i+2) Accumulators

6 ) ¢ (implement +=)

out(1,i-1) out(1,i) out(1,i+1)  out(1,i+2)
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Input stationary design (sparse example)

. Stream
Ass.ume. Order Weight
1D input/output
3-wide SPARSE filters s w1 Stream of sparse weights
2 output channels (K=2) 3 w1 (2 filters, each with 2 non-zeros)
2 w(0,2)
1 w(0,0)
|
v v
PE0 PE 1 .
Processing
in(i) in(j) elements
7
2 1 2 1
4 ¥
OUt(O,i'1) Ollt(o,i+1) 0“t(0,j-1) OUt(olj+1) Accumulators
, , , | (implement +=)
out(1,i-1) out(1,i) out(1,j-1) out(1,j)
Note: accumulate is now a scatter
Dense output buffer
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SCNN: accelerating sparse conv layers

m Like EIE: assume both activations and conv weights are sparse
m  Weight stationary design:
- Each PE receives:
- Aset of l input activations from an input channel: a list of | (value, (x,y)) pairs
- Alist of F non-zero weights

DRAM
- Each PE computes: the cross-product Neighbors
of these values: P x | values 'I (sparse) l
OARAM PPU
- Then scatters P x | results to correct

sparse Halos
accumulator buffer cell ‘. AR e ReLU

), Compress
- Then repeat for new set of F weights

reuse | inputs .
( p ) Coordinate Fel
Computation

B Then, after convolution:

. DRAM coo oc
m  RelU sparsifies output ® ® sH|®D
: . Fl | S ©
N - < .
Compress outputs |.nto : ah g :
sparse.representatlon for & R 2P
use as input to next layer i | sHE—

FxI multiplier array A accumulator buffers
[Parashar et al. ISCA17] Stanford CS348K, Spring 2023



SCNN results (on GoogLeNet)

[Parashar et al. ISCA17]

DCNN = dense CNN evaluation

14 B DCNN/DCNN-opt ® SCNN = SCNN (oracle)
12
0 Performance (Wall clock speedup)
S 8
©
o 6
Q
5 4 I I I I I I I I Overall 2.2x
2
0 II II II II II II II [ II
IC3a IC3b IC4a IC4b IC4c IC4d IC4e IC5a IC5b  all
Per-layer Network
B DCNN ® DCNN-opt = SCNN
1.2 .
Energy Consumption

(B

o
00

o
~

Energy (relative to DCNN)
o o
N o))

o

R((RI(EIE H |
NE NER NAN NAR NAR NAN NAN NAR NAR NN

IC_3a IC_3b IC_4a IC_4b IC_4c IC_4d IC_4e IC_5a IC_5b all
Per-layer

DCNN-opt = includes ALU gating, and compression/decompression of activations
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Summary of hardware accelerators for
efficient inference

m Specialized instructions for dense linear algebra computations
- Reduce overhead of control (compared to CPUs/GPUs)

m Reduced precision operations (cheaper computation + reduce bandwidth requirements)

m Systolic/ dataflow architectures for efficient on-chip communication
- Different scheduling strategies: weight-stationary, input/output stationary, etc.

m Huge amounts of on-chip memory to avoid off-chip communication

m Exploit sparsity in activations and weights
- Skip computation involving zeros
- Hardware to accelerates decompression of sparse representations like compressed sparse row/column
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