Lecture 1:

Course Introduction +
Review of Throughput HW Architecture

Visual Computing Systems
Stanford C5348K, Spring 2023



Hello from the course staff

Your instructor (me) Your CA

- ."f:"‘ <

-
o

L
)" > ot o -«
Hrmi

Prof. Kayvon Arden Ma

Stanford CS348K, Spring 2023



Visual computing applications have always demanded
some of the world’s most advanced parallel computing systems
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lvan Sutherland’s Sketchpad on MIT TX-2 (1962)
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T h e fra m e b Uffe r 16 2K shift registers (640 x 486 x 8 bits)

Shoup’s SuperPaint (PARC1972-73)
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T h e fra m e b Uffe r 16 2K shift registers (640 x 486 x 8 bits)

Shoup’s SuperPaint (PARC1972-73)
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Xerox Alto (1973)

74181 AL

Stanford (5348K, Spring 2023

Bravo (WYSIWYG)



Goal: render everything you've ever seen

“Road to Pt. Reyes”
LucasFilm (1983)
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Pixar’s Toy Story (1995)

“We take an average of three hours to draw a single frame on the fastest computer money can buy.”
- Steve Jobs
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Clark’s geometry engine (1982)

ASIC for geometric transforms
used in real-time graphics
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NVIDIA Titan RTX 3090 GPU

~ 40 TFLOPs fp32 *
4X flops of ASCI Q (top US supercomputer circa 2002) **

* doesn’t about 70 TFLOPS of ray tracing compute + 320 TFLOPS of DNN compute
** not apples-to-apples since ASCI Q is double precision flops Stanford CS348K, Spring 2023



Cyberpunk 2077

GAMERSYDE
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Digital photography: major driver of compute capability
of modern smartphones

Portrait mode
(simulate effects of large aperture DSLR lens) High dynamic range (HDR) photography
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Modern smartphones utilize multiple processing units to quickly
generate high-quality images

Apple A13 Bionic

Multi-core CPU (heterogeneous cores)
Multi-core GPU

Neural accelerator

Sensor processing accelerator

Video compression/decompression HW

Etc...

Image Credit: Anandtech / Techinsights Inc. Stanford C5348K, Spring 2023



Oculus Quest 2 headset (2020)
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Image/video analysis via deep learning
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https://medium.com/analytics-vidhya/introduction-to-computer-vision-with-opencv-part-1-3dc948521deb Stanford CS348K, Spring 2023




ware acceleration of DNN inference/training
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Intel Deep Learning
Inference Accelerator

SambaNova
Cardinal SN10

Ampere GPU with
Tensor Cores

Cerebra af c Engine
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Al generated visual context

Input (Canny Edge) Default Automatic Prompt User Prompt
[ControlNet 2023]

“inside a gorgeous 19th century church”

astronaut

“ « »
music
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Tseng et al CVPR 2023



Youtube Transcode, stream, analyze...
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Google VPU transcoding HW
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6,703,305,990 views * Jan 12, 2017




Background blur

Richer environments

Add effects
Stanford CS348K, Spring 2023
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What is this course about?

Accelerator hardware architecture?
Graphics/vision/digital photography algorithms?

Programming systems?

Stanford CS348K, Spring 2023



What we will be learning about

Visual Computing Workloads
Algorithms for image/video processing,
DNN evaluation, data compression, etc.

If you don’t understand key workload characteristics,
how can you design a “good” system?

Stanford CS348K, Spring 2023



What we will be learning about

Modern Hardware
Organization

High-throughput hardware designs
(parallel, heterogeneous, and specialized)
fundamental constraints like area and power

If you don’t understand key constraints of modern
hardware, how can you design algorithms that are
well suited to run on it efficiently?

Stanford CS348K, Spring 2023



What we will be learning about

Programming Model Design

Choice of programming abstractions,
level of abstraction issues,

domain-specific vs. general purpose, etc.
Good programming abstractions enable productive

development of applications, while also providing system
implementors flexibility to explore highly efficient
implementations

Stanford CS348K, Spring 2023



This course is about architecting efficient, scalable systems...

It is about the process of understanding the fundamental structure of problems in the
visual computing domain, and then leveraging that understanding to...

To design more efficient and more robust algorithms
To build the most efficient hardware to run these algorithms

To design programming systems to make developing new applications simpler, more
productive, and highly performant

Stanford CS348K, Spring 2023



2023 course topics

The digital camera photo processing pipeline in modern smartphones

Basic algorithms (the workload)
Programming abstractions for writing image processing apps

Mapping these algorithms to parallel hardware

Systems for creating fast and accurate deep learning models
Scheduling DNN inference efficiently onto modern GPUs (focus on convolutional models, sequence models)
Hardware for accelerating deep learning (why GPUs are not efficient enough!)
System support for the end-to-end ML process, including data labeling and validation

Processing and transmitting video

Trends in video compression (neural techniques)
How modern video conferencing systems work, and what new experiences are on the horizon

Recent neural algorithms and their implications to system design

NeRF
Generative Al for images/videos/animations

Plus a late quarter

prompt-engineering
Recent APl and hardware support for real-time ray tracing class hackathon!!!

How deep learning, combined with RT hardware, is making real time ray tracing possible

Advances in real-time (hardware accelerated) ray tracing

Stanford CS348K, Spring 2023



Activity: student intros / project brainstorming
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An interactive Al-based image generation interface

a stylish computer graphics professor named Kayvon I\Nearing a black hoodie in front of a Stanford

classroom

Clear style

(‘ Photo X

Aspect ratio

Square (1:1) v
Content type
& None Q
m Graphic
v Styles
All Movements Themes
Techniques Effects Materials Concepts
Popular

/ :k =y
o

Digital art Synthwave Palette knife
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Logistics and Expectations
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Logistics

m Course web site:

- http://cs348k.stanford.edu
- My goal is to post lecture slides the night before class

m All announcements will go out via Ed Discussion

Stanford CS348K, Spring 2023



My expectations of you

m 50% participation
- There will be ~1 assigned technical paper reading per class
- You will submit a response to each reading by midnight prior to class days
- We will start most classes with a 30-45 minute discussion of the reading ),
- You can skip 2 readings to get full credit. This is important. You've got to

do the readings and come to
class to make the course tick.

m 50% self-selected term project
- | suggest you start thinking about projects now

Stanford CS348K, Spring 2023



Review (or crash course):

key principles of modern
throughput computing hardware




Concept #1:

The high cost of data communication
(Almost everything we talk about in this course starts from this concept)

Stanford CS348K, Spring 2023



A basic CPU that executes instructions

A processor executes instructions

Professor Kayvon'’s
Very Simple Processor

—

(Execution Unit) instruction, which may modify values in the processor’s

registers or the computer’s memory

Execution
Context

Register 0 (RO)

3:3:::::; ) «—— Registers: maintain program state: store value of

Register 3 (R3) variables used as inputs and outputs to operations

Stanford CS348K, Spring 2023



But what is memory?

Memory

Stanford CS348K, Spring 2023



Load: an instruction for accessing the contents of memory

Professor Kayvon's
Very Simple Processor

“Please load the four-byte value in memory starting from the

ALU address stored by register R2 and put this value into register R0.”

(Execution Unit)

Memory

2(1) ZZ Oxff68107c: 1024

R2:  Oxff681080 oxff681080: 42

R3: 0x80486412 Oxff681084: 32

Oxff681088: ©

Stanford CS348K, Spring 2023



Terminology

m Memory access latency
- The amount of time it takes the memory system to provide data to the processor

- Example: 100 clock cycles, 100 nsec

Data request

Memory

Latency ~ 2 sec

Stanford CS348K, Spring 2023



The implementation of the linear memory address space abstraction on
a modern computer is complex

Core1

Core 8

7

The instruction “load the value stored at address X into register R0” might involve a
complex sequence of operations by multiple data caches and access to DRAM

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

am
==

L2 cache
(256 KB)

L3 cache
(20 MB)

G il
(A ATHHE AP
-

DRAM
(32 GB)

Stanford CS348K, Spring 2023



Why do modern processors have data caches?

Core 1

CoreN

L1 cache
(32 KB)

L2 cache
(256 KB)

L1 cache
(32 KB)

L2 cache
(256 KB)

L3 cache
(8 MB)

38 GB/sec

<)

Memory
DDR4 DRAM

(Gigabytes)

Stanford CS348K, Spring 2023



Caches reduce memory access latency *

L1 cache
(32 KB)

Core 1

L2 cache
(256 KB)

L1 cache
(32 KB)

CoreN

L2 cache
(256 KB)

L3 cache
(8 MB)

* Caches also provide high bandwidth data transfer to CPU

38 GB/sec

<)

Caches reduce length of stalls (reduce memory access latency)

Processors run efficiently when data is resident in caches

Memory
DDR4 DRAM

(Gigabytes)

Stanford CS348K, Spring 2023



Data access times
(Kaby Lake CPU)

Latency (number of cycles at 4 GHz)

Datain L1 cache 4 mj

Datain L2 cache 12

Datain L3 cache 38 m

Data in DRAM (best case) ~248 =

Stanford CS348K, Spring 2023



Cache review
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Consider 4-byte elements

Consider a cache with 16-byte cache lines and a total
capacity of 32 bytes (2 lines fit in cache)

Least recently used (LRU) replacement policy

Address Cache state (after load is complete)
accessed
0x0 “cold miss”
0x4 hit
0x8 hit
OxC hit
0x10 cold miss
0x14 hit
0x18 hit
0xlc hit
0x20 cold miss (evict 0x0)
0x24 hit
0x28 hit
0x2¢ hit
0x30 cold miss (evict 0x10)
0x34 hit
0x38 hit
0x3c hit
0x40 cold miss (evict 0x20)

Stanford CS348K, Spring 2023



Data access in grid solver: row-major traversal

“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy

N .
® © © © ¢ ©© ¢ o o °o ‘l ® AssumerOW'majorgrid IaYOUt.
@ © 0 00 00 0 0 0.0 Assume cache line is 4 grid elements.
©:® © 6 0 0 0 0 0 0 0:0  (ihecapacityis24 grid elements (6 lines)
o;oooocooooogo
o0 0000000 0 0:0 , o
Recall grid solver application.
©:0 © 6 © 06 6 6 0 0 030 o
Blue elements show data that is in cache
o: 0 ¢ ¢ 6 ¢ ¢ 6 & o o o
after update to red element.
©:0 0 00 000 0 0 00
0 0000000 0 00
0o 00600000 0 00
oo 00000000 00

Stanford CS348K, Spring 2023



Data access in grid solver: row-major traversal

“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy

N .

®© ©6 0606006 00 0 0 0 0 o Assume row-major grid layout.
900000000006 Assume cache line is 4 grid elements.
©:0 © 0 0 6 0 0 0 0 0:% (;checapacityis24 grid elements (6 lines)
o;oooooooooogo
“ *eeeeeees ‘ Blue elements show data in cache at end
®o: 0 & 6 ¢ 6 6 6 & o o :° .

of processing first row.
CEQCQCQCQCQCEQ
0606000000 0 0:0
e 00000000 00
0o 006060000 0 00
oo 00000000 0i0

Stanford CS348K, Spring 2023



Problem with row-major traversal: long time between

accesses to same data

Assume row-major grid layout.
Assume cache line is 4 grid elements.

Cache capacity is 24 grid elements (6 lines)

Although elements (0,2) and (0,1) had been
accessed previously, they are no longer

present in cache at start of processing row 2.

This program loads three lines for every
four elements of output.

Stanford CS348K, Spring 2023



Improving temporal locality by changing grid traversal order

“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy

. N .
@ 00000000 00 Assume row-major grid layout.

r Assume cache line is 4 grid elements.
3 :®  (Cache capacity is 24 grid elements (6 lines)
: @
> ° “Blocked” iteration order
: @
B ° (diagram shows state of cache after
- : @ finishing work from first row of first block)
= o
- °

o 00606006 0606e e e e Now load two cache lines for every six
elements of output

Stanford CS348K, Spring 2023



Improving temporal locality by “fusing” loops

void add(int n, float* A, float* B, float* C) {
for (int i=0; i<n; i++)
C[i] = A[i] + B[i];

Two loads, one store per math op

} (arithmetic intensity = 1/3)

void mul(int n, float* A, float* B, float* C) {
for (int i=0; i<n; i++)
C[i] = A[i] * B[i]; 4+———  Twoloads, one store per math op

(arithmeticintensity = 1/3)

float* A, *B, *C, *D, *E, *tmpl, *tmp2;
// assume arrays are allocated here

// compute E =D + ((A + B) * ()

add(n, A, B, tmpl); - P Ity —
mul(n, tmpl, C, tmp2); 4+———————— (Qverall arithmeticintensity =1/3

add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) {
for (int i=0; i<n; i++)

E[i] = D[i] + (A[i] + B[i]) * c[i];  <«——  Fourloads, one store per 3 math ops

} (arithmetic intensity = 3/5)

// compute E =D + (A + B) * C
fused(n, A, B, C, D, E);
Code on top is more modular (e.g, array-based math library like numPy in Python)

Code on bottom performs much better. Why?
Stanford CS348K, Spring 2023



Terminology
m Memory bandwidth

- The rate at which the memory system can provide data to a processor
- Example: 20 GB/s

Memory

Bandwidth ~ 4 items/sec

Latency of transferring any one item: ~2 sec

Stanford CS348K, Spring 2023



Terminology
m Memory bandwidth

- The rate at which the memory system can provide data to a processor
- Example: 20 GB/s

Memory

Bandwidth: ~ 8 items/sec

Latency of transferring any one item: ~2 sec

Stanford CS348K, Spring 2023



Consider a processor that can do one add per clock (+ can co-issue LD)

Add

= Math instruction

Add

= Load instruction

Load 64 bytes

= Occupancy of memory bus
Add (size of cache line / memory bus bandwidth)

Add

Load 64 bytes Assumptions (8 clocks to transfer data)
Add Up to 3 outstanding load requests.

Add
Load 64 bytes
Add
Add

Load 64 bytes i Stall!

Add
Add

Load 64 bytes Stall!

-
time Stanford (5348K, Spring 2023



Rate of math instructions limited by available bandwidth

Bandwidth-bound execution!

Convince yourself that the instruction
throughput is not impacted by memory
latency, number of outstanding memory
requests, etc.

Only the memory bandwidth!!!

(Note how the memory system is occupied
100% of the time)

= Math instruction

= Load instruction

= Occupancy of memory bus
(size of cache line / memory bus bandwidth)

_—m
time Stanford S348K, Spring 2023



High bandwidth memories

m Modern GPUs leverage high bandwidth memories located near processor
m Example:
- V100 uses HBM2
- 900 GB/s

Stanford CS348K, Spring 2023



Thought experiment

Task: element-wise multiplication of two vectors A and B A
X

Assume vectors contain millions of elements .
= Load input A[i] =

= Load input BIi] C

= Compute A[i] x Bli]
- Store result into ([i]

Three memory operations (12 bytes) for every MUL
NVIDIA V100 GPU can do 5120 fp32 MULs per clock (@ 1.6 GHz)
Need ~98 TB/sec of bandwidth to keep functional units busy

<1% GPU efficiency... but still 12x faster than eight-core CPU!
(3.2 GHz Xeon E5v4 eight-core C(PU connected to 76 GB/sec memory bus: ~3% efficiency on this computation)

Stanford CS348K, Spring 2023



This computation is
bandwidth limited!

If processors request data at too high a rate,
the memory system cannot keep up.

Overcoming bandwidth limits is often the most important challenge facing
software developers targeting modern throughput-optimized systems.

Stanford CS348K, Spring 2023



Data movement has high energy cost

m Rule of thumb in mobile system design: always seek to reduce amount of data transferred from memory

- Earlier in class we discussed minimizing communication to reduce stalls (poor performance). Now, we wish to reduce communication to
reduce energy consumption

m “Ballpark” numbers

- Integerop:~1pJ* [Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
- Floating point op: ~20 pJ *
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ

- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 p) o __ Suggests that recomputing values,

rather than storing and reloading

N Implications them, is a better answer when

. optimizing code for energy efficiency!
- Reading 10 GB/sec from memory: ~1.6 watts PHmIzIng 9y Y

- Entire power budget for mobile GPU: ~1 watt

(remember phone is also running CPU, display, radios, etc.)
- iPhone 6 battery: ~7 watt-hours (note: my Machook Pro laptop: 99 watt-hour battery)
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc. Stanford CS348K, Spring 2023



Concept #2:
The value of specializing computation

Stanford CS348K, Spring 2023



Mobile: benefits of increasing efficiency

m Run faster for a fixed period of time

- Run at higher clock, use more cores (reduce latency of critical task)

- Do more at once

m Run at a fixed level of performance for longer
- e.g., video playback, health apps

- Achieve “always-on” functionality that was previously impossible

Google Glass: ~40 min
Ty recording per charge
b = (nowhere near “always on”)

iPhone: Amazon Echo / Google Home
Siri activated by button press or holding Always listening
phone up to ear

Stanford CS348K, Spring 2023



Efficiency benefits of compute specialization

m Rules of thumb: compared to high-quality C code on CPU...

m Throughput-maximized processor architectures: e.g., GPU cores
- Approximately 10x improvement in perf / watt
- Assuming code maps well to wide data-parallel execution and is compute bound

Clock and Data supply

m Fixed-function ASIC (“application-specific integrated circuit”) C;’;;” 28%

- Can approach 100-1000x or greater improvement in perf/watt

Arithmetic ___

- Assuming code is compute bound and -

Instruction
supply

and is not floating-point math 42%

Efficient Embedded Computing [Dally et al. 08]
[Figure credit Eric Chung]

[Source: Chung et al. 2010, Dally 08] Stanford CS348K, Spring 2023



Modern smartphones utilize multiple processing units to quickly
generate high-quality images

Apple A13 Bionic

Multi-core CPU (heterogeneous cores)
Multi-core GPU

Neural accelerator

Sensor processing accelerator

Video compression/decompression HW

Etc...

Image Credit: Anandtech / Techinsights Inc. Stanford C5348K, Spring 2023



Oculus Quest 2 headset (Snapdragon So()
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Modern systems use specialized HW for...

m Image/video encode/decode (e.g., H.264, JPG)
m Audio recording/playback
m Voice “wake up” (e.g., Ok Google)

m Camera “RAW" processing: processing data acquired by image sensor into images that are
pleasing to humans

m Many 3D graphics tasks (rasterization, texture mapping, occlusion using the Z-buffer)
m Continuous sensing (health, fitness, GPS, etc)

m Deep network evaluation (Google’s Tensor Processing Unit, Apple Neural engine, etc.)

Stanford CS348K, Spring 2023



Welcome to (5348K!

m See website for tonight’s reading

Stanford CS348K, Spring 2023



