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Hello from the course sta!
Your instructor (me) Your CA

Prof. Kayvon Arden Ma



Stanford CS348K, Spring 2023

Visual computing applications have always demanded 
some of the world’s most advanced parallel computing systems
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Ivan Sutherland’s Sketchpad on MIT TX-2 (1962)
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The frame bu!er
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)
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The frame bu!er 16 2K shift registers (640 x 486 x 8 bits)

Shoup’s SuperPaint (PARC 1972-73)
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Xerox Alto (1973)

TI 74181 ALU
Bravo (WYSIWYG)
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Goal: render everything you’ve ever seen
“Road to Pt. Reyes” 

LucasFilm (1983)
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Pixar’s Toy Story (1995)

“We take an average of three hours to draw a single frame on the fastest computer money can buy.” 
  - Steve Jobs
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Clark’s geometry engine (1982)

Figure 2: Photograph of the Geometry Engine. 

ASIC for geometric transforms 
used in real-time graphics



Stanford CS348K, Spring 2023

NVIDIA Titan RTX 3090 GPU

~ 40 TFLOPs fp32 *
4X "ops of ASCI Q (top US supercomputer circa 2002) **
* doesn’t about 70 TFLOPS of ray tracing compute + 320 TFLOPS of DNN compute
** not apples-to-apples since ASCI Q is double precision "ops
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Unreal 5 Demo (Nanite renderer)
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Digital photography: major driver of compute capability 
of modern smartphones

High dynamic range (HDR) photography
Portrait mode 

(simulate e!ects of large aperture DSLR lens)
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Modern smartphones utilize multiple processing units to quickly 
generate high-quality images

Image Credit: Anandtech / TechInsights Inc.

Apple A13 Bionic

Multi-core CPU (heterogeneous cores) 
Multi-core GPU 
Neural accelerator 
Sensor processing accelerator 
Video compression/decompression HW 
Etc…
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Oculus Quest 2 headset (2020)
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Image/video analysis via deep learning

https://medium.com/analytics-vidhya/introduction-to-computer-vision-with-opencv-part-1-3dc948521deb
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Hardware acceleration of DNN inference/training

Google TPU3

Huawei Kirin NPU

Apple Neural Engine

GraphCore IPU

Ampere GPU with 
Tensor Cores

Intel Deep Learning 
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova 
Cardinal SN10
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Datacenter-scale applications

Google TPU pods
Image Credit: TechInsights Inc.
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[ControlNet 2023]
AI generated visual context
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Youtube Transcode, stream, analyze…

Google VPU transcoding HW 
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Video communication
Background blur

Add e!ects

Richer environments
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Since Fall 2020 I’ve created and hosted 
a large number of virtual gatherings.
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On every vehicle: analyzing images for transportation



Stanford CS348K, Spring 2023

What is this course about? 

Accelerator hardware architecture? 

Graphics/vision/digital photography algorithms? 

Programming systems?
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What we will be learning about

Visual Computing Workloads 
Algorithms for image/video processing, 
DNN evaluation, data compression, etc.

Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [15] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [15] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

NYUDv2 [33] is an RGB-D dataset collected using the
Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [14]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [15], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,9 show state-of-the-art performance on
both tasks.

9Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation. (An earlier version of this pa-
per reported a lower mean IU, which included all categories either present
or predicted in the evaluation.)

Table 5. Results on SIFT Flow9 with class segmentation
(center) and geometric segmentation (right). Tighe [36] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [25] 76.7 - - - -
Tighe et al. [36] - - - - 90.8

Tighe et al. [37] 1 75.6 41.1 - - -
Tighe et al. [37] 2 78.6 39.2 - - -
Farabet et al. [9] 1 72.3 50.8 - - -
Farabet et al. [9] 2 78.5 29.6 - - -
Pinheiro et al. [31] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [17] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [17]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

6. Conclusion

Fully convolutional networks are a rich class of mod-
els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification
nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.

Acknowledgements This work was supported in part

If you don’t understand key workload characteristics, 
how can you design a “good” system?
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What we will be learning about

If you don’t understand key constraints of modern 
hardware, how can you design algorithms that are 

well suited to run on it e#ciently?

Modern Hardware 
Organization

High-throughput hardware designs 
(parallel, heterogeneous, and specialized) 

fundamental constraints like area and power



Stanford CS348K, Spring 2023

What we will be learning about

Good programming abstractions enable productive 
development of applications, while also providing system 

implementors "exibility to explore highly e#cient 
implementations

Programming Model Design

Choice of programming abstractions, 
level of abstraction issues, 

domain-speci$c vs. general purpose, etc.

Halide
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This course is about architecting e#cient, scalable systems…

It is about the process of understanding the fundamental structure of problems in the 
visual computing domain, and then leveraging that understanding to… 

To design more e#cient and more robust algorithms 

To build the most e#cient hardware to run these algorithms 

To design programming systems to make developing new applications simpler, more 
productive, and highly performant
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2023 course topics
The digital camera photo processing pipeline in modern smartphones 

Basic algorithms (the workload)
Programming abstractions for writing image processing apps
Mapping these algorithms to parallel hardware

Systems for creating fast and accurate deep learning models
Scheduling DNN inference e#ciently onto modern GPUs (focus on convolutional models, sequence models)
Hardware for accelerating deep learning (why GPUs are not e#cient enough!)
System support for the end-to-end ML process, including data labeling and validation

Advances in real-time (hardware accelerated) ray tracing
Recent API and hardware support for real-time ray tracing 
How deep learning, combined with RT hardware, is making real time ray tracing possible

Processing and transmitting video
Trends in video compression (neural techniques) 
How modern video conferencing systems work, and what new experiences are on the horizon

Recent neural algorithms and their implications to system design
NeRF 
Generative AI for images/videos/animations

Plus a late quarter 
prompt-engineering 
class hackathon!!!
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Activity: student intros / project brainstorming
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Kayvon’s (virtual) o#ce
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Learning in simulation at 1M steps/sec
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An interactive AI-based image generation interface
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Logistics and Expectations
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Logistics
Course web site: 
- http://cs348k.stanford.edu 
- My goal is to post lecture slides the night before class 

All announcements will go out via Ed Discussion
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My expectations of you
50% participation 
- There will be ~1 assigned technical paper reading per class 
- You will submit a response to each reading by midnight prior to class days 
- We will start most classes with a 30-45 minute discussion of the reading 
- You can skip 2 readings to get full credit. 

50% self-selected term project 
- I suggest you start thinking about projects now

This is important. You’ve got to 
do the readings and come to 
class to make the course tick.
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Review (or crash course): 

key principles of modern 
throughput computing hardware
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Concept #1: 
The high cost of data communication 

(Almost everything we talk about in this course starts from this concept)
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A basic CPU that executes instructions
A processor executes instructions

Execution 
Context

ALU 
(Execution Unit)

Professor Kayvon’s 
Very Simple Processor

Registers: maintain program state: store value of 
variables used as inputs and outputs to operations

Execution unit: performs the operation described by an 
instruction, which may modify values in the processor’s 
registers or the computer’s memory

Register 0  (R0)
Register 1  (R1)
Register 2  (R2)
Register 3  (R3)

Fetch/ 
Decode Determine what instruction to run next
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But what is memory?

Memory
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Load: an instruction for accessing the contents of memory

Fetch/ 
Decode

Execution 
Context

ALU 
(Execution Unit)

Professor Kayvon’s 
Very Simple Processor

ld R0 ← mem[R2]
“Please load the four-byte value in memory starting from the 
address stored by register R2 and put this value into register R0.”

R0:      96
R1:      64
R2:      0x!681080
R3:      0x80486412

Memory

0xff681080: 42

0xff681084: 32
0xff681088: 0

0xff68107c: 1024

... 

... 
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Terminology
Memory access latency 
- The amount of time it takes the memory system to provide data to the processor 
- Example: 100 clock cycles, 100 nsec

Memory

Data request

Latency ~ 2 sec
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The implementation of the linear memory address space abstraction on 
a modern computer is complex

DRAM 
(32 GB)

L3 cache 
(20 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Core 1

Core 8

L1 cache 
(32 KB)

L2 cache 
(256 KB)

The instruction “load the value stored at address X into register R0” might involve a 
complex sequence of operations by multiple data caches and access to DRAM 
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Why do modern processors have data caches?

38 GB/sec

L3 cache 
(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N
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Caches reduce length of stalls (reduce memory access latency)
Processors run e#ciently when data is resident in caches 
Caches reduce memory access latency *

* Caches also provide high bandwidth data transfer to CPU

38 GB/sec

L3 cache 
(8 MB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

L1 cache 
(32 KB)

L2 cache 
(256 KB)

. . .

Memory 
DDR4 DRAM 

(Gigabytes)

Core 1

Core N
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Data access times

Data in L1 cache

Data in L2 cache

Data in L3 cache

Data in DRAM (best case)

4

12

38

~248

Latency (number of cycles at 4 GHz)

(Kaby Lake CPU)
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Cache review

8

address 0x0
0x4

0x10

0x20

0x40

Consider 4-byte elements 
Consider a cache with 16-byte cache lines and a total 
capacity of 32 bytes (2 lines $t in cache) 
Least recently used (LRU) replacement policy 

0x0 
0x4 
0x8 
0xc 
0x10 
0x14 
0x18 
0x1c 
0x20 
0x24 
0x28 
0x2c 
0x30 
0x34 
0x38 
0x3c 
0x40

0x1c

Address 
accessed

Cache state (after load is complete)

“cold miss” 
hit 
hit 
hit 
cold miss 
hit 
hit 
hit 
cold miss (evict 0x0) 
hit 
hit 
hit 
cold miss (evict 0x10) 
hit 
hit 
hit 
cold miss (evict 0x20)

0x0
0x0
0x0
0x0
0x0
0x0
0x0
0x0

0x10
0x10
0x10
0x10
0x10
0x10
0x10
0x10

0x20
0x20
0x20
0x20
0x20
0x20
0x20
0x20

0x30
0x30
0x30
0x30
0x300x40
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Data access in grid solver: row-major traversal
“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy 

N
Assume row-major grid layout. 
Assume cache line is 4 grid elements. 
Cache capacity is 24 grid elements (6 lines) 

Recall grid solver application. 
Blue elements show data that is in cache 
after update to red element.
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N
Assume row-major grid layout. 
Assume cache line is 4 grid elements. 
Cache capacity is 24 grid elements (6 lines) 

Blue elements show data in cache at end 
of processing $rst row.

Data access in grid solver: row-major traversal
“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy 
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Problem with row-major traversal: long time between 
accesses to same data

N
Assume row-major grid layout. 
Assume cache line is 4 grid elements. 
Cache capacity is 24 grid elements (6 lines) 

Although elements (0,2) and (0,1) had been 
accessed previously, they are no longer 
present in cache at start of processing row 2.

This program loads three lines for every 
four elements of output.
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Improving temporal locality by changing grid traversal order
“Blocking”: reorder computation to make working sets map well to system’s memory hierarchy 

N
Assume row-major grid layout. 
Assume cache line is 4 grid elements. 
Cache capacity is 24 grid elements (6 lines)

“Blocked” iteration order 

(diagram shows state of cache after 
$nishing work from $rst row of $rst block)

Now load two cache lines for every six 
elements of output
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Improving temporal locality by “fusing” loops
void add(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] + B[i];     
} 

void mul(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] * B[i];     
} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 
add(n, A, B, tmp1); 
mul(n, tmp1, C, tmp2); 
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { 
    for (int i=0; i<n; i++) 
       E[i] = D[i] + (A[i] + B[i]) * C[i];     
} 

// compute E = D + (A + B) * C 
fused(n, A, B, C, D, E);

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Two loads, one store per math op 
(arithmetic intensity = 1/3)

Four loads, one store per 3 math ops 
(arithmetic intensity = 3/5)

Overall arithmetic intensity = 1/3

Code on top is more modular (e.g, array-based math library like numPy in Python) 
Code on bottom performs much better. Why?
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Terminology
Memory bandwidth 
- The rate at which the memory system can provide data to a processor 
- Example: 20 GB/s

Memory

Bandwidth ~ 4 items/sec

Latency of transferring any one item: ~2 sec
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Terminology
Memory bandwidth 
- The rate at which the memory system can provide data to a processor 
- Example: 20 GB/s

Memory

Bandwidth: ~ 8 items/sec

Latency of transferring any one item: ~2 sec
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Consider a processor that can do one add per clock (+ can co-issue LD)

time 

=  Math instruction

= Occupancy of memory bus 
     (size of cache line / memory bus bandwidth)

Load 64 bytes

Add

Add

Add

Add

Load 64 bytes

Stall!

Stall!

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

Load 64 bytes

Add

Add

=  Load instruction

Assumptions (8 clocks to transfer data) 
Up to 3 outstanding load requests.
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Rate of math instructions limited by available bandwidth

time 

=  Math instruction

= Occupancy of memory bus 
     (size of cache line / memory bus bandwidth)

=  Load instruction

Bandwidth-bound execution! 

Convince yourself that the instruction 
throughput is not impacted by memory 
latency, number of outstanding memory 
requests, etc. 

Only the memory bandwidth!!! 

(Note how the memory system is occupied 
100% of the time)



Stanford CS348K, Spring 2023

High bandwidth memories
Modern GPUs leverage high bandwidth memories located near processor 
Example: 
- V100 uses HBM2 
- 900 GB/s
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Thought experiment
Task: element-wise multiplication of two vectors A and B 

Assume vectors contain millions of elements 

- Load input A[i] 
- Load input B[i] 
- Compute A[i] × B[i] 
- Store result into C[i]

=

A

B

C

×

<1% GPU e#ciency… but still 12x faster than eight-core CPU! 
(3.2 GHz Xeon E5v4 eight-core CPU connected to 76 GB/sec memory bus: ~3% e#ciency on this computation)

Three memory operations (12 bytes) for every MUL 
NVIDIA V100 GPU can do 5120 fp32 MULs per clock (@ 1.6 GHz) 
Need ~98 TB/sec of bandwidth to keep functional units busy
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This computation is 
bandwidth limited!

If processors request data at too high a rate, 
the memory system cannot keep up.

Overcoming bandwidth limits is often the most important challenge facing 
software developers targeting modern throughput-optimized systems.
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Data movement has high energy cost
Rule of thumb in mobile system design: always seek to reduce amount of data transferred from memory 
- Earlier in class we discussed minimizing communication to reduce stalls (poor performance).  Now, we wish to reduce communication to 

reduce energy consumption 

“Ballpark” numbers 
- Integer op: ~ 1 pJ * 
- Floating point op: ~20 pJ * 
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ 
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ 

Implications 
- Reading 10 GB/sec from memory: ~1.6 watts 
- Entire power budget for mobile GPU: ~1 watt  

(remember phone is also running CPU, display, radios, etc.) 
- iPhone 6 battery: ~7 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery) 
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]

Suggests that recomputing values, 
rather than storing and reloading 
them, is a better answer when 
optimizing code for energy e#ciency!
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Concept #2: 
The value of specializing computation
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Mobile: bene$ts of increasing e#ciency
Run faster for a $xed period of time 
- Run at higher clock, use more cores (reduce latency of critical task) 

- Do more at once 

Run at a $xed level of performance for longer 
- e.g., video playback, health apps 

- Achieve “always-on” functionality that was previously impossible

Amazon Echo / Google Home 
Always listening

iPhone: 
Siri activated by button press or holding 
phone up to ear

Google Glass: ~40 min 
recording per charge 
(nowhere near “always on”)
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E#ciency bene$ts of compute specialization
Rules of thumb: compared to high-quality C code on CPU... 

Throughput-maximized processor architectures: e.g., GPU cores 

- Approximately 10x improvement in perf / watt 

- Assuming code maps well to wide data-parallel execution and is compute bound 

Fixed-function ASIC (“application-speci$c integrated circuit”) 

- Can approach 100-1000x or greater improvement in perf/watt 

- Assuming code is compute bound and 

and is not "oating-point math

[Source: Chung et al. 2010 , Dally 08]

[Figure credit Eric Chung]
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Modern smartphones utilize multiple processing units to quickly 
generate high-quality images

Image Credit: Anandtech / TechInsights Inc.

Apple A13 Bionic

Multi-core CPU (heterogeneous cores) 
Multi-core GPU 
Neural accelerator 
Sensor processing accelerator 
Video compression/decompression HW 
Etc…
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Oculus Quest 2 headset (Snapdragon SoC)

Qualcomm Snapdragon XR2 SoC

4 high-performance cores  
4 low-performance (low energy) cores 
Image processor + DSP 
Multi-core graphics processor (GPU) — up to 3000 x 3000 display @ 90 Hz 
Additional processor for sensors (IMU etc) 
Can process inputs from up to seven simultaneous video camera streams

This diagram is from Snapdragon 865

Image credit: i$xit.com
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Modern systems use specialized HW for…
Image/video encode/decode  (e.g., H.264, JPG) 

Audio recording/playback  

Voice “wake up” (e.g., Ok Google) 

Camera “RAW” processing: processing data acquired by image sensor into images that are 
pleasing to humans 

Many 3D graphics tasks (rasterization, texture mapping, occlusion using the Z-bu!er) 

Continuous sensing (health, $tness, GPS, etc) 

Deep network evaluation (Google’s Tensor Processing Unit, Apple Neural engine, etc.)
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Welcome to CS348K!

See website for tonight’s reading


