Lecture 12:

Background: the light field
and rendering basics

Visual Computing Systems
Stanford C5348K, Spring 2023



Many scene representations in graphics

Triangle-based 3D surface representations (mesh + surface materials)
(Rendering via ray-casting or 2D projection)

3D Volumes

Depth-image based surface representations
(Novel view synthesis via depth-guided image warping, pixel re-projection, etc.)
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And many more... e.g., Implicit Surfaces
[Andersen 16] Jump: VR video Stanford (348K, Spring 2023



Novel view synthesis problem

Input photos (from a fixed set of views)
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Novel views
(camera position different from those in input photos)
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Fundamentals: the light field



Recall basic pinhole camera

Pixel P1
Scene object 1

Pinhole

Pixel P2

Scene object 2

Sensor plane: (X,Y)

Pinhole
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What about taking the pictures from a new viewpoint?

Scene object 1

‘ Scene object 2

Pinhole
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Light-field parameterization ) Cortretal o

Light field as a 4D function (represents light in free space: no occlusion)

v J v
L(u,v,s,t)

[Image credit: Levoy and Hanrahan 96]

Efficient two-plane parameterization
Line described by connecting point on (u,v) plane with point on (s,t) plane

If one of the planes placed at infinity: point + direction representation

Levoy/Hanrahan refer to representation as a “light slab”: beam of light entering one quadrilateral and exiting another

Stanford CS348K, Spring 2023



Sampling the light field

U=1 S=1

Simplification: only showing lines in 2D
(full light field is 4D function)
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Measuring the light field by taking many pictures

U=0 ¥©; S=0

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project] Stanford (S348K, Spring 2023



[Wilburn et al. 2005]

Stanford Camera Array

640 x 480 tightly synchronized, repositionable cameras

Custom processing board per camera

Tethered to PCs for additional processing/storage
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Light field storage lay

(a)

(b)

[Image credit: Levoy and Hanrahan 96] Stanford (5348K, Spring 2023



Later light field cameras

Lytro lllum
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Acquiring light field content for VR

Google’s Jump VR video:
Yi Halo Camera (17 cameras)

Facebook Manifold |
(16 8K cameras)
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Stereo, 360-degree viewing
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Stereo, 360-degree viewing
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Measuring light arriving at left eye

Left eye

sinf =r/R

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project] Stanford CS348K, Spring 2023



Measuring light arriving at right eye

Right eye

sinf = —r/R

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project] Stanford CS348K, Spring 2023



How to estimate rays at “missing” views?

[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project] Stanford (S348K, Spring 2023



Interpolation to novel views depends on scene depth

[Credit: Camera icon by Venkatesh Aiyuii from The Noun Project] Stanford (S348K, Spring 2023



Interpolation to novel views depends on scene depth

[Credit: Camera icon by Venkatesh Aiyuii from The Noun Project] Stanford (S348K, Spring 2023



Computing depth of scene point from two images

Binocular stereo 3D reconstruction of point P: depth from disparity

P
Focal length: / ?
Baseline: b |
Disparity: d =x - x
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Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length

Disparity” is the distance between object’s projected position in the two images: x - x Stanford (5348K, Spring 2023



Microsoft XBox 360 Kinect

f
/
Image credit: iFixIt
llluminant RGB CMOS Sensor Monochrome Infrared
(Infrared Laser + diffuser) 640x480 (w/ Bayer mosaic) CMOS Sensor
(Aptina MT9MO001)
1280x1024 **

** Kinect returns 640x480 disparity image, suspect sensor is configured for 2x2 pixel binning down to 640x512, then crop
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Infrared image of Kinect illuminant output

Credit: www.futurepicture.org
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Infrared image of Kinect illuminant output
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Credit: www.futurepicture.org
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Correspondence problem

How to determine which pairs of pixels in image 1 and image 2 correspond to the same scene point?
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Correspondence problem = compute “flow” between adjacent cameras

For each pixel in frame from camera j, find closest pixel in camera j+17
Google’s Jump VR video pipeline uses a coarse-to-fine algorithm: align 32x32 blocks by searching over local window,
then perform per-pixel alignment

- Recall: H.264 motion estimation, HDR+ burst alignment (same correspondence challenge, but here we are
aligning different perspectives at the same time to estimate unknown scene depth, not estimating motion of

camera or scene over time)
- Additional tricks to ensure temporal consistency of flow over time (see papers)

7 o) NV Y F . 0 ¥ o - - LAl
: J - \ s X . & \ 'ﬂb A
. . Y. 4 24 y | b

2D Flow
(sat=u, hue =v)

_16 . . - —
_8-
S 0
8 I -
16 '

0 32 64 96 128 160 192 224
U
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Left eye: with interpolated rays
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[Credit: Camera icon by Venkatesh Aiyulu from The Noun Project] Stanford (S348K, Spring 2023



“Casual 3D photography”

m Acquisition: wave a smartphone camera around to acquire images of scene from multiple
viewpoints

m Processing: construct 3D representation of scene from photos
- Render a textured triangle mesh

Dual-camera Burst of photos Stitch photos into depth panorama,
Smartphone + depth maps create 3D mesh + textures,
render during VR viewing
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But it’s hard to estimate depth or geometry
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Volumetric representatio

Volume density and color at all points in space



Representing rays

origin unit direction
() = o+td”
“Distance” or
“time”

point along ray



Absorption in a volume

L(p,w L +dL
(p )_@ Ua(p) >—+ P = (CC,y,Z)
W

—ds—|

dL(p,w) = —04(p) L(p,w) ds

m [(p,w) light energy (radiance) along a ray from p in direction w
m Absorption cross section at point in space: o, (p)

- Probability of being absorbed per unit length

- Units: 1/distance
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Rendering volumes

o(p)

<4——— \/olume density and color at all points in space.
C ( p W ) e.g., Values stored in a 3D grid
,

s

C(r) = /t :f T(t)o(x(t))e(x(t), d)dt, where T(t) = exp (— /t t 0(r(s))ds>
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Regular 3D grid representation?

Consider storage requirements:
10243 cells

Ignore directional dependency: rgho 4 bytes/cell
(~4 GB)

Now consider directional dependency on (¢, 0)
... much worse
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Typical challenge: ==

limited resolution | Credit: Voxel Ville NFT (voxelville.io)




Learning (compressed) representations

Why not just learn an approximation to the continuous function that matches observations
from different viewpoints?

o(p)
c(p,w)
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Learning better (more compressed) representations

m Why not just learn an approximation to the continuous function:

-
(p,w) —  [Iy(p,w) »C((ppzd)

m Forall photos of the scene that we have, use Fy(p, w) to volume render the scene
from the known viewpoint.

m Lossis difference between rendered view and actual photo.
m Update ¢ using standard optimization techniques (SGD)
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Learning neural radiance fields (NeRF)

Input Images Optimize NeRF Render new views
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5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
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What just happened?

m Continuous coordinate-based representation vs reqular grid: MLP “learns” how to use its weights to
produce high-resolution output where needed... given input data

m Compact representation: trades-off space for expensive rendering
- Good: a few MBs = effectively very high resolution dense grid
- Bad: must evaluate MLP every Step / MLP must do real work to associate
- And it’s a“big” MLP (8-layer x 256) welghts with 3D locations

- Bad: must step densely (because we dont know where the surface is)

m Compact representation: optimization can learns to interpolate views despite complexity of volume
density and radiance function

- Only structural bias is the separation into positional O and directional rgb
- Training time: hours to a day to learn a good NeRF
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Demos

Stanford CS348K, Spring 2023



Key ideas of volumetric representations in this context

m Do not need to reconstruct/estimate triangle mesh surface geometry
m Volume rendering is easily differentiable, so easy to update Fy(p,w)

m The DNN used to represent Fy(p, w) isa compact representation of this high-
dimensional function.

- Better representation than a dense voxel grid.
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