
Visual Computing Systems
Stanford CS348K, Spring 2023

Lecture 18:

Real Time, GPU-Accelerated
Ray Tracing

Stanford CS348K, Spring 2023

Realistic illumination

This image was rendered in real-time on a single high-end GPU

Stanford CS348K, Spring 2023

Stanford CS348K, Spring 2023

Modern real-time ray tracing
Exciting example of co-design of algorithms, specialized hardware, and software
abstractions

It is clear that the near future of real-time graphics will involve large amounts of ray
tracing

NVIDIA GeForce RTX 3080 GPU

Stanford CS348K, Spring 2023

Background/review:
ray tracing in < 10 minutes

Take that Pete Shirley!

Why do we trace rays?

Stanford CS348K, Spring 2023

The “visibility problem” in computer graphics
Stated in terms of casting rays from a simulated camera:
- What scene primitive is “hit” by a ray originating from a point on the virtual sensor and traveling through the

aperture of the pinhole camera? (coverage)

- What scene primitive is the !rst hit along that ray? (occlusion)

Pinhole
Camera

(0,0)
Virtual
Sensor

(x,z)

o,do,d

Stanford CS348K, Spring 2023

Today: scene geometry = triangles

Stanford CS348K, Spring 2023

What object is visible to the camera?
What light sources are visible from a point on a surface (is a surface in shadow?)
What re"ection is visible on a surface?

Generality of ray-scene queries

Virtual
Sensor

Stanford CS348K, Spring 2023

Shadows

Image credit: Grand Theft Auto V

Stanford CS348K, Spring 2023

How to compute if a surface point is in shadow?

x

P

L1

L2

Assume you have an algorithm
for ray-scene intersection…

Stanford CS348K, Spring 2023

A simple shadow computation algorithm
Trace ray from point P to
location Li of light source
If ray hits scene object before
reaching light source… then P
is in shadow

x

P

L1

L2

Stanford CS348K, Spring 2023

Scene with many light sources

Stanford CS348K, Spring 2023

Soft shadows

Image credit: Pixar

Hard shadows
(created by point light source)

Soft shadows
(created by ???)

Stanford CS348K, Spring 2023

Soft shadow cast by an area light
Based on ray tracing…
Sample random point P’ on light source
Trace ray from point P to P’
If ray hits scene object before reaching
light source… then P is in shadow from P’
Illumination at P is fraction of light source
that is visible.

x

P1

P2

Notice that a fraction of the light from
an area light may reach a point.

(Fully lit)

(Partially lit)

Implication: must trace many rays per pixel!

Stanford CS348K, Spring 2023

4 area light samples
(high variance in irradiance estimate)

Stanford CS348K, Spring 2023

16 area light samples
(lower variance in irradiance estimate)

Implication: must trace a lot of shadow rays to reduce noise in rendered image

Stanford CS348K, Spring 2023

Re"ections

Image credit: NVIDIA

Stanford CS348K, Spring 2023

Re"ections

Stanford CS348K, Spring 2023

Perfect mirror re"ection

x

P1

P2

P3

Light re"ected from P1 in direction of P0 is
incident on P1 from re"ection about surface
normal at P1.

p0

Stanford CS348K, Spring 2023

Direct illumination + re"ection + transparency

Image credit: Henrik Wann Jensen

Stanford CS348K, Spring 2023

Global illumination solution

Image credit: Henrik Wann Jensen

Stanford CS348K, Spring 2023

Sampling light paths

Image credit: Wann Jensen, Hanrahan

Stanford CS348K, Spring 2023

Indirect illumination

Pinhole x

y

p
!o

!i

Lo(p,!o)

Light can arrive at a surface from any direction.
Implication: even more ray tracing per pixel!

Stanford CS348K, Spring 2023

Direct illumination

p

Stanford CS348K, Spring 2023

One-bounce global illumination

p

Stanford CS348K, Spring 2023

Sixteen-bounce global illumination

p

Stanford CS348K, Spring 2023

Direct illumination

Stanford CS348K, Spring 2023

Global Illumination

Stanford CS348K, Spring 2023

Importance of indirect illumination

Stanford CS348K, Spring 2023

1024 samples per pixel

Stanford CS348K, Spring 2023

One path per pixel

Low sample rate: 1 path per pixel

Stanford CS348K, Spring 2023

32 paths per pixel

Stanford CS348K, Spring 2023

1024 paths per pixel

High sample rate: 1024 path per pixel

Stanford CS348K, Spring 2023

Takeaway:
Must trace many rays per pixel through complex scenes to

render realistic images in real time

But wait, how to we e#ciently perform
ray-scene intersection?

Stanford CS348K, Spring 2023

Disney Moana scene

Released for rendering research purposes in 2018.
15 billion primitives in scene (more than 90M unique geometric primitives)

Stanford CS348K, Spring 2023

How to e#ciently !nd the closest hit using
BVH acceleration structures

Stanford CS348K, Spring 2023

Bounding volume hierarchy (BVH)

Root

Stanford CS348K, Spring 2023

Bounding volume hierarchy (BVH)
BVH partitions each node’s primitives into disjoints sets
- Note: the sets can overlap in space (see example below)

Stanford CS348K, Spring 2023

Bounding volume hierarchy (BVH)

Stanford CS348K, Spring 2023

C D

B

Bounding volume hierarchy (BVH)

A

A
B

C

D

Leaf nodes:
- Contain small list of primitives
Interior nodes:
- Proxy for a large subset of primitives
- Stores bounding box for all primitives in subtree

Stanford CS348K, Spring 2023

Two-level BVHs
Many scene objects do not move from frame-to-frame, or only move rigidly
Approach: two-level BVH: build a BVH over per-object BVHs
- Only rebuild this top level BVH each frame as objects move

A B

C

BVH for object A BVH for object B BVH for object CTop Level BVH

Contains hundreds
of scene objects

Each per-object BVH might contains tens’s of thousands of triangles.
If object’s geometry does not undergo relative change

(other than rotation/translation in world)
the BVH can be built once and remain applicable.

Stanford CS348K, Spring 2023

SPMD ray tracing (GPU-style)

stack<BVHNode> nodesToVisit;

if ray hits root.bbox:
 nodesToVisit.push(root);

while (nodesToVisit is not empty):

 // ray is “traversing” interior nodes
 while (not reached leaf node)
 node = nodesToVisit.pop(); // pop stack
 Perform ray-box tests for node.left.bbox and node.right.bbox
 if (ray hits both children):
 nodesToVisit.push(farther of left and right children)
 nodesToVisit.push(closer of left and right children)
 else if (ray only hits left child):
 nodesToVisit.push(left child);
 else if (ray only hits right child)
 nodesToVisit.push(right child);

 // ray is now at leaf
 while (not done testing tris in leaf)
 Perform ray-triangle test

Each CUDA thread carries out processing for one ray.
SIMD parallelism comes from executing multiple threads in a WARP

Stanford CS348K, Spring 2023

BVH traversal workload in a nutshell
Fetch left/right node bbox data from memory (data loads)
Ray-bbox intersection (computation)
Depending on results, move to left or right child node
- Unpredictable what to load next (depends on ray)
Repeat…

As always, let’s focus
here on the data access
part of the algorithm.

Stanford CS348K, Spring 2023

Takeaway:
Ray-BVH traversal generates unpredictable (data-
dependent) access to an irregular data structure

Stanford CS348K, Spring 2023

Understanding ray coherence during BVH traversal

Stanford CS348K, Spring 2023

Ray traversal “coherence”

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

r0, r1

r0 r1

r0 visits nodes: A, B, D, E…
r1 visits nodes: A, B, D, E…

Bandwidth reduction: BVH nodes (and triangles) loaded into cache
for computing scene intersection with r0 are cache hits for r1

Program explicitly intersects a collection of rays against BVH at once

Stanford CS348K, Spring 2023

Ray traversal “divergence”

1

2
3

4

5

C E
F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

r0

r0 visits nodes: A, B, D, E…
r1 visits nodes: A, B, D, E…

r1

r2

r2

r3

r2 visits nodes: A, B, D, E, C…
r3 visits nodes: A, B, D, E, G…

R2 and R3 require di$erent BVH nodes and triangles

r3

Stanford CS348K, Spring 2023

Incoherent rays
Incoherence is a property of both the rays and the scene

Example: random rays are “coherent” with respect to the BVH if the scene is one big triangle!

Stanford CS348K, Spring 2023

Incoherent rays
Incoherence is a property of both the rays and the scene

Similarly oriented rays from the same point become “incoherent” with
respect to lower nodes in the BVH if a scene is overly detailed

(Side note: this suggests the importance of choosing the right geometric level of detail)

Stanford CS348K, Spring 2023

Incoherent rays = bandwidth bound

1

2
3

4

5

C E
F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

R0

R1

R2

Di$erent threads may access di$erent BVH nodes at the same time:
Note how R0/R2 are accessing D while R1 is accessing C

Stanford CS348K, Spring 2023

Ray throughput decreases with increasing numbers of bounces
(The more light bounces around a scene, the greater the ray divergence)

Ylitie et al 2017

Stanford CS348K, Spring 2023

Idea 1: use compression to reduce data transfer

Stanford CS348K, Spring 2023

Reduce bandwidth requirements with BVH compression
Example: store child bboxes as quantized values in local coordinate frame de!ned by parent node’s bbox

plo

phi = plo + 2ei (2Nq -1)
ei encodes 8 bit exponent that de!nes “scale” of the parent bbox so
that quantized Nq-bit values can be used to represent points in
local coordinate frame

So 3D coordinate frame is de!ned by 3 fp32 values (plo) and 3 8-bit
extent exponents ei

Planes of child bboxes stored as Nq bit values. Here Nq = 4 for
illustration, in practice Nq = 8
(note quantization expands actual box, reducing e#ciency of BVH
structure)

phi

0 151 2 3 4 5 …

Stanford CS348K, Spring 2023

BVH compression
Example: store child bboxes as quantized values in local coordinate frame de!ned by parent node’s bbox
Use wider BVHs (4 children, 8 children) to:
- Amortize storage of local coordinate frame de!nition across multiple child nodes
- Reduce number of BVH node requests during traversal

Amortized 10 bytes per child
(3.2x compression over standard BVH formats)

Stanford CS348K, Spring 2023

Idea 2: reorder computation to increase locality

Stanford CS348K, Spring 2023

Queue-based global ray reordering
Idea: dynamically batch up rays that must traverse the same part of the scene. Process these rays
together to increase locality in BVH access

Partition BVH into “treelets”
(treelets sized for L1 or L2 cache)

1. When ray enters treelet, add rays to treelet queue

2. When treelet queue is su#ciently large, intersect all enqueued
rays with treelet
(amortize treelet load over all enqueued rays)

Incurs overhead of bu$ering: must store per-ray “stack” for many rays.

Per-treelet ray queues sized to !t in caches
(or in dedicated ray bu$er SRAM)

[Pharr 1997, Navratil 07, Alia 10]

Stanford CS348K, Spring 2023

Hardware acceleration for ray tracing

Stanford CS348K, Spring 2023

NVIDIA Ampere SM (RTX 3xxx series)
Hardware support for ray-triangle intersection and ray-
BVH intersection (“RT core”)

Very little public documentation of architectural details
at this time

Stanford CS348K, Spring 2023

Real-time ray tracing APIs
(Recurring theme in this course: increase level of abstraction

to enable optimized implementations)

Stanford CS348K, Spring 2023

D3D12’s DXR ray tracing “stages”
Ray tracing is abstracted as a graph of programmable “stages”
TraceRay() is a blocking function in some of those stages

Acceleration
structure

Can call TraceRay()

Can call TraceRay()

Can call TraceRay()

Stanford CS348K, Spring 2023

Example: ray generation shader (camera rays)

Example “hit shader”: Runs on ray hit to !ll in payload

Stanford CS348K, Spring 2023

GPU understands format of BVH acceleration structure
and “shader table”

Stanford CS348K, Spring 2023

The story so far…
“High level” raytracing APIs for authoring ray tracing applications
- High level abstractions allow for extensive optimizations

Application uses API to “create a BVH”
Since API creates BVH, it can make hardware-speci!c data layout decisions
- How to compress BVH data structure
- How wide BVH should be (2 children, 4 children, 8 children?)
Knowledge of BVH format about allows use of !xed-function hardware to execute ray-BVH traversal
(through compressed structure)

Application provides functions (shaders) that API calls when certain events happen (ray hits triangle, ray
misses all triangles, etc.

Stanford CS348K, Spring 2023

But the RT hardware is not the only !xed-function hardware on a GPU that is important
for real-time raytracing…

Stanford CS348K, Spring 2023

Denoising ray traced images

Stanford CS348K, Spring 2023

Deep learning-based denoising
“Learn” to turn noisy images (computed using only a few light paths per pixel) into noise-
free images (that look like images computed using many paths per pixel)?

Idea: Use neural image-to-image transfer methods to convert cheaper to compute (but
noisy) ray traced images into higher quality images that look like they were produced by
tracing many rays per pixel

Stanford CS348K, Spring 2023

Example: neural denoiser DNN

Depth Normal Roughness

Input to network is noisy RGB image * + additional normal, depth, and roughness channels
(These are cheap to compute inputs help network identify silhouettes, sharp structure)

* Actually the input is RGB demodulated by (divided by) texture albedo (don’t force network to learn what texture was)

Albedo

[Chaitanya 17]

Stanford CS348K, Spring 2023

Stanford CS348K, Spring 2023

Surface Albedo

Stanford CS348K, Spring 2023

Surface normals

Stanford CS348K, Spring 2023

16 paths/pixel

Stanford CS348K, Spring 2023

64 paths/pixel

Stanford CS348K, Spring 2023

256 paths/pixel

Stanford CS348K, Spring 2023

1024 paths/pixel

Stanford CS348K, Spring 2023

4096 paths/pixel

Stanford CS348K, Spring 2023

Denoised results

Stanford CS348K, Spring 2023

16 paths/pixel

Stanford CS348K, Spring 2023

16 paths/pixel (denoised)

Stanford CS348K, Spring 2023

64 paths/pixel (denoised)

Stanford CS348K, Spring 2023

256 paths/pixel (denoised)

Stanford CS348K, Spring 2023

1024 paths/pixel (denoised)

Stanford CS348K, Spring 2023

4096 paths/pixel (denoised)

Stanford CS348K, Spring 2023

4096 paths/pixel (NOT DENOISED)

Stanford CS348K, Spring 2023

Denoising results

[Chaitanya 17]
1 spp (input)

4000 spp
(ground truth)Denoised

Stanford CS348K, Spring 2023

Denoising results (challenging)

[Chaitanya 17]

1 spp (input)
4000 spp

(ground truth)Denoised

Stanford CS348K, Spring 2023

Aside: upsampling low-resolution
images to higher resolution images

(This is upsampling, not reducing Monte Carlo noise.)

Examples: NVIDIA’s DLSS (performs both anti-aliasing and upsampling)

Stanford CS348K, Spring 2023

 + auxiliary inputs

[Xiao 20]

Stanford CS348K, Spring 2023

4x4 upsampled result (16x more pixels)

[Xiao 20]

Stanford CS348K, Spring 2023

Closer look

[Xiao 20]

Stanford CS348K, Spring 2023

The story so far
High-level APIs for real-time ray tracing
- Enables system to choose e#cient data structures
- Enables use of !xed-function hardware to accelerate ray-BVH traversal and ray-

triangle intersection

Neural post-processing to turn low sample count images into high sample count images
(or low resolution images into higher resolution ones)

Still not enough…
- Also need to intelligently pick light paths to “get the most information” out of each

path.

Stanford CS348K, Spring 2023

Tens of thousands of lights…

[Bitterli et al. 2020]

Stanford CS348K, Spring 2023

Zero day scene (beeple@)
Very large number of lights

Stanford CS348K, Spring 2023

Uniform path sampling (16 spp)
Choosing 16 lights (K=16, uniform probability across lights), tracing one ray to random point on each light (N=1)

Stanford CS348K, Spring 2023

Sampling lights proportional to light power (16 spp)
Choosing 16 lights (K=16, light probability proportional to its power), tracing one ray to random point on each light (N=1)

Stanford CS348K, Spring 2023

Advanced topic:
path guiding

Baseline PPG Neural

[Müller et al. 2018]

Use results from prior paths to
in"uence choice of future paths.

Stanford CS348K, Spring 2023

Caching/reusing good paths

High sample count path
traced “ground truth”

Path traced: 1 path/pixel (8 ms/frame) Path traced: 1 path/pixel using ReSTIR GI (8.9 ms/frame)

Key idea: cache good paths, reuse good
paths found from from prior frames or
for prior pixels in same frame

[Ouyang et al. 2021]

Stanford CS348K, Spring 2023

Real-time raytracing innovations
High-level APIs for real-time ray tracing
- Enables system to choose e#cient data structures
- Enables use of !xed-function hardware to accelerate ray-BVH traversal and ray-

triangle intersection

Better “importance sampling” algorithms to picking the right light paths to trace
- Improve image quality given a small budget for ray tracing
- Reduce noise enough so that neural denoising can successfully !nish the job

Neural post-processing to turn low sample count images into high sample count images
(or low resolution images into higher resolution ones)

