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Real Time, GPU-Accelerated 
Ray Tracing
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Realistic illumination



This image was rendered in real-time on a single high-end GPU
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Modern real-time ray tracing
Exciting example of co-design of algorithms, specialized hardware, and software 
abstractions 

It is clear that the near future of real-time graphics will involve large amounts of ray 
tracing

NVIDIA GeForce RTX 3080 GPU



Stanford CS348K, Spring 2023

Background/review: 
ray tracing in < 10 minutes

Take that Pete Shirley!

Why do we trace rays?
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The “visibility problem” in computer graphics
Stated in terms of casting rays from a simulated camera: 
- What scene primitive is “hit” by a ray originating from a point on the virtual sensor and traveling through the 

aperture of the pinhole camera? (coverage) 

- What scene primitive is the !rst hit along that ray? (occlusion)

Pinhole 
Camera 

(0,0)
Virtual 
Sensor

(x,z)

o,do,d
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Today: scene geometry = triangles
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What object is visible to the camera? 
What light sources are visible from a point on a surface (is a surface in shadow?) 
What re"ection is visible on a surface?

Generality of ray-scene queries

Virtual 
Sensor
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Shadows

Image credit: Grand Theft Auto V
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How to compute if a surface point is in shadow?

x

P

L1

L2

Assume you have an algorithm 
for ray-scene intersection…
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A simple shadow computation algorithm
Trace ray from point P to 
location Li of light source 
If ray hits scene object before 
reaching light source… then P 
is in shadow

x

P

L1

L2
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Scene with many light sources
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Soft shadows

Image credit: Pixar

Hard shadows 
(created by point light source)

Soft shadows 
(created by ???)
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Soft shadow cast by an area light
Based on ray tracing… 
Sample random point P’ on light source  
Trace ray from point P to P’ 
If ray hits scene object before reaching 
light source… then P is in shadow from P’ 
Illumination at P is fraction of light source 
that is visible.

x

P1

P2

Notice that a fraction of the light from 
an area light may reach a point.

(Fully lit)

(Partially lit)

Implication: must trace many rays per pixel!
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4 area light samples 
(high variance in irradiance estimate)
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16 area light samples 
(lower variance in irradiance estimate)

Implication: must trace a lot of shadow rays to reduce noise in rendered image
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Re"ections

Image credit: NVIDIA
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Re"ections



Stanford CS348K, Spring 2023

Perfect mirror re"ection

x

P1

P2

P3

Light re"ected from P1 in direction of P0 is 
incident on P1 from re"ection about surface 
normal at P1.

p0
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Direct illumination + re"ection + transparency

Image credit: Henrik Wann Jensen
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Global illumination solution

Image credit: Henrik Wann Jensen
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Sampling light paths

Image credit: Wann Jensen, Hanrahan
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Indirect illumination

Pinhole x

y

p
!o

!i

Lo(p,!o)

Light can arrive at a surface from any direction.  
Implication: even more ray tracing per pixel! 
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Direct illumination

p
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One-bounce global illumination

p
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Sixteen-bounce global illumination

p
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Direct illumination
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Global Illumination
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Importance of indirect illumination
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1024 samples per pixel
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One path per pixel

Low sample rate: 1 path per pixel
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32 paths per pixel
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1024 paths per pixel

High sample rate: 1024 path per pixel
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Takeaway: 
Must trace many rays per pixel through complex scenes to 

render realistic images in real time

But wait, how to we e#ciently perform 
ray-scene intersection?
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Disney Moana scene

Released for rendering research purposes in 2018. 
15 billion primitives in scene (more than 90M unique geometric primitives)
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How to e#ciently !nd the closest hit using 
BVH acceleration structures
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Bounding volume hierarchy (BVH)

Root
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Bounding volume hierarchy (BVH)
BVH partitions each node’s primitives into disjoints sets 
- Note: the sets can overlap in space (see example below) 
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Bounding volume hierarchy (BVH)
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C D

B

Bounding volume hierarchy (BVH)

A

A
B

C

D

Leaf nodes: 
- Contain small list of primitives 
Interior nodes: 
- Proxy for a large subset of primitives 
- Stores bounding box for all primitives in subtree
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Two-level BVHs
Many scene objects do not move from frame-to-frame, or only move rigidly 
Approach: two-level BVH: build a BVH over per-object BVHs 
- Only rebuild this top level BVH each frame as objects move

A B

C

BVH for object A BVH for object B BVH for object CTop Level BVH

Contains hundreds 
of scene objects

Each per-object BVH might contains tens’s of thousands of triangles. 
If object’s geometry does not undergo relative change 

(other than rotation/translation in world) 
the BVH can be built once and remain applicable.



Stanford CS348K, Spring 2023

SPMD ray tracing (GPU-style)

stack<BVHNode> nodesToVisit; 

if ray hits root.bbox: 
  nodesToVisit.push(root); 

while (nodesToVisit is not empty): 

   // ray is “traversing” interior nodes 
   while (not reached leaf node) 
     node = nodesToVisit.pop(); // pop stack 
     Perform ray-box tests for node.left.bbox and node.right.bbox 
     if (ray hits both children): 
        nodesToVisit.push(farther of left and right children) 
        nodesToVisit.push(closer of left and right children) 
     else if (ray only hits left child): 
        nodesToVisit.push(left child); 
     else if (ray only hits right child) 
        nodesToVisit.push(right child); 

   // ray is now at leaf 
   while (not done testing tris in leaf) 
     Perform ray-triangle test

Each CUDA thread carries out processing for one ray. 
SIMD parallelism comes from executing multiple threads in a WARP 
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BVH traversal workload in a nutshell
Fetch left/right node bbox data from memory (data loads) 
Ray-bbox intersection (computation) 
Depending on results, move to left or right child node 
- Unpredictable what to load next (depends on ray) 
Repeat…

As always, let’s focus 
here on the data access 
part of the algorithm.
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Takeaway: 
Ray-BVH traversal generates unpredictable (data-
dependent) access to an irregular data structure
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Understanding ray coherence during BVH traversal
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Ray traversal “coherence”

1 

2 
3 

4 
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C E 

F

D

B

B

C D

E F

1 2 

3 4 5 

6 

G
6 

A

A

G 

r0, r1 

r0 r1 

r0 visits nodes: A, B, D, E… 
r1 visits nodes: A, B, D, E… 

Bandwidth reduction: BVH nodes (and triangles) loaded into cache 
for computing scene intersection with r0 are cache hits for r1

Program explicitly intersects a collection of rays against BVH at once 
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Ray traversal “divergence”
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r0 

r0 visits nodes: A, B, D, E… 
r1 visits nodes: A, B, D, E… 

r1 

r2

r2 

r3 

r2 visits nodes: A, B, D, E, C… 
r3 visits nodes: A, B, D, E, G… 

R2 and R3 require di$erent BVH nodes and triangles 

r3
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Incoherent rays
Incoherence is a property of both the rays and the scene

Example: random rays are “coherent” with respect to the BVH if the scene is one big triangle!
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Incoherent rays
Incoherence is a property of both the rays and the scene

Similarly oriented rays from the same point become “incoherent” with 
respect to lower nodes in the BVH if a scene is overly detailed 

(Side note: this suggests the importance of choosing the right geometric level of detail)
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Incoherent rays = bandwidth bound
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Di$erent threads may access di$erent BVH nodes at the same time: 
Note how R0/R2 are accessing D while R1 is accessing C
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Ray throughput decreases with increasing numbers of bounces 
(The more light bounces around a scene, the greater the ray divergence)

Ylitie et al 2017
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Idea 1: use compression to reduce data transfer
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Reduce bandwidth requirements with BVH compression
Example: store child bboxes as quantized values in local coordinate frame de!ned by parent node’s bbox

plo

phi = plo + 2ei (2Nq -1)
ei encodes 8 bit exponent that de!nes “scale” of the parent bbox so 
that quantized Nq-bit values can be used to represent points in 
local coordinate frame 

So 3D coordinate frame is de!ned by 3 fp32 values (plo) and 3 8-bit 
extent exponents ei

Planes of child bboxes stored as Nq bit values. Here Nq = 4 for 
illustration, in practice Nq = 8 
(note quantization expands actual box, reducing e#ciency of BVH 
structure)

phi

0 151 2 3 4 5 …
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BVH compression
Example: store child bboxes as quantized values in local coordinate frame de!ned by parent node’s bbox 
Use wider BVHs (4 children, 8 children) to: 
- Amortize storage of local coordinate frame de!nition across multiple child nodes 
- Reduce number of BVH node requests during traversal

Amortized 10 bytes per child 
(3.2x compression over standard BVH formats)
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Idea 2: reorder computation to increase locality
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Queue-based global ray reordering
Idea: dynamically batch up rays that must traverse the same part of the scene.  Process these rays 
together to increase locality in BVH access

Partition BVH into “treelets” 
(treelets sized for L1 or L2 cache) 

1. When ray enters treelet, add rays to treelet queue 

2. When treelet queue is su#ciently large, intersect all enqueued 
rays with treelet 
(amortize treelet load over all enqueued rays) 

Incurs overhead of bu$ering: must store per-ray “stack” for many rays. 

Per-treelet ray queues sized to !t in caches 
(or in dedicated ray bu$er SRAM)

[Pharr 1997, Navratil 07, Alia 10]
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Hardware acceleration for ray tracing
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NVIDIA Ampere SM (RTX 3xxx series)
Hardware support for ray-triangle intersection and ray-
BVH intersection (“RT core”) 

Very little public documentation of architectural details 
at this time
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Real-time ray tracing APIs
(Recurring theme in this course: increase level of abstraction 

to enable optimized implementations)
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D3D12’s DXR ray tracing “stages”
Ray tracing is abstracted as a graph of programmable “stages” 
TraceRay() is a blocking function in some of those stages

Acceleration 
structure

Can call TraceRay()

Can call TraceRay()

Can call TraceRay()
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Example: ray generation shader (camera rays)

Example “hit shader”: Runs on ray hit to !ll in payload
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GPU understands format of BVH acceleration structure 
and “shader table”
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The story so far…
“High level” raytracing APIs for authoring ray tracing applications 
- High level abstractions allow for extensive optimizations 

Application uses API to “create a BVH” 
Since API creates BVH, it can make hardware-speci!c data layout decisions 
- How to compress BVH data structure 
- How wide BVH should be (2 children, 4 children, 8 children?) 
Knowledge of BVH format about allows use of !xed-function hardware to execute ray-BVH traversal 
(through compressed structure) 

Application provides functions (shaders) that API calls when certain events happen (ray hits triangle, ray 
misses all triangles, etc.
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But the RT hardware is not the only !xed-function hardware on a GPU that is important 
for real-time raytracing…
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Denoising ray traced images
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Deep learning-based denoising
“Learn” to turn noisy images (computed using only a few light paths per pixel) into noise-
free images (that look like images computed using many paths per pixel)? 

Idea: Use neural image-to-image transfer methods to convert cheaper to compute (but 
noisy) ray traced images into higher quality images that look like they were produced by 
tracing many rays per pixel
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Example: neural denoiser DNN

Depth Normal Roughness

Input to network is noisy RGB image * + additional normal, depth, and roughness channels 
(These are cheap to compute inputs help network identify silhouettes, sharp structure)

* Actually the input is RGB demodulated by (divided by) texture albedo  (don’t force network to learn what texture was)

Albedo

[Chaitanya 17]
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Surface Albedo
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Surface normals
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16 paths/pixel
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64 paths/pixel
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256 paths/pixel
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1024 paths/pixel



Stanford CS348K, Spring 2023

4096 paths/pixel
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Denoised results
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16 paths/pixel
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16 paths/pixel (denoised)
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64 paths/pixel (denoised)
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256 paths/pixel (denoised)
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1024 paths/pixel (denoised)
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4096 paths/pixel (denoised)
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4096 paths/pixel (NOT DENOISED)
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Denoising results

[Chaitanya 17]
1 spp (input)

4000 spp 
(ground truth)Denoised
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Denoising results (challenging)

[Chaitanya 17]

1 spp (input)
4000 spp 

(ground truth)Denoised
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Aside: upsampling low-resolution 
images to higher resolution images

(This is upsampling, not reducing Monte Carlo noise.)

Examples: NVIDIA’s DLSS (performs both anti-aliasing and upsampling)
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 + auxiliary inputs

[Xiao 20]
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4x4 upsampled result (16x more pixels)

[Xiao 20]
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Closer look

[Xiao 20]
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The story so far
High-level APIs for real-time ray tracing 
- Enables system to choose e#cient data structures  
- Enables use of !xed-function hardware to accelerate ray-BVH traversal and ray-

triangle intersection 

Neural post-processing to turn low sample count images into high sample count images 
(or low resolution images into higher resolution ones) 

Still not enough… 
- Also need to intelligently pick light paths to “get the most information” out of each 

path.
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Tens of thousands of lights…

[Bitterli et al. 2020]
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Zero day scene (beeple@)
Very large number of lights
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Uniform path sampling (16 spp)
Choosing 16 lights (K=16, uniform probability across lights), tracing one ray to random point on each light (N=1)
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Sampling lights proportional to light power (16 spp)
Choosing 16 lights (K=16, light probability proportional to its power), tracing one ray to random point on each light (N=1)
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Advanced topic: 
path guiding

Baseline PPG Neural

[Müller et al. 2018]

Use results from prior paths to 
in"uence choice of future paths.
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Caching/reusing good paths 

High sample count path 
traced “ground truth”

Path traced: 1 path/pixel (8 ms/frame) Path traced: 1 path/pixel using ReSTIR GI (8.9 ms/frame)

Key idea: cache good paths, reuse good 
paths found from from prior frames or 
for prior pixels in same frame 

[Ouyang et al. 2021]
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Real-time raytracing innovations
High-level APIs for real-time ray tracing 
- Enables system to choose e#cient data structures  
- Enables use of !xed-function hardware to accelerate ray-BVH traversal and ray-

triangle intersection 

Better “importance sampling” algorithms to picking the right light paths to trace 
- Improve image quality given a small budget for ray tracing 
- Reduce noise enough so that neural denoising can successfully !nish the job  

Neural post-processing to turn low sample count images into high sample count images 
(or low resolution images into higher resolution ones)


