Lecture 14:

Simulating Virtual Worlds
to Train Agents

Visual Computing Systems
Stanford C5348K, Spring 2023



Today

m We've talked about how ML/AIl techniques are used to improve visual computing
applications: computational photography, rendering, video compression, etc...

m Today we'll talk about how rendering and simulation techniques are increasingly
central to the progress of Al
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Think back to earlier in course

What was the biggest practical bottleneck to training good models?
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ABSTRACT

Labeling training data is increasingly the largest bottleneck
in deploying machine learning systems. We present Snorkel,
a first-of-its-kind system that enables users to train state-
of-the-art models without hand labeling any training data.
Instead, users write labeling functions that express arbi-
trary heuristics, which can have unknown accuracies and
correlations. Snorkel denoises their outputs without ac-
cess to ground truth by incorporating the first end-to-end
implementation of our recently proposed machine learning
paradigm, data programming. We present a flexible inter-
face layer for writing labeling functions based on our ex-
perience over the past year collaborating with companies,
agencies, and research labs. In a user study, subject mat-
ter experts build models 2.8 x faster and increase predictive
performance an average 45.5% versus seven hours of hand la-
beling. We study the modeling tradeoffs in this new setting
and propose an optimizer for automating tradeoff decisions
that gives up to 1.8x speedup per pipeline execution. In
two collaborations, with the U.S. Department of Veterans
Affairs and the U.S. Food and Drug Administration, and
on four open-source text and image data sets representa-
tive of other deployments, Snorkel provides 132% average
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Figure 1: In Example 1.1, training data is labeled
by sources of differing accuracy and coverage. Two
key challenges arise in using this weak supervision
effectively. First, we need a way to estimate the un-
known source accuracies to resolve disagreements.
Second, we need to pass on this critical lineage in-
formation to the end model being trained.

advent of deep learning techniques, which can learn task-
specific representations of input data, obviating what used
to be the most time-consuming development task: feature
engineering. These learned representations are particularly
effective for tasks like natural language processing and image
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Using rendering/simulation
to generate supervision to train better models

Part 1:
Use high-fidelity simulation to simulate what sensors would
measure in hypothetical real-world situations

(Improving perception systems)
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Stanford Gibson project: acquire/render real world data

m Dataset acquired via 3D scanning (3D mesh + texture)
m Geometry, normals, semantics, + (so-called) “photorealistic” 3D
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Ours
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Part 2:
Training agent behaviors using reinforcement learning
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RLin 30 seconds

Model Inference

environment
observation —» 7-‘-9 —>
e.g. RGB image

agent
action
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RLin 30 seconds

Model Inference

environment

i agent
observation —» /| 9 —p agE
: action
e.g. RGB image
Model Training
sequence of
observations
sequence of \ compute loss
qt ti gradients update
agent actions Ipcats
W W = N - 7"'9 _>viaSGD

Reward: change in /

distance from goal
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RLin 30 seconds

Model Inference

environment
observation —» 7‘-9 —>
e.g. RGB image

agent
action

Model Training

compute loss
gradients update

—p — model
T via SGD
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RLin 30 seconds

Many rollouts:
- Agents independently navigating
same environments

Batch Model
Training

compute loss

gradients update . tg
—l — model . =
T via SGD s a

=

e,
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RLin 30 seconds

Many rollouts:

- Agents independently navigating
same environments

= Or different environments

Batch Model
Training

Rollout 2 compute loss
gradients update

— -  model
T via SGD

Rollout 3
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Learning robot skills requires many trials (billions) of
learning experience

m Training in diverse set of virtual environments
m Many training trials in each environment
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Need significant amounts of simulated
experience to learn skills

Example: even for simple PointGoal navigation task: need
billions of steps of “experience” to exceed traditional non-

learned approaches

Performance on Gibson validation split
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Physics simulation
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Many interactive virtual home environments

>
Navigate to a location i

Find an object
Rearrange the room so objects are in desired locations
Pour oneself a glass of milk
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Multi-agent games Atar Games
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RL workload summary

m Withina rollout
- For each step of a rollout:
- Render -> Execute policy inference -> simulate next world state

m Across *many” independent rollouts
- Simulated agents may (or may not) share scene state

- Diversity in scenes in a batch of rollouts is desirable to avoid overfitting, sample
efficiency of learning
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Common simulation approach: treat simulator as a black
box, gain high throughput via scale-out parallelization

Treat existing simulation engines
as a black box.

_____

Run many copies of the black box
N parallel.

Inference & |
Learning N Observa tions | |




OpenAl’s “OpenAl 5" Dota 2 bot

CPUs

GPUs

Experience collected

Size of observation

Observations per

second of gameplay

Batch size

Batches per minute

OPENAI FIVE

128,000 preemptible CPU cores on GCP

256 P100 GPUs on GCP
~180 years per day (~900 years per day
counting each hero separately)

~36.8 kB

79

1,048,576 observations

~60

ooooooooooo

111111
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Generating simulated experience is computationally
demanding

Navigation in 3D
OpenAl Five scanned environments Game playing

a. Plaver Hero b. Allied Hero c¢. Allied Team d. Enemy Team

k. Fog of War

h. Modifiers
I. ltems

n . Allied Cree
°< A
LY
l. Allied Tower
| ...j.\.v....“‘ = = : e . “

j. Abilities

Rapid: 128,000 CPUs, 64 GPUs over 2.5 days Deepmind Lab Training with
days of training (2B experience samples) 4000 CPUs and 64 TPUs
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Example: PointGoal navigation task system components

Database of 3D assets (meshes, textures collision meshes)

l Viewpoints, scene object positions l
/\‘

World State Renderer

(Q; b
SImUIatOr (render scene from viewpoint of agent)

(updates position of agent in scene,
detects collisions with scene geometry)

Non-rendered state: position, compass... Rendered frames

Inference/Learning

(inference: action from rendered image,
learning: update policy model from rollouts)

o

Next action
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Simulator

Renderer

Scene A

Inference

Simulator

Renderer

Scene B

Inference

Simulator

Renderer

Scene D

Inference

Simulator

Renderer

Scene A

Inference

Simulator

Renderer

Scene B

Inference

Simulator

Renderer

Scene D

Inference

Basic design: parallelize over workers

Simulator

Renderer

Scene A

Inference

Simulator

Renderer

Scene C

Inference

Simulator

Renderer

Scene D

Inference

Ask yourself:
1. What data gets communicated?

2. Can the system scale to sufficient parallelism?

3. Are there sync bottlenecks

Learning

learning: update policy model
from rollouts)

Uy’

Stanford CS348K, Spring 2023



Example: Rapid (OpenAl)

Optimizer + Connected Rollout Workers (x256)

Rollout Workers
~500 CPUs

Run episodes
» 80% against current bot

» 20% against mixture of past versions Rollout
. > Data
Randomized game settings Samples

Push data every 60s of gameplay
- Discount rewards across the 60s using
generalized advantage estimation

Model Parameters

(10M floats)

Eval Workers

~2500 CPUs
Play in various environments Model
for evaluation Parameters

* vs hardcoded “scripted” bot

- vs previous similar bots (used to
compute Trueskill)

* vs self (for humans to watch
and analyze)

Optimizers

use NCCL2 to
average gradients
at every step.

Gradient

Updates
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lhat modern graphics engines are designed to render
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Low-resolution images with pre-captured lighting
(from Gibson): clearly not state-of-the-art rendering! ;-)
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Design issues

m [nefficient simulation/rendering: rendering a small image does not make good use of a
modern GPU (rendering throughput is low)

m Duplication of computation and memory footprint (for scene data) across renderer/
simulator instances
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Often the best way to reduce communication / increase efficiency
is to make the most efficient use out of one node

Can we make simulation faster?
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Trend: cracking open the black box: 100x end-to-end
training speedups using optimized “batch simulators”

New simulators specifically designed to efficiently execute 1000°s of worlds at
once on a single GPU or multi-core CPU

BPS3D: Pointgoal Navigation CuLE: Atari on the GPU Isaac Gym: GPU Physics
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Main idea: design a renderer that executes rendering for 100s-1000’s of unique
rollouts in a single request

Inference/training, simulation, and rendering all operate on batches of N requests (rollouts)

Efficient bulk communication between three components

Learning +
Inference

—

N actions
ﬁ

.

Batch Simulator

Worker
Thread

Worker
Thread

Scene
Metadata

Worker
Thread

Scene
Metadata

N

N states l

-,

N frames

N states
q

Batch Renderer
N environment states

Scene
Assets

v J v

00 Scene Assets

New Scene | New Scene
Assets e.9e | Assets
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Opportunities provided by a batch rendering interface

m Wide parallelism: rendering each scene in a batch is independent
- "Fill up” large parallel GPU with rendering work

- Enables graphics optimizations like pipelining frustum culling (removing off-screen geometry
before drawing it) for one environment with rendering of another

m Footprint optimizations: rendering requests in a batch can share same geometry assets
- Significantly reduces memory footprint, enables large batch size
- N~ 256-1024 (per GPU) in our experiments: fills up large GPU
- Limit number of unique scenes in a batch to K< N scenes.
- GPU RAM and scene size determines K

m Amortize communication: rendering requests in a batch can be packaged and drawn together
- Render frames in batch to tiles in a single large frame buffer to avoid state update
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2.5B frames of experience in 48 hrs on a single RTX 3090

"PointGoal Navigation™ in Gibson environments (Habitat Labs)

Run render->infer->train loop

runs at 13,000 fps per GPU 100%
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"Large Batch Simulation for Deep Reinforcement Learning”, B. Shacklett, E. Wijmans, A.Petrenko, M. Savva, D. Batra, V. Koltun, K. Fatahalian, ICLR 2021



NVIDIA Issac Gym

Same idea of batched many-environment execution, applied to physics
Simulate 100’s to 1000’s of world environments simultaneously on the GPU
Current state for all environments packaged in a single PyTorch tensor

User can write GPU-accelerated loss/reward functions in PyTorch on this tensor
Result: tight loop of simulate/infer/train

env, env, env,

\J

franka, table, box, franka, table, box,

bodys body,j,
(left finger) ? (right finger)
EESAEEREERETEEEE
\ Y ) ! \ A .’ .

‘,
|’ . |" "' l"

Py Qo Vg dg P1o Q10 Vio d1g

Stanford (5348K, Spring 2023



Tonight’s reading

m How would you design game engine APls to support creation of custom games that
execute efficiently in “batch simulation” mode

m All game logic, not just rendering and physics

Open Source
CPU Reference

- 32-thread CPU
Optimized C++

GPU batched
Implementation

2,000K

1,500K

1,000K

Steps/sec

500K

OK

HideSeek

6900 160K

‘

1.9M

25M

18.75M

12.5M

Steps/sec

0.25M

OM

Hanabi Card Game

1300

21M

40M

30M

20M

Steps/sec

10M

OM

Overcooked
40M
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Part 3:
Growing interest in general purpose agent skills
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Interesting end-to-end systems research questions

m How much fidelity is needed to train models that successfully transfer into the real-world?

- Do we even need photorealistic quality (or advanced physics) to train policies that work in
the real world?

B |sit better to spend compute on higher fidelity simulation, or use the budget to train on a
wider range of simulations, or even many tasks
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Example Sim2Real experiments: RoboTHOR e 20

Simulation

Feature
‘ ) . Space
‘Rertar:\ent v ’. F Nearest

L - e ‘.. ' ~\ " Neighbor
Virtual environment Real world photo of corresponding \Zp‘ﬁmmj 2o 0 Sy U E

° ° Wiy PP 4 S B ”'- : ::" 7‘": o
environment (in lab) "
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Neighbor
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Understanding the effects of sim2real gap Catopadhyay 21

What parts of real-world sensing do we really need to model in simulation?

Agent Operating in
a RoboTHOR Scene

Clean Frame [___ Camera Crack |

T DN

Example visual corruptions

Defocus Blur

(with Drift)
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Value of diversity of scenes = o ol rod o
Example: ProcTHOR

Procedurally generated floorpans, furniture

arrangements, random material assigmments, etc.




Greater diversity of scenes wins
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Better off training on a large number of highly diverse scenes than a small number of photorealistic ones



Value of diversity of tasks

DeepMind’s XLand: procedurally generate terrains and the rules of the game.

Wide range of “games” requiring different strategies and skills can be

defined by specifying goals for agents

Example 1: agent 1 must find a yellow

sphere and hold it, while agent 2 must stand by a yellow pyramid
g1 :=hold(me, yellow sphere)

gs :=near (me, yellow pyramid)

Example 2: goals for hide and seek: Agent 1 should move to see its

opponent. Agent 2's goal is to not be seen by agent 1.
g1 := see(me, opponent)

gs :=not (see(opponent, me))

Example 3: encourage teamwork. Give both agents the same goal of
moving one object by another

g1 :=near(yellow pyramid, yellow sphere)
go :=near(yellow pyramid, yellow sphere)

The result of this training process is an agent that is gen-
erally capable across the held-out evaluation space. Qual-
itatively, we observe the agent exhibiting behaviours that
are generally applicable, rather than optimal for any specific
task. Examples of such behaviours include: experimentation
through directed exploration until the agent recognises a
rewarding state has been achieved; seeking another player
out to gather information of its state irrespective of its goal;
and tagging another player if it is holding an object that
is related to the agent’s goal irrespective of that player’s
intention. We also probe quantitatively the behaviour of
agents in test-time multi-agent situations and see evidence
of cooperation emerging with training. In addition to the
agent exhibiting zero-shot capabilities across a wide eval-
uation space, we show that finetuning on a new task for
just 100 million steps (around 30 minutes of compute in our
setup) can lead to drastic increases in performance relative
to zero-shot, and relative to training from scratch which
often fails completely.

-------------------------
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Value of “open worlds”: many possible tasks
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Example: learning to perform many MineCraft tasks (MineDojo)
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Takeaways

m Higher performance simulation = higher fidelity simulation

- Interest in high-fidelity simulation to learn skills from inputs that similar to real world
inputs (minimize “sim2real” gap)

- The hope is that skills transfer to real world

m Higher performance simulation = many more [lower fidelity] simulations

- To learn “foundational” skills and knowledge, evidence suggests more diversity in
environments and tasks is better

- Train pretty-good-across-the-board “generalist” agents that are a good starting point
to be quickly “fine tuned” or adapted to specific tasks in the future
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