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Today’s agenda
Much of this class involved discussing the Snorkel paper(s) from the reading list
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PyTorch/TensorFlow/MX.Net 
data-!ow graphs

Key abstraction: a program is a DAG of (large 
granularity) operations that consume and 
produce N-D tensors
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Services provided by ML “frameworks”
Functionality: 
- Implementations of wide range of useful operators 

- Conv, dilated conv, relu, softmax, pooling, separable conv, etc. 
- Implementations of various optimizers:  

- Basic SGD, with momentum, Adagrad, etc. 
- Ability to compose operators into large graphs to create models 
- Carry out back-propagation 
Performance: 
- High-performance implementation of operators (layer types)  
- Scheduling onto multiple GPUs, parallel CPUs (and sometimes multiple machines) 
- Automatic sparsi"cation and pruning 

Meta-optimization: 
- Hyper-parameter search 
- More recently: neural architecture search
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How to improve system 
support for ML?

List of papers at 
MLSys 2020 Conference

Hardware/software for… 
faster inference? 
faster training?

Compilers for fusing layers, 
performing code optimizations?
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Today’s theme
Today, in many domains large collections of unlabeled data are readily accessible 

But labels for the data (supervision) is extremely precious 

Implication: ML engineers are interested in using any means necessary to acquire 
sources of supervision
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Today’s problem setup

Pre-trained models 
(for other tasks) Huge corpus of unlabeled data Abundant 

Compute
Perhaps with a sparse set of human labels

Goal: generate large amounts of supervision for use in training a 
model for a new task of interest

Given:
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One research thrust: making human labelers more e#cient
Example: “extreme clicking” is a faster way to de"ne an object bounding box AND IT ALSO gives four points on 
the object’s silhouette 

[Source: Papadopoulos et al. ICCV 2017]

5x faster for humans to label
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Amplify sparse human labels: 
Automatically transfer labels from labeled data 
points to “similar” unlabeled data points
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Data augmentation

[Source: https://medium.com/@thimblot/data-augmentation-boost-your-image-dataset-with-few-lines-of-python-155c2dc1baec]

Apply category-preserving transformations to images to increase size of labeled dataset.

[Image credit: Ho et al. ICML 2019]
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Must be mindful of which transformations are label 
preserving for a task
Example: iNaturalist dataset

Is color change a good data 
augmentation?
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Label transfer via visual similarity

https://blog.waymo.com/2020/02/content-search.html

What are good ways to de"ne similar?

Saguaro cactus

“Oversize load"

visually similar

has same text

If I know this image contains a cactus, then visually similar images in my unlabeled collection likely 
also contain a cactus as well.
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Label transfer via label propagation
Given graph of unlabeled data points 
- e.g., nodes = images, edge weights given by visual similarity 

“Di$use” sparse labels onto unlabeled nodes 

[Image credit: https://www.cylynx.io/blog/e#cient-large-graph-label-propagation-algorithm/]
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Key idea in all these techniques: 
bringing in additional priors 

Priors from previous examples: 

1. Similar images likely have the same label (knn, label prop, clustering) 

2. Certain transformations on data point will not change its label 
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Using a trained model to supervise itself
Example: omni-supervised learning 
Train original model using smaller labeled training set  
Evaluate model on di$erent augmentations of unlabeled image 

- Ensemble model’s predictions to estimate “ground truth” label for image

Data Distillation: Towards Omni-Supervised Learning

Ilija Radosavovic Piotr Dollár Ross Girshick Georgia Gkioxari Kaiming He

Facebook AI Research (FAIR)

Abstract

We investigate omni-supervised learning, a special

regime of semi-supervised learning in which the learner ex-

ploits all available labeled data plus internet-scale sources

of unlabeled data. Omni-supervised learning is lower-

bounded by performance on existing labeled datasets, of-

fering the potential to surpass state-of-the-art fully super-

vised methods. To exploit the omni-supervised setting, we

propose data distillation, a method that ensembles predic-

tions from multiple transformations of unlabeled data, us-

ing a single model, to automatically generate new training

annotations. We argue that visual recognition models have

recently become accurate enough that it is now possible to

apply classic ideas about self-training to challenging real-

world data. Our experimental results show that in the cases

of human keypoint detection and general object detection,

state-of-the-art models trained with data distillation sur-

pass the performance of using labeled data from the COCO

dataset alone.

1. Introduction

This paper investigates omni-supervised learning, a
paradigm in which the learner exploits as much well-
annotated data as possible (e.g., ImageNet [6], COCO [24])
and is also provided with potentially unlimited unlabeled
data (e.g., from internet-scale sources). It is a special regime
of semi-supervised learning. However, most research on
semi-supervised learning has simulated labeled/unlabeled
data by splitting a fully annotated dataset and is there-
fore likely to be upper-bounded by fully supervised learn-
ing with all annotations. On the contrary, omni-supervised
learning is lower-bounded by the accuracy of training on
all annotated data, and its success can be evaluated by how
much it surpasses the fully supervised baseline.

To tackle omni-supervised learning, we propose to per-
form knowledge distillation from data, inspired by [3, 18]
which performed knowledge distillation from models. Our
idea is to generate annotations on unlabeled data using a
model trained on large amounts of labeled data, and then
retrain the model using the extra generated annotations.
However, training a model on its own predictions often pro-
vides no meaningful information. We address this problem
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Figure 1. Model Distillation [18] vs. Data Distillation. In data

distillation, ensembled predictions from a single model applied to

multiple transformations of an unlabeled image are used as auto-

matically annotated data for training a student model.

by ensembling the results of a single model run on different
transformations (e.g., flipping and scaling) of an unlabeled
image. Such transformations are widely known to improve
single-model accuracy [20] when applied at test time, indi-
cating that they can provide nontrivial knowledge that is not
captured by a single prediction. In other words, in compar-
ison with [18], which distills knowledge from the predic-
tions of multiple models, we distill the knowledge of a sin-
gle model run on multiple transformed copies of unlabeled
data (see Figure 1).

Data distillation is a simple and natural approach based
on “self-training” (i.e., making predictions on unlabeled
data and using them to update the model), related to which
there have been continuous efforts [36, 48, 43, 33, 22, 46,
5, 21] dating back to the 1960s, if not earlier. However,
our simple data distillation approach can become realistic
largely thanks to the rapid improvement of fully-supervised
models [20, 39, 41, 16, 12, 11, 30, 28, 25, 15] in the past
few years. In particular, we are now equipped with accu-
rate models that may make fewer errors than correct pre-
dictions. This allows us to trust their predictions on unseen
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Figure 7. Object detection annotations generated on un-120.

6. Experiments on Object Detection

We investigate the generality of our approach by apply-
ing it to another task with minimal modification. We per-
form data distillation for object detection on the COCO
dataset [24]. Here our data splits involve co-35/80/115
as defined above. We test on minival.

6.1. Implementation

Our object detector is Faster R-CNN [30] with the FPN
backbone [23] and the RoIAlign improvement [15]. We
adopt the joint end-to-end training as described in [31].
Note that this is unlike in our keypoint experiments where
we froze the RPN stage (which created the same set of
boxes for keypoint ensembling). To produce the ensem-
ble results, we simply take the union set of the boxes pre-
dicted under different transformations, and combine them
using bounding box voting [10] (a process similar to non-
maximum suppression that merges the suppressed boxes).
This ensembling strategy on the union set of boxes shows
the flexibility of our method: it is agnostic to how the re-
sults from multiple transformations are aggregated.

The object detection task involves multiple categories. A
single threshold of score for generating labels may lead to
strong biases. To address this issue, we set a per-category
threshold of score confidence for annotating objects in the
unlabeled data. We choose a threshold for each category
such that its average number of annotated instances per im-
age in the unlabeled dataset matches the average number of
instances in the labeled dataset. Figure 7 shows some ex-
amples of the generated annotations on un-120.

6.2. Object Detection Results

We investigate data distillation in two cases (Table 4):

labeled unlabeled AP AP50 AP75 APS APM APL

co-35 30.5 51.9 31.9 15.2 33.0 40.6

co-35 co-80 32.3 53.8 33.9 16.8 35.5 43.7

co-115 37.1 59.1 39.6 20.0 40.0 49.4

(a) Small-scale data. Data distillation is performed on co-35 with la-
bels and co-80 without labels, vs. fully-supervised learning performed on
co-35 and co-115. The backbone is ResNet-50.

backbone DD AP AP50 AP75 APS APM APL

ResNet-50 37.1 59.1 39.6 20.0 40.0 49.4

ResNet-50 ! 37.9 60.1 40.8 20.3 41.6 50.8

ResNet-101 39.2 61.0 42.3 21.7 42.9 52.3

ResNet-101 ! 40.1 62.1 43.5 21.7 44.3 53.7

ResNeXt-101-32×4 40.1 62.4 43.2 22.6 43.7 53.7

ResNeXt-101-32×4 ! 41.0 63.3 44.4 22.9 45.5 54.8

(b) Large-scale data. Data distillation (DD) is performed on co-115 with
labels and un-120 without labels, comparing with the supervised counter-
parts trained on co-115.

Table 4. Data distillation for COCO object detection. Box AP is

reported on COCO val2017.

(i) Small-scale data: we use co-35 as the labeled data and
treat co-80 as unlabeled.

(ii) Large-scale data: we use co-115 as the labeled data
and un-120 as unlabeled.

Small-scale data. Similar to the keypoint case, the semi-
supervised learning result of data distillation (Table 4a) is
higher than that of fully-supervised training in co-35, but
upper-bounded by that in co-115. However, in this case,
the data distillation is closer to the lower bound (32.3 vs.
30.5) and farther away from the upper bound. This result
requires further exploration, which we leave to future work.

Large-scale data. Table 4b shows the data distillation re-
sult using co-115 as labeled and un-120 as unlabeled
data, comparing with the fully-supervised result in
co-115. Our method is able to improve over the fully-
supervised baselines. Although the gains may appear small
(0.8-0.9 points in AP and 0.9-1.1 points in AP50), the signal
is consistently observed for all network backbones and for

all metrics. The biggest improvement is seen in the APM

metric, with an increase of up to 1.8 points (from 43.7 to
45.5 in ResNeXt-101-32×4).

The results in Table 4a and 4b suggest that object de-
tection with unlabeled data is a more challenging task, but
unlabeled data with data distillation can still help.

7. Conclusion

We show that it is possible to surpass large-scale super-
vised learning with omni-supervised learning, i.e., using
all available supervised data together with large amounts
of unlabeled data. We achieve this by applying data

distillation to the challenging problems of COCO object
and keypoint detection. We hope our work will attract more
attention to this practical, large-scale setting.
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▪ Re-train model on both labeled images AND estimated labels from ensemble

[Source: Radosavovic et al. CVPR 2018]
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Modern trend: unsupervised pre-training
Unsupervised pre-training at scale (using lots of data and using large models) learns good representations 

e.g. SimCLR, based on contrastive loss 

Give training image x, apply augmentation t(x) (crop, resize, !ip)

[Image credit:SimCLR paper, Chen et al. NeurIPS 2020]

▪ Train DNN with contrastive loss that encourages projection of di$erent 
transformations of the same image x to be close (g(f(t(x))) close to 
g(f(t’(x)))), transformations of di$erent images to be far.
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Providing supervision by writing programs
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Encode external priors in programs
Example: temporal consistency prior: the state of world should not change signi"cantly from frame to frame

▪ Example: domain-knowledge prior: objects like cars cannot overlap in space

Model Assertions for Monitoring and Improving ML Models

(a) Frame 1 (b) Frame 2

Figure 6. Two example frames from the same scene with an
inconsistent attribute (the identity) from the TV news use case.

(a) Example error 1.

(b) Example error 2.

Figure 7. Examples errors when three boxes highly overlap (see
multibox in Section 5). Best viewed in color.

A EXAMPLES OF ERRORS
CAUGHT BY MODEL ASSERTIONS

In this section, we illustrate several errors caught by the
model assertions used in our evaluation.

First, we show an example error in the TV news use case in
Figure 6. Recall that these assertions were generated with
our consistency API (§4). In this example, the identifier is
the box’s sceneid and the attribute is the identity.

Second, we show an example error for the visual analytics
use case in Figure 7 for the multibox assertion. Here, SSD
erroneously detects multiple cars when there should be one.

Third, we show two example errors for the AV use case in
Figure 8 from the multibox and agree assertions.

(a) Example error flagged by multibox. SSD predicts three
trucks when only one should be detected.

(b) Example error flagged by agree. SSD misses the car on the
right and the LIDAR model predicts the truck on the left to be too
large.

Figure 8. Examples of errors that the multibox and agree

assertions catch for the NuScenes dataset. LIDAR model boxes
are in pink and SSD boxes are in green. Best viewed in color.

B CLASSES OF MODEL ASSERTIONS

We present a non-exhaustive list of common classes of model
assertions in Table 5 and below. Namely, we describe how
one might look for assertions in other domains.

Our taxonomization is not exact and several examples will
contain features from several classes of model assertions.
Prior work on schema validation (Polyzotis et al., 2019;
Baylor et al., 2017) and data augmentation (Wang & Perez,
2017; Taylor & Nitschke, 2017) can be cast in the model
assertion framework. As these have been studied, we do not
focus on these classes of assertions in this work.

Consistency assertions. An important class of model as-
sertions checks the consistency across multiple models or
sources of data. The multiple sources of data could be the
output of multiple ML models on the same data, multiple
sensors, or multiple views of the same data. The output
from the various sources should agree and consistency model
assertions specify this constraint. These assertions can be
generated via our API as described in §4.

Domain knowledge assertions. In many physical domains,
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[Source: Kang et al. MLSys 2020]

Frame 1 Frame 2 Frame 3
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DB queries as concept “detectors”
("nd elements in database matching 
this predicate)

[Source: Fu et al. 2019]
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Example: three-person panels
(three faces, bounding boxes greater than 30% of screen height, in horizontal alignment) 
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Today’s discussion: 
using weak supervision via “data programming”
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A few more thoughts on systems for ML model development
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ML model development is an iterative process

Task Spec Data Training Points Training Labels Model Outputs

New Architectures,
Augmentations,

Training Procedure

New Supervision Sources

(Sec 6.1) (Sec 6.1) (Sec 5) (Sec 4) (Sec 6.1, 6.2) (Sec 5)

(Sec 5)

(Sec 6.1)

(Sec 4)

(Sec 6.1)

Thrust 1: Converting SME Knowledge Into Large-Scale Supervision
Thrust 2: Rapid Model Improvement Through Discovery of Critical Data

Task Inputs
Data

Selection
Generate

Supervision
Train

Model
Validate
Model

Identify
Important Data

Increase
Supervision

Change
Training Process

Figure 2: Illustration of key actions performed during model development. Boxes are actions, and arrows
between the boxes are outputs between di↵erent steps. Our three thrusts support various parts of the
development pipeline, highlighted with section labels and box colors.

Throughout all aspects of the project, we seek to define new abstractions and interfaces for
key ML development tasks. These abstractions should be su�ciently high to enable advanced
optimizations and provide opportunities to automate key actions, but we wish to keep the
SME in control of the overall model design process so as to leverage the SME’s unique problem
domain intuition and insight as necessary.

3 System Support for Iterative Model Development

An example workflow. To illustrate the complexity of a modern ML model development process
and highlight opportunities for scaling, consider the example of a health care scientist (the SME)
seeking to create a model for detecting a rare pathology in medical imaging data. The scientist
starts with an initial definition of the problem, has access to a large collection of image data (e.g.,
CT scans from a large population), and has taken to the time to manually identify a small number
of examples of the pathology in this collection.

Typically, an ML engineer would then work with the SME to translate the problem description
into an ML task (e.g., classification), select an appropriate model architecture for the task, and
train the model using the SME’s labeled examples. In the future platforms we envision, the actions
of choosing the right model architecture, data augmentations, and training hyperparameters can be
carried out by an automated model search process which removes the need to interface with an ML
engineer, but incurs the high computational cost of exploring many possibilities. While “autoML”
platforms provide similar functionality today [1, 11], in practice this is only a first step toward how
additional large-scale computation can accelerate the model design process.

For example, the model may perform poorly due to insu�cient training data. In a traditional
workflow, the SME might be tasked to manually browse through large databases of images to find
additional instances of the rare pathology. The systems we envision (Thrust 2) will help the SME
“mine” for these valuable examples by querying the image dataset for examples with similar (but not
too similar) appearance to images known to feature the pathology. These systems could also help
the SME identify modes in the dataset to obtain good sample diversity, and help the SME identify
subsets of the data that are particularly critical for the model to have good accuracy (e.g., specific
forms of the pathology that are treatable if caught early). These systems will run continuously
on large datasets throughout the development process, continuously identifying potentially useful
examples in these collections, saving the SME time previously used for manual data exploration.

4
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Example: does TensorFlow help with data curation?
“We cannot stress strongly enough the importance of good training data for this 
segmentation task: choosing a wide enough variety of poses, discarding poor 
training images, cleaning up inaccurate [ground truth] polygon masks, etc. With 
each improvement we made over a 9-month period in our training data, we 
observed the quality of our defocused portraits to improve commensurately.”
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Thought experiment: 
I ask you to train a car or person detector for a speci"c intersection
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Fig. 1: Images from three video streams captured by stationary cameras over a span of
several days (each row is one stream). There is significant intra-stream variance due to
time of day, changing weather conditions, and dynamic objects.

the context of fixed-viewpoint video streams, is challenging due to distribution
shift in the images observed over time. Busy urban scenes, such as those shown
in Fig. 1, constantly evolve with time of day, changing weather conditions, and
as di↵erent subjects move through the scene. Therefore, an accurate camera-
specialized model must still learn to capture a range of visual events. We make
two salient observations: each camera sees a tiny fraction of this general set of
images, and this set can be made even smaller by limiting the temporal win-
dow considered. This allows one to learn dramatically smaller and more e�cient
models, but at the cost of modeling the non-stationary distribution of imagery
observed by each camera. Fortunately, in real-world settings, scene evolution oc-
curs at a su�ciently slow rate (seconds to minutes) to provide opportunity for
online adaptation.

Our fundamental approach is based on widely-used techniques for model
distillation, whereby a lightweight “student” model is trained to output the pre-
dictions of a larger, high-capacity “teacher” model. However, we demonstrate
that naive approaches for distillation do not work well for camera specializa-
tion because of the underlying non-stationarity of the data stream. We propose
a simple, but surprisingly e↵ective, strategy of online distillation. Rather than
learning a student model on o✏ine data that has been labeled with teacher
predictions, train the student in an online fashion on the live data stream, in-
termittently running the teacher to provide a target for learning. This requires
a judicious schedule for running the teacher as well as an online adaption algo-
rithm that can process correlated streaming data. We demonstrate that existing
o✏ine solvers when carefully tuned and used in the online setting are as accurate
as the best o✏ine model trained in hindsight (e.g., with low regret [3]). Our final
approach learns compact students that perform comparably to high capacity
models trained o✏ine but o↵ers predictably low-latency inference (sub 20 ms)
and an overall 7.8⇥ reduction in computation time.
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Suggested “going further” readings

See Overton (from Apple) and Ludwig (from Uber) papers listed under 
suggested readings for today’s lecture.


