Lecture 9: **Generating Supervision**

Visual Computing Systems Stanford CS348K, Spring 2023

Today's agenda

Much of this class involved discussing the Snorkel paper(s) from the reading list

PyTorch/TensorFlow/<u>MX.Net</u> data-flow graphs

Key abstraction: a program is a DAG of (large granularity) operations that consume and produce N-D tensors

Services provided by ML "frameworks"

Functionality:

- Implementations of wide range of useful operators
 - Conv, dilated conv, relu, softmax, pooling, separable conv, etc.
 - Implementations of various optimizers:
 - Basic SGD, with momentum, Adagrad, etc.
- Ability to compose operators into large graphs to create models
- **Carry out back-propagation**
- **Performance:**
 - High-performance implementation of operators (layer types)
 - Scheduling onto multiple GPUs, parallel CPUs (and sometimes multiple machines)
 - Automatic sparsification and pruning
- **Meta-optimization:**
 - Hyper-parameter search
 - More recently: neural architecture search

How to improve system support for ML?

Hardware/software for... faster inference? faster training?

Compilers for fusing layers, performing code optimizations?

List of papers at **MLSys 2020 Conference**

Mon Mar 02, 2020									
Time	Ballroom A	T							
07:00 AM		E							
(Breaks)		Ļ							
07:45 AM	Opening Remarks								
08.00 AM (Orals)	Distributed and Parallel Learning	┢							
00.00 / 111 (010.0)	Algorithms								
	A System for Massively Parallel								
	Hyperparameter Tuning								
08:25 AM (Orals)	PLink: Discovering and Exploiting	┢							
,	Locality for Accelerated Distributed								
	Training on the public Cloud								
08:50 AM (Orals)	Federated Optimization in	Γ							
	Heterogeneous Networks								
09:15 AM (Orals)	BPPSA: Scaling Back-propagation by								
	Parallel Scan Algorithm								
09:40 AM (Orals)	Distributed Hierarchical GPU Parameter								
	Ads Systems								
10:30 AM (Orale)	Efficient Medal Training	+							
(01013)									
	Resource Elasticity in Distributed Deep								
10.55 AM (Orals)	SLIDE : In Defense of Smart Algorithms	╀							
10.007 (01413)	over Hardware Acceleration for Large-								
	Scale Deep Learning Systems								
11:20 AM (Orals)	FLEET: Flexible Efficient Ensemble	t							
	Training for Heterogeneous Deep Neural								
	Networks								
11:45 AM (Orals)	Breaking the Memory Wall with Optimal								
01-00 DM		╇							
(Invited Talks)	Theory and Systems for Weak								
02:30 PM (Orals)	Efficient Informed and Model Conving	┢							
02.001 m (014.0)	Can								
	What is the State of Neural Network								
	Pruning?								
02:55 PM (Orals)	SkyNet: a Hardware-Efficient Method for								
,	Object Detection and Tracking on								
	Embedded Systems								
03:20 PM (Orals)	MNN: A Universal and Efficient	T							
	Inference Engine								
03:45 PM (Orals)	Willump: A Statistically-Aware End-to-								
	end Optimizer for Machine Learning								
04:20 PM (Orolo)	Interence	╀							
04.30 FIVI (OTAIS)	Model / Data Quality and Privacy								
	Attention-based Learning for Missing								
04:55 PM (Orole)		╀							
	Privacy-Preserving Bandits	ļ							
05.20 Pivi (Orais)	Understanding the Downstream								
05:45 PM (Orole)	Model Acceptions for Maritaria	╀							
00.40 Pivi (Orais)	Improving ML Models								
06:00 PM		╀							
(Demonstrations)		1							

Tue Ma	r 03, 2020				
Time	Ballroom A				
07:00		B			
AM (Brooke)					
(Breaks)	MI and a second state and show attack 9 MI and to the	┝			
AM	NL programming models and abstractions & ML applied to				
(Orals)					
	AutoPhase: Juggling HLS Phase Orderings in Random Forests with Deep Reinforcement Learning				
08:25	Automatically batching control-intensive programs for modern				
AM	accelerators				
(Orals)		⊢			
08:50 AM	Predictive Precompute with Recurrent Neural Networks				
(Orals)					
09:15	Sense & Sensitivities: The Path to General-Purpose Algorithmic	┢			
AM	Differentiation				
(Orals)					
09:40	Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired				
AIVI (Orals)	Neural Networks for Edge Devices				
10:30	Efficient inference and model serving	┢			
AM					
(Orals)	E E				
	Applications				
10:55	Improving the Accuracy, Scalability, and Performance of Graph	Γ			
AM	Neural Networks with Roc				
(Orals)		⊢			
11:20 AM	OPTIMUS: OPTImized matrix MUltiplication Structure for				
(Orals)	Transformer neural network accelerator				
11:45	PoET-BiN: Power Efficient Tiny Binary Neurons	F			
AM					
(Orals)					
01:30 DM	The Emerging Role of Cryptography in Trustworthy Al				
(Invited					
Talks)					
02:30	Quantization of deep neural networks	Γ			
PM					
(Orals)	Memory-Driven Mixed Low Precision Quantization for Enabling				
	Deep Network Inference on Microcontrollers				
02:55	Trained Quantization Thresholds for Accurate and Efficient Fixed-	Γ			
PM	Point Inference of Deep Neural Networks				
(Orals)	District Fact Fact as Fact District Alternative	┞			
03:20 PM	HIPTIDE: Fast End-to-End Binarized Neural Networks				
(Orals)					
03:45	Searching for Winograd-aware Quantized Networks	F			
PM					
(Orals)		L			
04:30 DM	Efficient Model Training 2				
(Orals)					
(01410)	Blink: Fast and Generic Collectives for Distributed ML				
04:55	A Systematic Methodology for Analysis of Deep Learning	Γ			
PM	Hardware and Software Platforms				
(Orals)		┡			
05:20 PM	MotherNets: Rapid Deep Ensemble Learning				
(Orals)					
05:45	MLPerf Training Benchmark	⊢			
PM					
(Orals)					

Today's theme

- Today, in many domains large collections of *unlabeled data* are readily accessible
- But labels for the data (supervision) is extremely precious
- sources of supervision

Implication: ML engineers are interested in using any means necessary to acquire

Today's problem setup

Given:

Pre-trained models (for other tasks)

Goal: generate large amounts of supervision for use in training a model for a new task of interest

Huge corpus of unlabeled data Perhaps with a sparse set of human labels

Abundant Compute

One research thrust: making human labelers more efficient

Example: "extreme clicking" is a faster way to define an object bounding box AND IT ALSO gives four points on the object's silhouette

[Source: Papadopoulos et al. ICCV 2017]

5x faster for humans to label

Amplify sparse human labels: Automatically transfer labels from labeled data points to "similar" unlabeled data points

Data augmentation

Apply category-preserving transformations to images to increase size of labeled dataset.

Horizontal Flip Original [Image credit: Ho et al. ICML 2019]

[Source: https://medium.com/@thimblot/data-augmentation-boost-your-image-dataset-with-few-lines-of-python-155c2dc1baec]

Pad & Crop

Rotate

Must be mindful of which transformations are label preserving for a task

Example: iNaturalist dataset

Is color change a good data augmentation?

ring 2023

Label transfer via visual similarity

If I know this image contains a cactus, then visually similar images in my unlabeled collection likely also contain a cactus as well.

Saguaro cactus

What are good ways to define similar?

visually similar

https://blog.waymo.com/2020/02/content-search.html

Label transfer via label propagation

Given graph of unlabeled data points

- e.g., nodes = images, edge weights given by visual similarity
- "Diffuse" sparse labels onto unlabeled nodes

Key idea in all these techniques: bringing in additional priors

Priors from previous examples:

- 1. Similar images likely have the same label (knn, label prop, clustering)
- 2. Certain transformations on data point will not change its label

Using a trained model to supervise itself

- Example: omni-supervised learning
- Train original model using smaller labeled training set
 e model on different augmentations of unlabeled image
 emble model's predictions to estimate "ground truth" label for image

Re-train model on both labeled images AND estimated labels from ensemble

backbone	DD	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L	_
ResNet-50		37.1	59.1	39.6	20.0	40.0	49.4	
ResNet-50	\checkmark	37.9	60.1	40.8	20.3	41.6	50.8	
ResNet-101		39.2	61.0	42.3	21.7	42.9	52.3	•
ResNet-101	\checkmark	40.1	62.1	43.5	21.7	44.3	53.7	
ResNeXt-101-32 \times 4		40.1	62.4	43.2	22.6	43.7	53.7	•
ResNeXt-101-32 \times 4	\checkmark	41.0	63.3	44.4	22.9	45.5	54.8	

[Source: Radosavovic et al. CVPR 2018]

Modern trend: unsupervised pre-training

- Unsupervised pre-training at scale (using lots of data and using large models) learns good representations
- e.g. SimCLR, based on contrastive loss
- Give training image x, apply augmentation t(x) (crop, resize, flip)

Train DNN with contrastive loss that encourages projection of different transformations of the same image x to be close (g(f(t(x))) close to g(f(t'(x)))), transformations of different images to be far.

[Image credit:SimCLR paper, Chen et al. NeurIPS 2020]

Providing supervision by writing programs

Encode external priors in programs

Frame 1

Example: domain-knowledge prior: objects like cars cannot overlap in space

[Source: Kang et al. MLSys 2020]

Example: temporal consistency prior: the state of world should not change significantly from frame to frame

Frame 2

Frame 3

(b) Example error 2.

DB queries as concept "detectors"

(find elements in database matching this predicate)

[Source: Fu et al. 2019]

```
def bernie_and_jake(faces):
 bernie = faces
   .filter(face.name == "Bernie")
 jake = faces
   .filter(face.name == "Jake")
 bernie_and_jake = bernie
     .join(jake,
       predicate = time_overlaps,
       merge_op = span)
return bernie_and_jake
```


Example: three-person panels (three faces, bounding boxes greater than 30% of screen height, in horizontal alignment)

Today's discussion: using weak supervision via "data programming"

Organizational Resources

A few more thoughts on systems for ML model development

ML model development is an iterative process

New Spec, Different Pre-Trained Inputs

Example: does TensorFlow help with data curation?

"We cannot stress strongly enough the importance of good training data for this segmentation task: choosing a wide enough variety of poses, discarding poor training images, cleaning up inaccurate [ground truth] polygon masks, etc. With each improvement we made over a 9-month period in our training data, we observed the quality of our defocused portraits to improve commensurately."

Synthetic Depth-of-Field with a Single-Camera Mobile Phone

NEAL WADHWA, RAHUL GARG, DAVID E. JACOBS, BRYAN E. FELDMAN, NORI KANAZAWA, ROBERT CARROLL, YAIR MOVSHOVITZ-ATTIAS, JONATHAN T. BARRON, YAEL PRITCH, and MARC LEVOY, **Google Research**

(a) Input image with detected face

(c) Mask + disparity from DP

(d) Our output synthetic shallow depth-of-field image

Thought experiment: I ask you to train a car or person detector for a specific intersection

Suggested "going further" readings

See Overton (from Apple) and Ludwig (from Uber) papers listed under suggested readings for today's lecture.

