Lecture 9:

Generating Supervision

Visual Computing Systems
Stanford C5348K, Spring 2023



Today’s agenda

m Much of this class involved discussing the Snorkel paper(s) from the reading list
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PyTorch/TensorFlow/MX.Net
data-flow graphs

m Key abstraction: a program is a DAG of (large
granularity) operations that consume and
produce N-D tensors
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TensorBoard SCALARS IMAGES AUDIO GRAPHS DISTRIBUTIONS HISTOGRAMS EMBEDDINGS TEXT
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Services provided by ML “frameworks”

m Functionality:
- Implementations of wide range of useful operators
- Conv, dilated conv, relu, softmax, pooling, separable conv, etc.
- Implementations of various optimizers:
- Basic SGD, with momentum, Adagrad, etc.
-  Ability to compose operators into large graphs to create models
- Carry out back-propagation
m Performance:
- High-performance implementation of operators (layer types)
- Scheduling onto multiple GPUs, parallel CPUs (and sometimes multiple machines)
- Automatic sparsification and pruning
m Meta-optimization:
- Hyper-parameter search
- More recently: neural architecture search

Stanford CS348K, Spring 2023



How to improve system
support for ML?

Hardware/software for...
faster inference?
faster training?

Compilers for fusing layers,
performing code optimizations?

List of papers at
MLSys 2020 Conference

Mon Mar 02, 2020

Time Ballroom A
07:00 AM Bi
(Breaks)
07:45 AM Opening Remarks
(Breaks)

08:00 AM (Orals)

A System for Massively Parallel
Hyperparameter Tuning

08:25 AM (Orals)

PLink: Discovering and Exploiting
Locality for Accelerated Distributed
Training on the public Cloud

08:50 AM (Orals)

Federated Optimization in
Heterogeneous Networks

09:15 AM (Orals)

BPPSA: Scaling Back-propagation by
Parallel Scan Algorithm

09:40 AM (Orals)

Distributed Hierarchical GPU Parameter
Server for Massive Scale Deep Learning
Ads Systems

10:30 AM (Orals)

Resource Elasticity in Distributed Deep
Learning

10:55 AM (Orals)

SLIDE : In Defense of Smart Algorithms
over Hardware Acceleration for Large-
Scale Deep Learning Systems

11:20 AM (Orals)

FLEET: Flexible Efficient Ensemble
Training for Heterogeneous Deep Neural
Networks

11:45 AM (Orals)

Breaking the Memory Wall with Optimal
Tensor Rematerialization

01:30 PM
(Invited Talks)

Theory and Systems for Weak
Supervision

02:30 PM (Orals)

What is the State of Neural Network
Pruning?

02:55 PM (Orals)

SkyNet: a Hardware-Efficient Method for
Object Detection and Tracking on
Embedded Systems

03:20 PM (Orals)

MNN: A Universal and Efficient
Inference Engine

03:45 PM (Orals)

Willump: A Statistically-Aware End-to-
end Optimizer for Machine Learning
Inference

04:30 PM (Orals)

Attention-based Learning for Missing
Data Imputation in HoloClean

04:55 PM (Orals)

Privacy-Preserving Bandits

05:20 PM (Orals)

Understanding the Downstream
Instability of Word Embeddings

05:45 PM (Orals)

Model Assertions for Monitoring and
Improving ML Models

06:00 PM

IDemonstrations)|

Time Ballroom A

07:00 Br

AM

Breaks)

08:00

AM

Orals)
AutoPhase: Juggling HLS Phase Orderings in Random Forests
with Deep Reinforcement Learning

08:25 |Automatically batching control-intensive programs for modern

AM accelerators

Orals)

08:50 |Predictive Precompute with Recurrent Neural Networks

AM

(Orals)

09:15 |Sense & Sensitivities: The Path to General-Purpose Algorithmic

AM Differentiation

Orals)

09:40 |Ordering Chaos: Memory-Aware Scheduling of Irregularly Wired

AM Neural Networks for Edge Devices

Orals)

10:30

AM

Orals)
Fine-Grained GPU Sharing Primitives for Deep Learning
Applications

10:55 |Improving the Accuracy, Scalability, and Performance of Graph

AM Neural Networks with Roc

Orals)

11:20 |OPTIMUS: OPTImized matrix MUItiplication Structure for

AM Transformer neural network accelerator

Orals)

11:45 |PoET-BiN: Power Efficient Tiny Binary Neurons

AM

Orals)

P1:30 |[The Emerging Role of Cryptography in Trustworthy Al

PM

Invited

Talks)

02:30

PM

(Orals)
Memory-Driven Mixed Low Precision Quantization for Enabling
Deep Network Inference on Microcontrollers

02:55 |Trained Quantization Thresholds for Accurate and Efficient Fixed-

PM Point Inference of Deep Neural Networks

Orals)

03:20 |Riptide: Fast End-to-End Binarized Neural Networks

PM

Orals)

03:45 |Searching for Winograd-aware Quantized Networks

PM

Orals)

04:30

PM

Orals)
Blink: Fast and Generic Collectives for Distributed ML

04:55 |A Systematic Methodology for Analysis of Deep Learning

PM Hardware and Software Platforms

Orals)

05:20 |MotherNets: Rapid Deep Ensemble Learning

PM

Orals)

05:45 |MLPerf Training Benchmark

PM

(Orals) |

Stanford CS348K, Spring 2023



Today’s theme

m Today, in many domains large collections of unlabeled data are readily accessible
m Butlabels for the data (supervision) is extremely precious

m Implication: ML engineers are interested in using any means necessary to acquire
sources of supervision

Stanford CS348K, Spring 2023



Today’s problem setup

Given:

ARG RENE WY
P PR LT A

'y

¥ l‘/". §

Pre-trained models
(for other tasks)

Abundant
Compute

Huge corpus of unlabeled data
Perhaps with a sparse set of human labels

Goal: generate large amounts of supervision for use in training a
model for a new task of interest
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One research thrust: making human labelers more efficient

Example: “extreme clicking” is a faster way to define an object bounding box AND IT ALSO gives four points on
the object’s silhouette

5x faster for humans to label

[Source: Papadopoulos et al. ICCV 2017] Stanford CS348K, Spring 2023



Amplify sparse human labels:
Automatically transfer labels from labeled data
points to “similar” unlabeled data points




Data augmentation

Apply category-preserving transformations to images to increase size of labeled dataset.

Orgnal Horizol Flip Pad & Crop Rotate

[Image credit: Ho et al. ICML 2019]

\ 'v- -iff t. 'w‘
8) ~ 1‘ :

(e
[Source: https://medium.com/@thimblot/data-augmentation-boost-your-image-dataset-with-few-lines-of-python-155c2dc1baec]
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Must be mindful of which transformations are label
preserving for a task '

&

5

1no

Act

Example: iNaturalist dataset

Amphi

Is color change a good data
augmentation?

Animal

Arachn

s [y ’
m».x.

ring 2023




Label transfer via visual similarity

If | know this image contains a cactus, then visually similar images in my unlabeled collection likely
also contain a cactus as well.

4 visually similar

Saqguaro cactus

What are good ways to define similar?

“Oversize load"

https://blog.waymo.com/2020/02/content-search.htmi Stanford CS348K, Spring 2023



Label transfer via label propagation

m Given graph of unlabeled data points Label Propagation Algorithm
- e.g., nodes = images, edge weights given by visual similarity e

Ilterations

m “Diffuse” sparse labels onto unlabeled nodes

Time period 2

Time period 3

[Image credit: https://www.cylynx.io/blog/efficient-large-graph-label-propagation-algorithm/] Stanford 5348K, Spring 2023



Key idea in all these techniques:
bringing in additional priors

Priors from previous examples:

1. Similar images likely have the same label (knn, label prop, clustering)

2. Certain transformations on data point will not change its label

Stanford CS348K, Spring 2023



Using a trained model to supervise itself

m Example: omni-supervised learning / transform A |— model A

transform B model A >

image ensemble

m Train original model using smaller labeled training set

transform C ——> model A

m Evaluate model on different augmentations of unlabeled image

\/
predict

student model >

— Ensemble model’s predictions to estimate “ground truth” label for image

B Re-train model on both labeled images AND estimated labels from ensemble

backbone DD AP AP5O AP75 AP g AP M AP L
ResNet-50 37.1 59.1 396 20.0 400 494
ResNet-50 v | 379 601 408 203 41.6 50.8
ResNet-101 39.2 61.0 423 217 429 523
ResNet-101 v | 401 62.1 435 21.7 443 53.7
ResNeXt-101-32 x4 40.1 624 432 226 4377 53.7
ResNeXt-101-32x4| v | 41.0 63.3 444 229 455 548

[Source: Radosavovic et al. CVPR 2018]

Stanford CS348K, Spring 2023



Modern trend: unsupervised pre-training

m  Unsupervised pre-training at scale (using lots of data and using large models) learns good representations
m e.g.SimCLR, based on contrastive loss *Supervised o *SimCLR (4x)
S e & SimCLR (2x)
m Give training image x, apply augmentation t(x) (crop, resize, flip) 3 oCPCv2-L
5 "0F %simCLR wome  ¢MoCo (4)
- | o ‘ S oPIRL-c2X -
S | i » - 65 eMoCo (2x)
i | Jl ! qCPCv2 PIRL-ens.
5 — PIRL :
Wl % | 'Y lﬁ 2 60 §MoCo o i
s ‘ : \‘ P ' '\w‘“ ('J = 55 elnstDisc otat
B— A El bR @ 25 50 00 200 400 626
Number of Parameters (Millions)
B Train DNN with contrastive loss that encourages projection of different -
. . | Maximize agreement |
transformations of the same image x to be close (g(f(t(x))) close to 2 4 e
g(f(t'(x)))), transformations of different images to be far. 9() T TQC)
h; <— Representation — h ;
A A
f() f()

[Image credit:SimCLR paper, Chen et al. NeurlP$ 2020]
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Providing supervision by writing programs

Stanford CS348K, Spring 2023



Encode external priors in programs

m Example: temporal consistency prior: the state of world should not change significantly from frame to frame

Frame 1 Frame 2 Frame 3

B Example: domain-knowledge prior: objects like cars cannot overlap in space

(a) Example error 1.

(b) Example error 2.

[Source: Kang et al. MLSys 2020] Stanford CS348K, Spring 2023



DB queries as concept “detecto

(find elements in database matching
this predicate)

[Source: Fu et al. 2019]
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def bernie_and_jake(faces):
bernie = faces
.filter(face.name == “Bernie”)
jake = faces
.filter(face.name == “Jake”)

bernie_and_jake = bernie
.join(jake,

time_overlaps,
pan)

return bernie_and_jake

Live

16:
20:
17:

ATBTRUMP %
\- "CLINTON. e

SE COMPLEX ... SENIOR CAPITOL HILL SOURCES TELL FOX NEWS THE SUSPECT W

> I
CLINTON
” TOWN HALL

7 PLACE 4 POLITICS - 2076 LIVE

LIN MANUEL MIRANDA RAPS ABOUT PUERTO RICO'S TROUBLES

PRESIDENTIAL NOMINATION BEFORE THE RNC & SEN. TED CRUZ'S CAMP_4:

BERNIE. ..
THANK YOU. ..
TODAY IN...

Captions

Stanford CS348K, Spring 2023



Example: three-person panels

(three faces, bounding boxes greater than 30% of screen height, in horizontal alignment)

TRUMP: POLITICAL CORRECTNESS IS CRIPPLING
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Today’s discussion:
using weak supervision via “data programming”

Semantic CustomTaggers &
Categorization  Classifiers

1/ N .
Knowledge
Graph Crawlers

. 5§ N N B B B B B B B B B B B

Organizational Resources

Stanford (5348K, Spring 2023



A few more thoughts on systems for ML model development



ML model development is an iterative process

New Spec, Different Pre-Trained Inputs

Different Training Points, Rare Examples, New Failure Modes Identify
Important Data

/ Refine Task | —

\ \ \ /
Define | Task SPC’E Define | pata Data Training Points Generate Training Labels Train | model Outputi Validate
> . > .« o _
Task Inputs Selection Supervision Model Model |~ Increase B
Supervision
A A New Architectures, \
Augmentations,
Training Procedure Change

Training Process

New Supervision Sources

Stanford CS348K, Spring 2023



Example: does TensorFlow help with data curation?

“We cannot stress strongly enough the importance of good training data for this
segmentation task: choosing a wide enough variety of poses, discarding poor
training Images, cleaning up inaccurate [ground truth/ polygon masks, etc. With
each improvement we made over a 9-month period in our training data, we
observed the quality of our defocused portraits to improve commensurately.”

Synthetic Depth-of-Field with a Single-Camera Mobile Phone

NEAL WADHWA, RAHUL GARG, DAVID E. JACOBS, BRYAN E. FELDMAN, NORI KANAZAWA, ROBERT
CARROLL, YAIR MOVSHOVITZ-ATTIAS, JONATHAN T. BARRON, YAEL PRITCH, and MARC LEVOY,

gy

Google Research

(b) Person segmentation mask

’ »
P
i :

ected face (c) Mask + disparity from DP (d) Our output synthetic shallow e

th-of-ﬁél image

R AN\
Al
\n \ :
. \ h
| -! '»I' /
Y
\

(a) Input image with det
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Thought experiment:
| ask you to train a car or person detector for a specific intersection

Jackson eno Calders 12/A812017 12:01:30

Stanford (5348K, Spring 2023




Suggested “going further” readings

m See Overton (from Apple) and Ludwig (from Uber) papers listed under
suggested readings for today’s lecture.

Stanford CS348K, Spring 2023



