
Visual Computing Systems 
Stanford CS348K, Spring 2024

Lecture 11:

Creating AI Agents 
(LLM-based problem solving)



Stanford CS348K, Spring 2024

Today
Trends/techniques using LLMs as engines for generating behaviors for characters 
in virtual worlds 
- Or for problem solving agents in general 

Focus on the principles of evaluation



Stanford CS348K, Spring 2024

Why is there interest in creating agents that 
operate in virtual worlds?



Stanford CS348K, Spring 2023

Train embodied agents in simulation prior to 
deploying them in the real world
Using the virtual world as a proxy for the real world. Note this is NOT the use case we will discuss today.

NV Drive Sim



Stanford CS348K, Spring 2023

Train embodied agents in simulation prior to 
deploying them in the real world
Using the virtual world as a proxy for the real world. Note this is NOT the use case we will discuss today.

Szot et al, NeurIPS 2021



Stanford CS348K, Spring 2024

As virtual characters in interactive experiences
Virtual teammates in team-based games 
Narrative elements 
Coaches, etc.

Dota 2

OpenAI et al, Arxiv 2019 Kaiya et al. 2023



Stanford CS348K, Spring 2024

As proxies for predicting future behavior of real humans
Feedback on game design 
Game testing

Sestini et al. Trans. on Games 2022

Park et al. CHI 2023

Note: in this case, agents in the virtual world 
are being used to simulate the plausible 
behavior of humans in the virtual world. 

The goal is not using virtual world simulation 
to train agents to be capable to operate in the 
real world with humans.



Stanford CS348K, Spring 2024

General design strategies for LLM-based agents



Stanford CS348K, Spring 2024

A simple problem solving activity

The answer is 64 GFLOPS (64 giga-floating point operations per second). 



Stanford CS348K, Spring 2024

Another problem solving activity



Stanford CS348K, Spring 2024

Fine-tuning vs. in-context learning

✓

<latexit sha1_base64="jeMNMzS8PsU1FWkR24iA8gyofpY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRI GSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh6terlfa1Sv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/po+PMA==</latexit>

✓ft

<latexit sha1_base64="2UI8cvO2CoYkqpdxI2Vc6sA2mcU=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cK9gPSUDbbSbt0swm7E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE47vZn7nCbQRiXrESQpBzIZKRIIztJLfwxEg6+cRTvvVmlt356CrxCtIjRRo9qtfvUHCsxgUcsmM8T03xSBnGgWXMK30MgMp42M2BN9SxWIwQT4/eUrPrDKgUaJtKaRz9fdEzmJjJnFoO2OGI7PszcT/PD/D6CbIhUozBMUXi6JMUkzo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7l3Wrx4ua43bIo4yOSGn5Jx45Jo0yD1pkhbhJCHP5JW8Oei8OO/Ox6K15BQzx+QPnM8fwjCRkw==</latexit>

Question 1, solution 1 
Question 2, solution 2 
Question 3, solution 3 
Question 4, solution 4 
Question 5, solution 5 
… 
Question 10,000, solution 10,000

Pretrained LM

Fine-tuned LM

Step 2: Test time execution

✓ft

<latexit sha1_base64="2UI8cvO2CoYkqpdxI2Vc6sA2mcU=">AAAB8nicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cK9gPSUDbbSbt0swm7E6GE/gwvHhTx6q/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmltfWNzq7xd2dnd2z+oHh61TZJpDi2eyER3Q2ZACgUtFCihm2pgcSihE47vZn7nCbQRiXrESQpBzIZKRIIztJLfwxEg6+cRTvvVmlt356CrxCtIjRRo9qtfvUHCsxgUcsmM8T03xSBnGgWXMK30MgMp42M2BN9SxWIwQT4/eUrPrDKgUaJtKaRz9fdEzmJjJnFoO2OGI7PszcT/PD/D6CbIhUozBMUXi6JMUkzo7H86EBo4yokljGthb6V8xDTjaFOq2BC85ZdXSfui7l3Wrx4ua43bIo4yOSGn5Jx45Jo0yD1pkhbhJCHP5JW8Oei8OO/Ox6K15BQzx+QPnM8fwjCRkw==</latexit>

Question X Solution X

Test time:

Solution X

Let’s solve a problem: 
Here are a few examples: 
Question 1, solution 1 
Question 2, solution 2 
Question 3, solution 3 
Now, given new question X, what is the solution? 

✓

<latexit sha1_base64="jeMNMzS8PsU1FWkR24iA8gyofpY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh6terlfa1Sv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/po+PMA==</latexit>

Step 1: Fine tune existing model on 
in-domain training set:

In context learning:Fine-tuning:

Training…



Stanford CS348K, Spring 2024

In-context learning example (failure)



Stanford CS348K, Spring 2024

Chain of thought prompting
Main idea: modify the (in-context) prompted examples so they explicitly break down the solution into steps. By “coaching” 
the model to think step by step, the model is able to be more successful in its reasoning.

No fine-tuning step. 

Step-by-step “training data” harder to come by, 
in-context reasoning needs less of it. 

By running in steps, model can expend more 
computation to solve problem 

More interpretable answer, since chain of 
reasoning is revealed. 

Empirically: chain of thought needs larger 
language models to work.

[Wei et al. 2022]



Stanford CS348K, Spring 2024

Tree of thoughts
Brings together traditional idea of backtracking search and chain-of-thought 
Generate answer step-by-step (like chain of thought) 
But generate multiple possibilities each step 
Choose most promising next step: use LM a judge ** to “score” the possibilities

Chain of thought: Tree of thought:
Judge possibilities: 

Given this question, which step do you think is best? 

OR 

Compute some independent score for each option, 
take best.

[Yao et al. 2023]

** The judge is a form of self re!ection, see later in talk



Stanford CS348K, Spring 2024

Enhancement: dynamic lookup into “Memory”
Challenge: LMs have "nite input context length (e.g., 4096 tokens, etc.) 
Training dataset may have many examples 
Idea: choose examples are the “most relevant” examples to provide the LM as context

Question 1, solution 1 
Question 2, solution 2 
Question 3, solution 3 
Question 4, solution 4 
Question 5, solution 5 
Question 6, solution 6 
Question 7, solution 7 
Question 8, solution 8 
Question 9, solution 9 
Question 10, solution 10 
Question 11, solution 11 
Question 12, solution 12 
Question 13, solution 13 
Question 14, solution 14 
Question 15, solution 15

Let’s solve a problem: 
Here are a few examples: 
Question 2, solution 2 
Question 4, solution 4 
Question 12, solution 12 
Now, given question X, what is the solution?

Solution X✓

<latexit sha1_base64="jeMNMzS8PsU1FWkR24iA8gyofpY=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoseiF48V7Ae0oWy2m3btZhN2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6wEnC/YgOlQgFo2ilVg9HHGm/XHGr7hxklXg5qUCORr/81RvELI24QiapMV3PTdDPqEbBJJ+WeqnhCWVjOuRdSxWNuPGz+bVTcmaVAQljbUshmau/JzIaGTOJAtsZURyZZW8m/ud1Uwyv/UyoJEWu2GJRmEqCMZm9TgZCc4ZyYgllWthbCRtRTRnagEo2BG/55VXSuqh6terlfa1Sv8njKMIJnMI5eHAFdbiDBjSBwSM8wyu8ObHz4rw7H4vWgpPPHMMfOJ8/po+PMA==</latexit>

Question XDB query

￭ Typical query solution: embed question string, K-NN lookup in “vector database”



Stanford CS348K, Spring 2024

Use of memory
Lookup most relevant Q-A examples 

Examples: 
- Robot planning: If the task is making a plan to “cook an egg”, then in-context examples should be as 

relevant as possible. i.e, if you have an example plan for “cook a potato” in the DB then use it. 

- Social decision making: If the task is deciding what to do next when you see Maneesh, DB lookup might be 
retrieve all items in history that record interactions with Maneesh



Stanford CS348K, Spring 2024

Use of memory
Example: retrieving from agent’s history of interactions

[Park et al. 2023]



Stanford CS348K, Spring 2024

Self re!ection
If chain-of-thought was about forcing the model to “show your work”, then self re!ection is about forcing the 
model to “tell me why” you took a particular step 

Model outputs two pieces of information: 

1. A list of actions (steps in a plan) 
- Actions modify “the world” and solicit new observations 

2. A list of thoughts 
- Thoughts do not modify the world, but update the state of the planner (by forcing it to emit more tokens) 

[Yao et al. 2022]



Stanford CS348K, Spring 2024

Self re!ection examples
Example 1: Robot acting in virtual environment 

(Observations are symbolic representation of world state)
Example 2: digital assistant browsing the web 

(Observations are web page contents)

[Yao et al. 2022]



Stanford CS348K, Spring 2024

Another form of re!ection
Reinforcement learning formulation (assumes a world simulator exists) 
Given world state W and task description T (e.g., “get a glass of milk”), the agent executes a plan in the 
simulated world (“rolls out plan”) 
This generates a log of: (action_i, observation_i) pairs, and a “reward” 
Model model is asked to produce an English-language critique of what went wrong (e.g, what and where in 
the log) 

Now retry plan generation with: (W, T, log, reward, critique) 

We’ll see the same idea in the Voyager paper you’ll read tonight.

[Shin et al. 2023]



Stanford CS348K, Spring 2024

General LLM-agent architecture

[Image credit: Lilian Weng]



Stanford CS348K, Spring 2024

Discussion: Generative Agents
Park et al. 2023



Stanford CS348K, Spring 2024

Before we begin the discussion: 
thinking about evaluation



Stanford CS348K, Spring 2024

What is the purpose of evaluation?
Any scienti"c paper proposes a hypothesis.  You can think of a hypothesis as a claim that 
could be falsi"ed with the right data 

The goal of the evaluation is to: 
- Show that the hypothesis is not falsi"ed by experiments  
- Show that the hypothesis is falsi"ed in certain situations, providing bounds on the 

hypothesis 
- Provide the reader a better understanding of the trends, limits, value of the 

hypothesis 



Stanford CS348K, Spring 2024

From our lecture 1 reading…

The scienti"c hypothesis is that 
the proposed organization will 
lead to improved X, Y, Z.

Where X, Y, Z might be one or more 
of performance, developer 
productivity, maintainability, 
reliability, safety, new 
functionality etc.



Stanford CS348K, Spring 2024

From our lecture 1 reading…



Stanford CS348K, Spring 2024

From our lecture 1 reading…



Stanford CS348K, Spring 2024

One more trend: problem solving as an act of program generation 
(grounding plans in worlds using programs)



Stanford CS348K, Spring 2024

Agent planning in virtual worlds
Agents in a virtual world have an action space 

- Example at right is action space from VirtualHome 

Given world state not all actions are permissible 
- Grab <arg1> is not possible if agent is not near <arg1> 

- Open <arg1> is not possible if arg1 can’t be opened

!

“Relax on sofa”



Stanford CS348K, Spring 2024

Plans as valid programs
Example: ProgPrompt [Sing et al. ICRA 23] 

Key ideas: 

LM as a code generator: a plan is a valid python 
program with access to subroutines (action space 
de"ned by subroutines) 

World state is given by a list of available objects 

Through conditional logic, plans can have grounded 
recovery policies: 

￭ If condition is not true, do X 

“Microwave salmon”:



Stanford CS348K, Spring 2024

Another example: ViperGPT
Question: How many mu!ns can each kid have for it to be fair?



Stanford CS348K, Spring 2024

Another example
Example: Code as Policies [Liang et al. 2022] 

Key ideas: 

Program can dynamically query for world state 

Simple example: call detect objects function 

More interesting: point camera at this location and 
take picture, etc. 

“Stack the blocks on the empty bowl”:



Stanford CS348K, Spring 2024

Voyager
Task: do things in Minecraft: make new things, "ght Zombies, etc. 
Big ideas: 
￭ Use LM to generate plans as programs 
￭ Use LM to repair bad programs: (re!ection) 

- Run programs to see if they work: 
- Get compiler feedback and game state feedback 
- Use LM to repair program given feedback 

￭ Use LM to propose new tasks (AI makes the curriculum) 

￭ Hierarchical skill library: new tasks get asked to skill library for use as future subroutines 
- As agent develops: increasing granularity of actions in action space


