Lecture 3:

Finishing up the Camera Pipeline +
Frankencamera Discussion

Visual Computing Systems
Stanford C5348K, Spring 2024

Today

m Finish up description of algorithms for HDR+ pipeline (using slides from last lecture)
m Frankencamera discussion

m Modern Al-based camera pipeline features

Stanford C5348K, Spring 2024

Picking up from last time...
Finishing up the HDR+ pipeline

Frankencamera
(Discussion)

Choosing the “right” representation for the job

m Good representations are productive to use:
- They embody the natural way of thinking about a problem

m Good representations enable the system to provide the application developer useful
services:

- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,
type checking)

- Performance optimizations (parallelization, vectorization, use of specialized hardware)

- Implementations of common, difficult-to-implement functionality (texture mapping and
rasterization in 3D graphics, auto-differentiation in ML frameworks)

Stanford C5348K, Spring 2024

Frankencamera: some 2010 context

m (Cameras were becoming increasingly cheap and ubiquitous
m (Cameras featured increasing processing capability

m Significant graphics research focus on developing techniques for combining multiple
photos to overcome deficiencies of traditional camera systems

Stanford C5348K, Spring 2024

Multi-shot photography example:
high dynamicrange (HDR) images

Source photographs: each photograph has different exposure Tone mapped HDR image

Credit: Debevec and Malik Stanford (5348K, Spring 2024

More multi-shot photography examples

“Lucky” imaging

~ Take several photos in rapid succession:
~ likely to find one without camera shake

no-flash flash result
Flash-no-flash photography [Eisemann and Durand]
(use flash image for sharp, colored image, infer room lighting from no-flash image) Stanford (5348K, Spring 2024

More multi-shot photography examples

Panorama capture

individual images
ot T ———

extended dynamic range panorama

Stanford C5348K, Spring 2024

Frankencamera: some 2010 context

m (Cameras were becoming increasingly cheap and ubiquitous
m (ameras featured increasing processing capability

m Significant graphics research focus on developing techniques for combining multiple photos to
overcome deficiencies of traditional camera systems

m Problem: the ability to implement multi-shot techniques on cameras was limited by camera
system programming abstractions
- Programmable interface to camera was very basic

- Echoed physical button interface to a point-and-shoot camera:

— take_photograph(parameters, output_jpg_buffer)

- Result: on most camera implementations, latency between two photos was high, mitigating utility of multi-shot
techniques (large scene movement or camera shake between shots)

Stanford C5348K, Spring 2024

Frankencamera (F_cam) goals [Adams et al. 2010]

1. Create open, handheld computational camera platform for researchers

2. Define system architecture for computational photography applications

- Motivated by impact of OpenGL on graphics application and graphics hardware development (portable apps despite
highly optimized GPU implementations)

- Motivated by proliferation of smart-phone apps

F2 Reference Implementation Nokia N900 Smartphone Implementation

Note: Apple was not involved in
Frankencamera’s industrial design. ;-)

Stanford C5348K, Spring 2024

F-cam scope

m F-cam provides a set of abstractions that allow for manipulating configurable camera
components

- Timeline-based specification of actions

- Feed-forward system: no feedback loops

m F-cam architecture performs image processing, but...

- This functionality as presented by the architecture is not programmable

- Hence, F-cam does not provide an image processing language (it’s like fixed-function OpenGL)

- Other than work performed by the image processing stage, F-cam applications perform their own image processing
(e.g., on smartphone/camera’s CPU or GPU resources)

Stanford C5348K, Spring 2024

Android Camera2 API

m Take alook at the documentation of the Android Camera2 API, and you'll see
influence of F-Cam.

Stanford C5348K, Spring 2024

Modern smartphone cameras perform
advanced image analysis functions

Image analysis examples from prior lectures:
auto white balance, auto exposure, image denoising

Stanford C5348K, Spring 2024

Auto Focus

Stanford C5348K, Spring 2024

Pinhole camera (no lens)

Pixel P1
Q Scene object 1

Pinhole

Pixel P2

Scene object 2

Sensor plane: (X,Y)

Pinhole

Stanford (5348K, Spring 2024

What does a lens do?

A lens refracts light.

Camera with lens: every pixel accumulates all
rays of light that pass through lens aperture and
refract toward that pixel

In-focus camera: all rays of light from a point in
the scene arrive at a point on sensor plane

Pixel P1

Pixel P2

Sensor plane: (X,Y)

} Scene
‘ object 1
‘ Scene
I O object 2
Lens
Scene
Camera’s focal plane

field of view

Stanford C5348K, Spring 2024

Out of focus camera

Out of focus camera: rays of light from one point in
scene do not converge to the same point on the sensor

| /\
- i ‘ \ Scene
/| O object 1
<4 |
. . |
Circle of \ | I
confusion < ! =1
f |)
¢ = g
i il
: N Scene
| \\!/) Qobjectz
Sensor plane Lens
(X,Y)
Previous sensor

plane location

Stanford C5348K, Spring 2024

What does a lens do?

Recall: pinhole camera you may have made in

science class
(every pixel measures ray of light passing through
pinhole and arriving at pixel)

Pixel P1

Pinhole

Pixel P2

Scene object 2

Pinhole

Sensor plane: (X,Y)

Stanford C5348K, Spring 2024

Common technique to emphasize
subjectin a photo

Cell phone camera lens(es)
(small aperture)

N
A\ C

Portrait mode in modern smartphones

m Smart phone cameras have small apertures
- Good: thin, lightweight lenses, often fast focus

- Bad: cannot physically create aesthetically please photographs with nice bokeh, blurred background

m Answer: simulate behavior of large aperture lens (hallucinate image formed by large aperture lens)

Segmentation

(c) Mask + disparitv from DP

Input image /w detected face Scene Depth Generated image

Estimate (note blurred background.

Blur increases with depth)
Image credit: [Wadha 2018] Stanford CS348K, Spring 2024

What part of image should be in focus?

SQUARE

®
PHOTO

VIDEO

Consider possible heuristics:

Focus on closest scene region

Put center of image in focus

Detect faces and focus on closest/largest face

N
"

)

Image credit: DPReview:

https://www.dpreview.com/articles/9174241280/configuring-your-5d-mark-iii-af-for-fast-action
Stanford C5348K, Spring 2024

Split pixel sensor

|
E
E
E

10 10 When both pixels have the same response,

camera is in focus, why?

v A v b Th & i | R ¢ W ity v vt n Abwiee n i v bW« G

32\

2
N

r

Now two pixels under each microlens (not one)

Image credit: Nikon Stanford (S348K, Spring 2024

Estimating depth

Apple’s TrueDepth camera
(infrared dots projected by phone,

captured by infrared camera) g >\‘\

Multiple RGB cameras

A\

»

Stanford C5348K, Spring 2024

Additional sensing modalities

Fuse information from all modalities to obtain best estimate of depth

iPhone Xr depth estimate iPhone Xr depth estimate
with lights ON in room with lights OFF in room
(No help from RGB)

Stanford C5348K, Spring 2024

Image credit: https://blog.halide.cam/iphone-xr-a-deep-dive-into-depth-47d36ae69a81

IC eraser

Mag

(Feature in recent Google Pixel phones)

Stanford (5348K, Spring 2024

Summary

Stanford C5348K, Spring 2024

Summary

m Computation now a fundamental part of producing a pleasing photograph
m Used to compensate for physical constraints (demosaic, denoise, lens corrections, portrait mode)

m Used to analyze image to estimate system parameters (autofocus, autoexposure, white balance,
depth estimation)

m Used to make non-physically plausible images that have aesthetic merit

= ,’.‘:"“':.‘::T:.‘T'ff‘f_ === .
/‘ o) | \ ‘
; (e il .
AK RN [W% |
. .'v;‘:‘
&; 1.'r \\\“ w y
\ a = | 99)
Sensor output o ’ ‘ *
3 N ‘ ’ - [. ‘ : A=l Lh i) t‘.
(IIRA l’) b L7 i
t i g i A i
o il T e
i] L] 1 £ = '“ il |
i [‘ ’ r ;
J

P N

< e 3
G F e v B T SR S e
R AL .'2_’3.;,\ S e i an

Beautiful image that
impresses your friends
on Instagram

Stanford C5348K, Spring 2024

Image processing workload characteristics

“Pointwise" operations
- output_pixel = f(input_pixel)

“Stencil” computations (e.g., convolution, demosaic, etc.)
- Output pixel (x,y) depends on fixed-size local region of input around (x,y)

Lookup tables

- e.g., contrast s-curve

Multi-resolution operations (upsampling/downsampling)

Fast-Fourier transforms
- We didn’t talk about Fourier domain techniques in class (but Hasinoff 16 reading has many examples)

Long pipelines of these operations

Next class: efficiently mapping these workloads to modern processors

Stanford C5348K, Spring 2024

Abstractions for authoring image processing pipelines

Stanford C5348K, Spring 2024

Choosing the “right” representation for the job (again)

m This was the theme of our Frankencamera discussion

m Good representations are productive to use:
- They embody the natural way of thinking about a problem

m Good representations enable the system to provide the application developer useful
services:

- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,
type checking)

- Performance optimizations (parallelization, vectorization, use of specialized hardware)

- Implementations of common, difficult-to-implement functionality (texture mapping and
rasterization in 3D graphics, auto-differentiation in ML frameworks)

Stanford C5348K, Spring 2024

Consider a single task: sharpen an image

Example: sharpen an image

51 -mJﬂ. . K B

Stanford (S348K, Spring 2024

Four different representations of sharpen

Image input; 0 float input[(WIDTH+2) x (HEIGHT+2)]1; G
Image output = sharpen(input); float output[WIDTH x HEIGHT];
float weights[] = {0., -1., 0.,
0 -1 0] @ P
__ 0., -1., 0.};
F={—1 o5 —1

() ___]_ () for (int j=0; j<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.°f;
for (int jj=0; jj<3; jj++)

Image 1input;
Image output = convolve(input, F);
for (int 11=0; 1i<3; 11++)

tmp += input[(j+jj)*(WIDTH+2) + (i+ii)]

Image input; e *x welghts[jj*3 + 11];
Image output; output[J*WIDTH + 1] = tmp;
output[1][j] }
= F[01[0] * input[1i-1]1[j-1] + }

FIOI[1] * input[i-1]1[7] +

F[O0]1[2] * input[i-1]1[j+1] +

FI11[0] * input[i]l[j-1]1 +

FI11[1] * input[i][j] +

Stanford C5348K, Spring 2024

Image processing tasks from previous lectures

Sobel Edge Detection ~ 3x3 Gaussian blur
—1 0 1 075 .124 .075
Gy=|—-2 0 2| %I F= |.124 204 124
-1 0 1 075 124 075

-1 -2 -1

Gy=10 0 0]=xI 2x2 downsample (via averaging)

1) 1 output[x]l[y]l = (input[2x][2y] + 1nput[2x+1]1[2y] +
]] input[2x][2y+1] + input[2x+1][2y+1]) / 4.f;

_ 2 2
G = \/GX + Gy Gamma Correction
output[x][y] = pow(input[x][y]l, 0.5f);

, LUT-based correction
Local Pixel Clamp output[x][y] = lookup_table[input[x][y]];

float f(image input) {
float min_value = min(min(input[x-11[y]l, input[x+1]1[y]), .
min(input[x]1[y-11, input[x1[y+11)); Histogram
float max_value = max(max(input[x-11[yl, input[x+1]1[y]),
max (input[x][y-1], input[x][y+1]));
clamp(min_value, max_value, input[x][yl);
f(input);

bin[input[x]1[y]]++;

output[x][y]
output[x][y]

Stanford C5348K, Spring 2024

New goals (setting up for next class)

m Be expressive: facilitate intuitive expression of a broad class of image processing applications
- e.g., all the components of a modern camera RAW pipeline

m Behigh performance: want to generate code that efficiently utilizes the multi-core and SIMD
processing resources of modern CPUs and GPUs, and is memory bandwidth efficient

Stanford C5348K, Spring 2024

