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Hardware acceleration of DNN inference/training

Google TPU3

Huawei Kirin NPU

Apple Neural Engine

GraphCore IPU

Ampere GPU with 
Tensor Cores

Intel Deep Learning 
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova 
Cardinal SN10
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Investment in AI hardware

NVIDIA Market Cap 
2014 - 2021
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Review (again) two computer architecture facts
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Compute specialization = energy e!ciency
Rules of thumb: compared to high-quality C code on CPU... 

Throughput-maximized processor architectures: e.g., GPU cores 

- Approximately 10x improvement in perf / watt 

- Assuming code maps well to wide data-parallel execution and is compute bound 

Fixed-function ASIC (“application-speci"c integrated circuit”) 

- Can approach 100-1000x or greater improvement in perf/watt 

- Assuming code is compute bound and 
and is not #oating-point math

[Source: Chung et al. 2010 , Dally 08]

[Figure credit Eric Chung]
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Data movement has high energy cost
Rule of thumb in modern system design: always seek to reduce amount of data movement in a computer 

“Ballpark” numbers 
- Integer op: ~ 1 pJ * 
- Floating point op: ~20 pJ * 
- Reading 64 bits from small local SRAM (1mm away on chip): ~ 26 pJ 
- Reading 64 bits from low power mobile DRAM (LPDDR): ~1200 pJ 

Implications 
- Reading 10 GB/sec from memory: ~1.6 watts 
- Entire power budget for mobile GPU: ~1 watt  

(remember phone is also running CPU, display, radios, etc.) 
- iPhone 6 battery: ~7 watt-hours   (note: my Macbook Pro laptop: 99 watt-hour battery) 
- Exploiting locality matters!!!

* Cost to just perform the logical operation, not counting overhead of instruction decode, load data from registers, etc.

[Sources: Bill Dally (NVIDIA), Tom Olson (ARM)]
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Improving hardware e!ciency 
for DNN operations
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E!ciency estimates *
Estimated overhead of programmability (instruction stream, control, etc.) 

- Half-precision FMA (fused multiply-add) 

- Half-precision DP4 (vec4 dot product) 

- Half-precision 4x4 MMA (matrix-matrix multiply + accumulate)

2000% 
500% 
27%

NVIDIA Xavier (SoC for automotive domain) 

Features a Computer Vision Accelerator (CVA), a custom module for deep 
learning acceleration (large matrix multiply unit) 

~ 2x more e!cient than NVIDIA V100 MMA instruction despite being 
highly specialized component. (includes optimization of gating 
multipliers if either operand is zero)

* Estimates by Bill Dally using academic numbers, SysML talk, Feb 2018
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Ampere GPU SM (A100)
Each SM core has: 
64 fp32 ALUs (mul-add) 
32 int32 ALUs 
4 “tensor cores” 
Execute 8x4 x 4x8 matrix mul-add instr 
A x B + C  for matrices A,B,C 
A, B stored as fp16, accumulation with fp32 C 

There are 108 SM cores in the GA100 GPU: 
6,912 fp32 mul-add ALUs 
432 tensor cores 
1.4 GHz max clock  
= 19.5 TFLOPs fp32 
+ 312 TFLOPs (fp16/32 mixed) in tensor cores

Single instruction to perform 
2x8x4x8 FP16 + 8x8 TF32 ops

The NVIDIA tensor core approach is 
an evolutionary design: add DNN-
speci"c instructions to a traditional 
programmable processor 
(“evolve, don’t replace”)
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Google TPU 
(version 1)



 

Hence, the TPU is closer in spirit to an FPU (floating-point unit) coprocessor than it is to a GPU. 
 

 
 
Figure 1. ​TPU Block Diagram. The main computation part is the Figure 2. ​Floor Plan of TPU die. The shading follows Figure 1.  
yellow Matrix Multiply unit in the upper right hand corner. Its inputs The light (blue) data buffers are 37% of the die, the light (yellow)  
are the blue Weight FIFO and the blue Unified Buffer (UB) and its compute is 30%,  the medium (green) I/O is 10%, and the dark  
output is the blue Accumulators (Acc). The yellow Activation Unit (red) control is just 2%. Control is much larger (and much more  
performs the nonlinear functions on the Acc, which go to the UB. difficult to design) in a CPU or GPU 
 

The goal was to run whole inference models in the TPU to reduce interactions with the host CPU and to be flexible 
enough to match the NN needs of 2015 and beyond, instead of just what was required for 2013 NNs. Figure 1 shows the block 
diagram of the TPU.  

The TPU instructions are sent from the host over the PCIe Gen3 x16 bus into an instruction buffer. The internal blocks 
are typically connected together by 256-​byte​ -wide paths. Starting in the upper-right corner, the ​Matrix Multiply Unit ​ is the 
heart of the TPU. It contains 256x256 MACs that can perform 8-bit multiply-and-adds on signed or unsigned integers. The 
16-bit products are collected in the 4 MiB of 32-bit ​Accumulators​  below the matrix unit. The 4MiB represents 4096, 
256-element, 32-bit accumulators. The matrix unit produces one 256-element partial sum per clock cycle. We picked 4096 by 
first noting that the operations per byte need to reach peak performance (roofline knee in Section 4) is ~1350, so we rounded 
that up to 2048 and then duplicated it so that the compiler could use double buffering while running at peak performance. 

When using a mix of 8-bit weights and 16-bit activations (or vice versa), the Matrix Unit computes at half-speed, and it 
computes at a quarter-speed when both are 16 bits. It reads and writes 256 values per clock cycle and can perform either a 
matrix multiply or a convolution. The matrix unit holds one 64 KiB tile of weights plus one for double-buffering (to hide the 
256 cycles it takes to shift a tile in). This unit is designed for dense matrices. Sparse architectural support was omitted for 
time-to-deploy reasons. Sparsity will have high priority in future designs. 

The weights for the matrix unit are staged through an on-chip ​Weight FIFO​  that reads from an off-chip 8 GiB DRAM 
called ​Weight Memory​  (for inference, weights are read-only; 8 GiB supports many simultaneously active models). The weight 
FIFO is four tiles deep. The intermediate results are held in the 24 MiB on-chip ​Unified Buffer​ , which can serve as inputs to 
the Matrix Unit. A programmable DMA controller transfers data to or from CPU Host memory and the Unified Buffer. 

Figure 2 shows the floor plan of the TPU die. The 24 MiB Unified Buffer is almost a third of the die and the Matrix 
Multiply Unit is a quarter, so the datapath is nearly two-thirds of the die. The 24 MiB size was picked in part to match the 
pitch of the Matrix Unit on the die and, given the short development schedule, in part to simplify the compiler (see Section 7). 
Control is just 2%. Figure 3 shows the TPU on its printed circuit card, which inserts into existing servers like an SATA disk. 

As instructions are sent over the relatively slow PCIe bus, TPU instructions follow the CISC tradition, including a repeat 
field. The average clock cycles per instruction (CPI) of these CISC instructions is typically 10 to 20. It has about a dozen 
instructions overall, but these five are the key ones: 

1. Read_Host_Memory​ reads data from the CPU host memory into the Unified Buffer (UB). 
2. Read_Weights​ reads weights from Weight Memory into the Weight FIFO as input to the Matrix Unit. 
3. MatrixMultiply/Convolve​ causes the Matrix Unit to perform a matrix multiply or a convolution from the 

Unified Buffer into the Accumulators. A matrix operation takes a variable-sized B*256 input, multiplies it by a 
256x256 constant weight input, and produces a B*256 output, taking B pipelined cycles to complete. 
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Google’s TPU (v1)

Figure credit: Jouppi et al. 2017
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TPU area proportionality
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Multiply Unit is a quarter, so the datapath is nearly two-thirds of the die. The 24 MiB size was picked in part to match the 
pitch of the Matrix Unit on the die and, given the short development schedule, in part to simplify the compiler (see Section 7). 
Control is just 2%. Figure 3 shows the TPU on its printed circuit card, which inserts into existing servers like an SATA disk. 

As instructions are sent over the relatively slow PCIe bus, TPU instructions follow the CISC tradition, including a repeat 
field. The average clock cycles per instruction (CPI) of these CISC instructions is typically 10 to 20. It has about a dozen 
instructions overall, but these five are the key ones: 

1. Read_Host_Memory​ reads data from the CPU host memory into the Unified Buffer (UB). 
2. Read_Weights​ reads weights from Weight Memory into the Weight FIFO as input to the Matrix Unit. 
3. MatrixMultiply/Convolve​ causes the Matrix Unit to perform a matrix multiply or a convolution from the 

Unified Buffer into the Accumulators. A matrix operation takes a variable-sized B*256 input, multiplies it by a 
256x256 constant weight input, and produces a B*256 output, taking B pipelined cycles to complete. 
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Arithmetic units ~ 30% of chip 
Note low area footprint of control 

Key instructions: 
read host memory 
write host memory 
read weights 
matrix_multiply / convolve 
activate
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Figure credit: Jouppi et al. 2017
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Systolic array
(matrix vector multiplication example: y=Wx)
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Accumulators (32-bit)

+ + + +
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Systolic array
(matrix vector multiplication example: y=Wx)
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +
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x0 * w10

x0 * w00 + 
x1 * w01

x1
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0

x0 * w00 + 
x1 * w01 + 
x2 * w02 + 

x3

x1

x0 * w10 + 
x1 * w11

x0 * w20
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Systolic array
(matrix vector multiplication example: y=Wx)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x2

x0 * w10 + 
x1 * w11 + 
x2 * w12 + 

x3

x1

x0 * w20 + 
x1 * w21

x0 * w30

x0 * w00 + 
x1 * w01 + 
x2 * w02 + 
x3 * w03 
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Systolic array
(matrix matrix multiplication example: Y=WX)

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

Accumulators (32-bit)

+ + + +

Weights FIFO

w00

w01

w02

w03

w10

w11

w12

w13

w20

w21

w22

w23

w30

w31

w32

w33

x02

x00 * w20 + 
x01 * w21 + 
x02 * w22 + 

x03

x01

x00 * w20 + 
x01 * w21

x00 * w30

x00 * w00 + 
x01 * w01 + 
x02 * w02 + 
x03 * w03 

x12

x13

x11

x10

x10 * w00 + 
x11 * w01 + 
x12 * w02 + 

x21

x22

x31

x20x30

x30 * w00 x20 * w10 x10 * w20

x10 * w20 + 
x11 * w21

x20 * w00 + 
x21 * w01

Notice: need multiple 4x32bit 
accumulators to hold output columns
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators



Stanford CS348K, Spring 2024

Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096
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Building larger matrix-matrix multiplies
Example: A = 8x8, B= 8x4096, C=8x4096

C

=

A B

4096

4 4

4 4096

4

Assume 4096 accumulators
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TPU Performance/Watt

 

 
Figure 8. ​Figures 5-7 combined into a single log-log graph. Stars are for the TPU, triangles are for the K80, and circles are for Haswell. All 
TPU stars are at or above the other 2 rooflines. 

 
 
Figure 9. ​Relative performance/Watt (TDP) of GPU server (blue bar) and TPU server (red bar) to CPU server, and TPU server to GPU 
server (orange bar).  TPU’ is an improved TPU (Sec. 7). The green bar shows its ratio to the CPU server and the lavender bar shows its 
relation to the GPU server. Total includes host server power, but incremental doesn’t. GM and WM are the geometric and weighted  means. 
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GM = geometric mean over all apps 
WM = weighted mean over all apps

total = cost of host machine + CPU  
incremental = only cost of TPU

Figure credit: Jouppi et al. 2017
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Alternative scheduling strategies

(a) Weight Stationary

(b) Output Stationary

(c) No Local Reuse

Fig. 8. Dataflows for DNNs.

PE 1 

Row 1 Row 1 

PE 2 

Row 2 Row 2 

PE 3 

Row 3 Row 3 

Row 1 

= * 

PE 4 

Row 1 Row 2 

PE 5 

Row 2 Row 3 

PE 6 

Row 3 Row 4 

Row 2 

= * 

PE 7 

Row 1 Row 3 

PE 8 

Row 2 Row 4 

PE 9 

Row 3 Row 5 

Row 3 

= * 

* * * 

* * * 

* * * 

Fig. 9. Row Stationary Dataflow [34].

that area is allocated to the global buffer to increase its
capacity (Fig. 8(c)). The trade-off is that there will be
increased traffic on the spatial array and to the global
buffer for all data types. Examples are found in [44–46].

• Row stationary (RS): In order to increase reuse of
all types of data (weights, pixels, partial sums), a row
stationary approach is proposed in [34]. A row of the filter
convolution remains stationary within a PE to exploit
1-D convolutional reuse within the PE. Multiple 1-D
rows are combined in the spatial array to exhaustively
exploit all convolutional reuse (Fig. 9), which reduces
accesses to the global buffer. Multiple 1-D rows from
different channels and filters are mapped to each PE to
reduce partial sum data movement and exploit filter reuse,
respectively. Finally, multiple passes across the spatial
array allow for additional image and filter reuse using the
global buffer. This dataflow is demonstrated in [47].

The dataflows are compared on a spatial array with the
same number of PEs (256), area cost and DNN (AlexNet).
Fig. 10 shows the energy consumption of each approach. The
row stationary approach is 1.4⇥ to 2.5⇥ more energy-efficient

0
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2
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(a) Across types of data

Normalized 
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RF 
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DRAM 

0
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1

1.5

2
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(b) Across levels of memory hierarchy

Fig. 10. Energy breakdown of dataflows [34].

than the other dataflows for the convolutional layers. This
is due to the fact that the energy of all types of data is
reduced. Furthermore, both the on-chip and off-chip energy is
considered.

VI. OPPORTUNITIES IN JOINT ALGORITHM AND
HARDWARE DESIGN

There is on-going research on modifying the machine
learning algorithms to make them more hardware-friendly while
maintaining accuracy; specifically, the focus is on reducing
computation, data movement and storage requirements.

A. Reduce Precision

The default size for programmable platforms such as
CPUs and GPUs is often 32 or 64 bits with floating-point
representation. While this remains the case for training, during
inference, it is possible to use a fixed-point representation and
substantially reduce the bitwidth for energy and area savings,
and increase in throughput. Retraining is typically required to
maintain accuracy when pushing the weights and features to
lower bitwidth.

In hand-crafted approaches, the bitwidth can be drastically
reduced to below 16-bits without impacting the accuracy. For
instance, in object detection using HOG, each 36-dimension
feature vector only requires 9-bit per dimension, and each
weight of the SVM uses only 4-bits [48]; for object detection
using deformable parts models (DPM) [49], only 11-bits are
required per feature vector and only 5-bits are required per
SVM weight [50].

Similarly for DNN inference, it is common to see accelerators
support 16-bit fixed point [45, 47]. There has been significant

TPU (v1) was “weight stationary”: 
weights kept in register at PE 
each PE gets di$erent input pixel 
partial sum pushed through array (array has one output)

Figure credit: Sze et al. 2017

Psum = partial sum

“Output stationary”: 
each PE computes one output 
push input pixel through array 
each PE gets di$erent weight 
each PE accumulates locally into output

Takeaway: many DNN accelerators can be characterized by the data 
#ow of input activations, weights, and outputs through the machine.  

(Just di$erent “schedules”!)  



Stanford CS348K, Spring 2024

Input stationary design (dense 1D conv example)
(matrix vector multiplication example: y=Wx)

out(0,i-1)

out(1,i-1)

out(0,i)

out(1,i) out(1,i+1)

out(0,i+1) out(0,i+2)

out(1,i+2)

in(i) in(i+1)

PE 0 PE 1

Accumulators 
(implement +=)

w(0,0)
w(0,1)
w(0,2)
w(1,0)
w(1,1)
w(1,2)Assume: 

1D input/output 
3-wide "lters 
2 output channels (K=2)

6 
5 
4 
3 
2 
1

123

46 5

Weight
Stream 

Order

Processing 
elements 

(implement multiply)

Stream of weights 
(2 1D "lters of size 3)
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Scaling up (for training big models)
Example: GPT-3 language model

(Amount of training — note this is log scale)

Very big models + 
More training  
= 
Better accuracy

Power law e$ect: 
exponentially more compute to take 

constant step in accuracy
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TPU v3 supercomputer
TPU v3 board 
4 TPU3 chips

One TPU v3 board
TPUs connected by 

2D Torus interconnect

TPU supercomputer (1024 TPU v3 chips)
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Additional examples of “AI chips”

Key ideas: 

1. Huge numbers of compute units 

2. Huge amounts of on-chip storage to maintain 
input weights and intermediate values 
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GraphCore MK2 GC200 IPU

900 MB 
on-chip storage

(59B transistors  
 similar size to A100 GPU)

Access to o$-chip DDR4
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Cerebras Wafer-Scale Engine (WSE)
Tightly interconnected tile of chips (entire wafer) 
Many more transistors (1.2T) than largest single chips 
(Example: NVIDIA A100 GPU has 54B)

Compilation of DNN to platform involves “laying out” DNN layers in space on processing grid.
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SambaNova recon"gurable data#ow unit 
Again, notice tight integration of storage and compute
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Another example of spatial layout

Notice: inter-layer communication occurs through on-chip interconnect, not through o$-chip memory.
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Low precision
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Numerical data formats
Reminder: 
-1S x (1 + (M x 2-23)) x 2(E-127)

BF16 S E M

1 8 7

BF16: Same range as FP32, but lower accuracy

BF8 E4M3

BF8 E5M2

S E M

1 4 3

S E M
1 5 2

0 - 448

0 - 57344

Slide credit: Bill Dally
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Summary of hardware accelerators for e!cient inference
Specialized instructions for dense linear algebra computations 
- Reduce overhead of control (compared to CPUs/GPUs) 

Systolic / data#ow architectures for e!cient on-chip communication 
- Di$erent scheduling strategies: weight-stationary, input/output stationary, etc.  

Reduced precision operations (cheaper computation + reduce bandwidth requirements) 

Huge amounts of on-chip memory to avoid o$-chip communication


