Lecture 8:

Generative Al for Image Creation
(Initial discussion)

Visual Computing Systems
Stanford C5348K, Spring 2024



Demo
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Many exciting opportunities, but also many issues with
emerging class of generative Al technologies

m Quality/diversity of output images

m Performance (cost of training and cost of image generation)
m User control and creative workflow

m Ethics/social aspects

Stanford C5348K, Spring 2024



Suppose you are given a data of images x;

m You'll like to draw a sample according to the underlying data distribution p(x)
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Diffusion-based image synthesis

Iterative Markov-chain Monte-carlo (MCMC) process to generate a sample x (an image) from distribution p(x) of observed images

Forward diffusion: iteratively add noise q(x:|x:—1) = N (x¢; /1 — Bix¢—1, i1

e

o
g

5 3
AR T
S

Stanford (5348K, Spring 2024



Diffusion-based image synthesis

Reverse: iteratively remove noise noise from random sample to obtain image from p(x)
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Guided diffusion

m Assume we know p(y | X) for random variables x and y.
- Example: xis animage, y is a string describing the image
- Givenan image (x), infer a caption (y)

p(x|y) = p(y | x) // p(y | x)dx (Bayes Rule)

Bayes for score function
Vxlogp(x | y) = Vxlogp(x) + Vxlogp(y | x)

|

(Unguided score function) (Prompt guidance)

Modify image x so that image is more likely Modify image x to make the prompt a
[to come from the training set] more likely description of the image
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Controlling the output of diffusion models




img2img (enabling image-based guidance)

. Start with a guide image (a target)
. Add “small” amount of noise
. Iteratively denoise to produce sample from p(x)

/|

Guide toward a visual target”

Perturb with SDE Reverse SDE
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Inpainting (apply [new] prompt to a region)

User specifies mask for
region of interest and
text prompt for that
region.

Image outside of region
remains almost the
same.

"red brick"
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Use change in text prompt to trigger change in image

“A basket full of apples.”

apples —> cookies apples —> oranges |

“A photo of a butterfly on a flower.”

flower —> computer  flower —> mirror

o bread i 1 .
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“Masks” come from learned attention

m Use attention masks from original generation process to constrain what pixels can
change after prompt is edited
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Using text to describe how to change the image

“Swap sunflowers with roses” “Add fireworks to the sky” “Replace the fruits with cake”
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“Turn it into a still from a western” “Make his jacket out of leather”
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Leveraging layer information to control compo

Ginger

B

Prompt + a rgba per layer

Edamame

m Keyidea: layer-based edited is a tried and true

way to manipulate an image’s composition.

— User manipulates layers

— Model receives per-layer information, and
leverages this information to generatea  Rice
globally harmonious image

Bento box
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Leveraging layer information to control composition

Ginger
“A bento box with Sushi
rice,
edamame,
ginger, and
*J
sushi. Edamame
Rice

Bento box
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Leveraging layer information to control composition

“A bento box with
rice,

edamame,
ginger, and
sushi.”
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ontrolNet: compositional control via images

Input (Canny Edge) Default Automatic Prompt User Prompt

"

“inside a gorgeous 19th century church”

astronaut
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Loose control

Input ControlNet Ours
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A grand foyer with a sweeping staircase and fresh flowers on a console table.

Key idea: user does not want to (or may
not have capability to) specific visual
controls precisely. Just have the user
“block out” the basic shape of the scene.
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S kEtCh 'to -m a g e Tight control (ControlNet) Looser control (Blended Renoising)
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Partial-sketch to image

Creating "partial-sketch” training data

Image 20% lines  60% lines  80% lines  100% lines

" 'L‘-] =

Two Mugs Shoes

House

Partial Sketch

ControlNet ControlNet

(aie on full sketches) (Trained on partial sketch data)
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Specialization to a concept

Input images

A [V] dog in the A [V] dog in the
Versailles hall of mirrors gardens of Versailles

A[V] dogin A [V] dog with Eiffel Tower in
mountain Fuji the background

A [V] dog in Coachella
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Specialization to a concept

Input images

—

A [V] sunglasses in A [V] sunglasses
the jungle worn by a bear 4

A [V] sunglasses at A [V] sunglasses A [V] sunglasses with Eiffel
Mt. Fuji on top of snow Tower 1n the background
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Reminder: key aspect in the design of any system

Choosing the “right” representations for the job

m Good representations are productive to use:

- Embody a “preferred” way of thinking about a problem

m Good representations enable the system to provide useful services:

- Validating/providing certain quarantees (correctness, resource bounds, conversion of quantities,
type checking)

- Performance optimizations (parallelization, vectorization, use of specialized hardware)

- Implementations of common, difficult-to-implement functionality (complex array indexing code,
texture mapping in 3D graphics, auto-differentiation, etc.)
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Key takeaways

m What is the type of control that aligns with the users thought process / mental model

- Text is often an ambiguous, imprecise, or flat out inefficient way to describe visual
intent

m Examples:
- Users want to control spatial composition
- “Dog on the left” vs. dragging a layer to the right location

- Users want to “block out” an idea, and have the diffusion model “fill in the details”,
“correct proportions’, “harmonize the image”

- Users want to express intent via an example: “l want it to look LIKE THIS!”
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Key takeaways

m What is the type of control that aligns with the users thought process / mental model

- Text is often an ambiguous, imprecise, or flat out inefficient way to describe visual
intent

m Much active research on teaching a model to follow a specificintent
- One key strategy: dataset engineering to create pairs (control input, expected output)

- Image analysis used to create the “control input” part of the pair: depth image,
partial sketch, etc.
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Next time

m Visual design tools are often most useful if they provide immediate / interactive feedback
m Efficiency and performance matter!
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