Lecture 9:

Generative Al for Image Creation
(Part ll)

Visual Computing Systems
Stanford C5348K, Spring 2024



Suppose you are given a data of images x;

m You'll like to draw a sample according to the underlying data distribution p(x)
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Diffusion-based image synthesis

Iterative Markov-chain Monte-carlo (MCMC) process to generate a sample x (an image) from distribution p(x) of observed images

Forward diffusion: iteratively add noise q(x:|x:—1) = N (x¢; /1 — Bix¢—1, i1
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Diffusion-based image synthesis

Reverse: iteratively remove noise noise from random sample to obtain image from p(x)
X,L'_|_1%X7;—|—€leng +v2z;,, 1=01---.
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Guided diffusion

m Assume we know p(y | X) for random variables x and y.
- Example: xis animage, y is a string describing the image
- Givenan image (x), infer a caption (y)

p(x|y) = p(y | x) // p(y | x)dx (Bayes Rule)

Bayes for score function
Vxlogp(x | y) = Vxlogp(x) + Vxlogp(y | x)

|

(Unguided score function) (Prompt guidance)

Modify image x so that image is more likely Modify image x to make the prompt a
[to come from the training set] more likely description of the image
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Performance/efficiency optimizations
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A basic U-NET architecture

Classic U-Net for image segmentation

(Basic blocks are convolutional layers) U-Net used in modern diffusion models

(Basic blocks are transformer modules with cross-attention layers)
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Attention module

let S=QK™ e RNV L ;

softmax(Si)

Let P = softmax(S) € RV*N =l s

let O = PV € RV*4

Mask (opt.)

Q:Nxd

Where
softmax(S)
Is softmax over the rows of S
L L P:NxN -
For a row x:
softmax(x) = /(%) V:Nxe P PENxe
[(x)
Where:
f(x) = [exi—m)  gximm@) - xp-m(x)]
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() = ) f(x)i =) e ™)

1 1

Stanford C5348K, Spring 2024



Performance challenges of inference

m Diffusion is an iterative process:
- Requires many steps to convergence

m Ways to improve inference efficiency

m Diffuse in low-dimensional (latent) space
m Superresolution techniques
m Learn to take bigger steps
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Superresolution

m Use diffusion to produce a low-resolution image

m Then subsequent models perform neural superresolution

Class ID = 213
“Irish Setter”

Model 1

. MOdel 2 |

32x32

Model 3 1

Cascade of diffusion models

206 X256

bicubic LDM-SR

Bicubic upsampling vs. two forms of learned upsampling
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Perform diffusion in latent space

m Mainidea: perform diffusion in the lower dimensional latent space of images, not in
high-dimensional RGB pixel space

m After diffusing a latent representation, “decode” latent to final image
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Perform diffusion in latent space

m Implications to both training efficiency and inference efficiency

- FID vs. training progress Per-pixel representations, can represent data

— LDM-1 < well, but require significant training to
LDM-2 learn good models
150 —— LDM-4
A LTS :[ “Sweet spot”: learns good model + trains quickly
— |LDM-32
50 \
0.0 0.5 1.0 1.5 2.0 Latent representation too compressed

- leb
train step (cannot represent data well)
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Learn to take larger steps

m Given a diffusion model, learn a new (second) diffusion model that reproduces multiple steps of the
diffusion process

m Thisis a form of “model distillation”: training a “student” model to emulate the output of a teacher.
Here, the teacher’s output is multiple steps of the diffusion process

-
DDIM 4X2 steps

Ours 2 steps Ours 4 steps

Prompt: “A beautiful castle, matte painting.”
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I_earn to ta ke Iarger StepS | ative Text-to-Image samples (4 steps)

Distilled Text-to-Image samples (4 steps)
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Controlling the output of diffusion models




-

TEXt conditioni NJ “Adassroom of many attentive college students”




| want the visual output to look LIKE THIS.
(Other forms of conditioning)



Img2img (RGB image conditioning)

. Start with a guide image (a target)
. Add “small” amount of noise “Guide toward a visual target”

. Iteratively denoise to produce sample from p(x)

Perturb with SDE Reverse SDE
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Specialization to a specific concept

Input images

A [V] dog in the A [V] dog in the
Versailles hall of mirrors gardens of Versailles

A[V] dogin A [V] dog with Eiffel Tower in
mountain Fuji the background

A [V] dog in Coachella
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Specialization to a concept

Input images

—

A [V] sunglasses in A [V] sunglasses
the jungle worn by a bear 4

A [V] sunglasses at A [V] sunglasses A [V] sunglasses with Eiffel
Mt. Fuji on top of snow Tower 1n the background
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Other forms of conditioning

Common tactic: automatically create paired data (via image processing/analysis
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Edge detection

Segmentation

Another example:
Pose Estimation

Depth
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ernative forms of control

Input (Canny Edge) Default Automatic Prompt User Prompt

y o :' o y /

“inside a gorgeous 19th century church”

astronaut
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Reducing the cost of training

m Example open source text/image training dataset:
- LAION-5B (5.5B image/test training pairs)

m Significant compute cost to train a model
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ControlNet

m  Keyidea: duplicate diffusion network

Original copy retains original weights

ControlNet copy learns how to modify
activations to respect new control signals

m Intuition:

Retain strong priors of backbone trained
on large body of images (expensive
training)

Learn how to respect new control signal
from a much smaller number of images
and few optimization steps (inexpensive)
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Input z, E
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(a) Stable Diffusion (b) ControlNet
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| kind of have an idea of what | want visually,
but it is challenging to produce the conditioning



Loose control

Input ControlNet Ours
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A grand foyer with a sweeping staircase and fresh flowers on a console table.

Key idea: user does not want to (or may
not have capability to) specific visual
controls precisely. Just have the user
“block out” the basic shape of the scene.
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Generating training data for loose control

Estimate 3D
from depth

Depth estimation

. | m

Training set image

< 4
I L N
L4 <

Fit 3D boxes to geometry Render depth map for

e a e ey scene with just boxes
containing “objects

Object
Segmentation
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S kEtCh 'to -m a g e Tight control (ControlNet) Looser control (Blended Renoising)
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Partial sketch to Image training data generation

ControlNet ControlNet
Trained on full sketches) (Trained on partial sketch data)
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Creating "partial-sketch” training data Partial Sketch

Image 20% lines  60% lines  80% lines  100% lines
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Find edge lines
Identify contour lines (via segmentation)
Progressively remove edge lines that are farthest from contours.
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| want to modify the output in a SPECIFIC REGION.
| want to control COMPOSITION.




Inpainting (apply [new] prompt to a region)

User specifies mask for
region of interest and
text prompt for that
region.

Image outside of region
remains almost the
same.

"red brick"
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Use change in text prompt to trigger change in image

“A basket full of apples.”

apples —> cookies apples —> oranges |

“A photo of a butterfly on a flower.”

flower —> computer  flower —> mirror

o bread i 1 .
Source image flower —> brea butterfly — bird butterfly —> snail butterfly — drone Stanford C5348K, Spring 2024



“Masks” come from learned attention

m Use attention masks from original generation process to constrain what pixels can
change after prompt is edited
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Using text to describe how to change the image

“Swap sunflowers with roses” “Add fireworks to the sky” “Replace the fruits with cake”
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“Turn it into a still from a western” “Make his jacket out of leather”
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Leveraging layer information to control compo

Ginger

B

Prompt + a rgba per layer

Edamame

m Keyidea: layer-based edited is a tried and true

way to manipulate an image’s composition.

— User manipulates layers

— Model receives per-layer information, and
leverages this information to generatea  Rice
globally harmonious image

Bento box
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Leveraging layer information to control composition

Ginger
“A bento box with Sushi
rice,
edamame,
ginger, and
*J
sushi. Edamame
Rice

Bento box
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Leveraging layer information to control composition

“A bento box with
rice,

edamame,
ginger, and
sushi.”
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Reminder: key aspect in the design of any system

Choosing the “right” representations for the job

m Good representations are productive to use:

- Embody a “preferred” way of thinking about a problem

m Good representations enable the system to provide useful services:

- Validating/providing certain quarantees (correctness, resource bounds, conversion of quantities,
type checking)

- Performance optimizations (parallelization, vectorization, use of specialized hardware)

- Implementations of common, difficult-to-implement functionality (complex array indexing code,
texture mapping in 3D graphics, auto-differentiation, etc.)
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Here: choosing the right representation is choosing
controls that are most useful to an editing task

m  Whatis the type of control that aligns with the users thought process / mental model?
- Text is often an ambiguous, imprecise, or flat out inefficient way to describe visual intent

m Examples:
- Users want to control spatial composition
- “Dog on the left” vs. dragging a layer to the right location

- Users want to “block out” an idea, and have the diffusion model “fill in the details
proportions’, “harmonize the image”

- Users want to express intent via an example: “l want it to look LIKE THIS!”
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Discussion:

Propose a type of edit that you would like to make to images

How does the user “think” about what they are trying to change (are they worried about
details, composition, a particular “axis” of change (e.g, adjust smile but not eyes)

How could to generate supervision to train a model to support this type of control?
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Summary

m Diffusion-based generation produces high quality (“plausible”) image output
- Step 1: get generation to produce output that models the training data well

m Step 2: ongoing research on
- New ways to help users exert guide/control over the generation process
- Improving the efficiency of diffusion model training/evaluation

m This line of work is a great example of many of the issues and concerns we've discussed in this class
- Are we optimizing for the right metrics?
- How to achieve high performance (through better algorithms, or systems techniques)
- What are the implications of these technologies?
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