Lecture 10:

Generative Al for Content Creation
(Part Ill)

Visual Computing Systems
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Reminder: key aspect in the design of any system

Choosing the “right” representations for the job

m Good representations are productive to use:

- Embody a “preferred” way of thinking about a problem

m Good representations enable the system to provide useful services:

- Validating/providing certain guarantees (correctness, resource bounds, conversion of quantities,
type checking)

- Performance optimizations (parallelization, vectorization, use of specialized hardware)

- Implementations of common, difficult-to-implement functionality (complex array indexing code,
texture mapping in 3D graphics, auto-differentiation, etc.)

- Execute a complex edit that the user has in their head
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Here: choosing the right representation is choosing
controls that are most useful to an editing task

m  Whatis the type of control that aligns with the users thought process / mental model of editing?
- Text is often an ambiguous, imprecise, or flat out inefficient way to describe visual intent

m Examples:
- Users want to control spatial composition
- “Dog on the left” vs. dragging a layer to the right location

- Users want to “block out” an idea, and have the diffusion model “fill in the details
proportions’, “harmonize the image”

- Users want to express intent via an example: “l want it to look LIKE THIS!”
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Discussion:

Propose a type of edit that you would like to make to images

How does the user “think” about what they are trying to change (are they worried about
details, composition, a particular “axis” of change (e.g, adjust smile but not eyes)

How could to generate supervision to train a model to support this type of control?
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Generating other forms of media:
Videos, 3D meshes, animation, etc...
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Scarsity of data

m Recall that text-to-image generation models were trained on billions of image-text pairs
m But datasets of paired video, 3D models, animation, etc. do not exist at this scale

m 50 most techniques for generating other forms of media start with models trained on
images and (“lift”) them to other forms of media
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Video diffusion examples
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One example: text to video

m Spatial blocks can be pretrained on large image datasets (visual visual representations)
m Temporal blocks trained on [smaller] video datasets

TxWxH TXWxH = RB-TXCXHXW

o

spatial layer

“Spatial block” “Temporal block”
(Tindependent frames Mixes information .
of size WxH) across T frames » € RBTXC xH xW' '

Example from [Blattman et al. 2023]
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Dirty secret of modern ML: good dataset engineering

m Given that video datasets are smaller, notable benefit to careful curation of video data
training sets

Persosm whoemater

Or screenshots/captions,
where the screen is filled with text

Also: use Visual Language models (VLM)
or image captioning models to
auto-caption the videos

Long periods of still frames
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Controlling video generation

m New controls emerging rapidly
- Object control
- Camera control

"Two zebras"
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3D object diffusion
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Story sofar...

m Given paired (1 -> X2, train a diffusion model...

Xit1 < X; + eVyxlogp(x) +V2ez;, i=0,1,---,T

\ (“score function”)
Vixlogp(x | y) = Vxlogp(x) + Vxlogp(y | x)

T

(Unguided score function) (Prompt guidance)
Modify image x so that image is more likely Modify image x to make the CONDITIONING a
[to come from the BILLION IMAGE training set] more likely related to the image
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But now we want conditioning — 3D model

m But we don’t have the datasets to learn the distribution of 3D models
m Butwedoknow:

- What the distribution of real images (what a realisticimage is)
- How to turn a 3D model into an image (rendering)
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Let’s represent 3D objects as volumes

Volume density and “color” at all points in space.

o(p)
The reflectance off surface

C(p7 w) — C(.CE‘, Y <y ¢7 (9) at point p in direction w
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Aside: rendering volumes

Given “camera ray” from point o in direction w....

r(t) = o+ tw

r(t
And volume with density and directional radiance. (t)

o (p> <4— Volume density and color at all points in space.

c(p,w)

Step through the volume to compute radiance along the ray.

C(r) = /t :f T(t)o(x(t))e(x(t), d)dt, where T(t) = exp (— /t t 0(r(3))d3)
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Distilling a 3D generation model

m The takeaway: we can make an image from a 3D representation (e.g., a volume) using a
differentiable rendering function

X

m And, with aimage diffusion model, we can push that image closer to the distribution of
real images

Perturb with SDE Reverse SDE
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Image

1. Start with a guide image (a target)
2. Add“small” amount of noise

3. lteratively denoise to produce sample from target
image distribution
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Distilling a 3D generation model

m The takeaway: we can make an image from a 3D representation (e.g., a volume) using a
differentiable rendering function

x = R(0)

m And, with a text-conditioned image diffusion model, we can push image closer to the distribution of
real images associated with a given prompt. That diffusion denoting step produces...

AX

m Now, given V R(6) (recall R() was differentiable), optimize the parameters 0 of the 3D
representation to produce...

X + Ax

m Inother words, we've converted the score function of a text-conditioned image diffusion model
into a training procedure for a text-conditioned 3D diffusion model
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Image-conditioned 3D diffusion

m Now let’s say we want to condition 3D generation based on an image, not text:

m How about a simpler image editing problem: given a reference image X, and camera change
parameters (rotation, translation), produce a novel view of the object in the image

Input: Output: Input: Output:

Down 30° Left: 90°

Down: 25° Right: 95°
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Take a (pretty big) dataset of objects, fine tune image
diffusion model on pairs penderd from penderd from

viewpoint 1 viewpoint 2

Input (conditioning) Output
Objaverse-XL ‘(/ /

CO Google Colab 0) GitHub “~ Hugging Face (X R I )
,r:obo 2 ~
“” ‘Q‘Q ‘ ’ ‘.

° £

\‘( Down 30° Left: 90° }/
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Now let’s apply the same distillation trick

m We can now train an image conditioned 3D generation model using a similar process as
described before in lecture
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Animation diffusion
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Text-conditioned animation generation

“A person walks forward, bends down to pick something up off the ground.”
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Audio-conditioned dance generation

Tseng et al CVPR 2023



