Reminder: key aspect in the design of any system
Choosing the “right” representations for the job

- Good representations are productive to use:
 - Embody a “preferred” way of thinking about a problem

- Good representations enable the system to provide **useful services**:
 - Validating/providing certain guarantees (correctness, resource bounds, conversion of quantities, type checking)
 - Performance optimizations (parallelization, vectorization, use of specialized hardware)
 - Implementations of common, difficult-to-implement functionality (complex array indexing code, texture mapping in 3D graphics, auto-differentiation, etc.)
 - Execute a complex edit that the user has in their head
Here: choosing the right representation is choosing controls that are most useful to an editing task

- What is the type of control that aligns with the users thought process / mental model of editing?
 - Text is often an ambiguous, imprecise, or flat out inefficient way to describe visual intent

- Examples:
 - Users want to control spatial composition
 - “Dog on the left” vs. dragging a layer to the right location
 - Users want to “block out” an idea, and have the diffusion model “fill in the details”, “correct proportions”, “harmonize the image”
 - Users want to express intent via an example: “I want it to look LIKE THIS!”
Discussion:

Propose a type of edit that you would like to make to images

How does the user “think” about what they are trying to change (are they worried about details, composition, a particular “axis” of change (e.g, adjust smile but not eyes))

How could to generate supervision to train a model to support this type of control?
Generating other forms of media: Videos, 3D meshes, animation, etc...
Scarsity of data

- Recall that text-to-image generation models were trained on billions of image-text pairs.
- But datasets of paired video, 3D models, animation, etc. do not exist at this scale.
- So most techniques for generating other forms of media start with models trained on images and (“lift”) them to other forms of media.
Video diffusion examples
One example: text to video

- Spatial blocks can be pretrained on large image datasets (visual representations)
- Temporal blocks trained on [smaller] video datasets

Spatial block
(T independent frames of size $W \times H$)

Temporal block
Mixes information across T frames

Example from [Blattman et al. 2023]
Dirty secret of modern ML: good dataset engineering

- Given that video datasets are smaller, notable benefit to careful curation of video data training sets

Internet videos have cuts / crossfades

Long periods of still frames

Or screenshots/captions, where the screen is filled with text

Also: use Visual Language models (VLM) or image captioning models to auto-caption the videos

Image credit: Stability.AI
Controlling video generation

- New controls emerging rapidly
 - Object control
 - Camera control
3D object diffusion
Story so far...

- Given paired C1 -> X2, train a diffusion model...

\[
x_{i+1} \leftarrow x_i + \epsilon \nabla_x \log p(x) + \sqrt{2\epsilon} \ z_i, \quad i = 0, 1, \cdots, T
\]

(“score function”)

\[
\nabla_x \log p(x \mid y) = \nabla_x \log p(x) + \nabla_x \log p(y \mid x)
\]

(Unguided score function)

Modify image x so that image is more likely
[to come from the BILLION IMAGE training set]

(Prompt guidance)

Modify image x to make the CONDITIONING a
more likely related to the image

“Green lizard” →
But now we want conditioning \rightarrow 3D model

- But we don’t have the datasets to learn the distribution of 3D models
- But we do know:
 - What the distribution of real images (what a realistic image is)
 - How to turn a 3D model into an image (rendering)
Let’s represent 3D objects as volumes

Volume density and “color” at all points in space.

\[\sigma(p) \]

\[c(p, \omega) = c(x, y, z, \phi, \theta) \]

The reflectance off surface at point \(p \) in direction \(\omega \)
Aside: rendering volumes

Given “camera ray” from point \(o \) in direction \(\omega \)

\[
r(t) = o + tw
\]

And volume with density and directional radiance.

\[
\sigma(p) \quad \text{Volume density and color at all points in space.}
\]

\[
c(p, \omega)
\]

Step through the volume to compute radiance along the ray.

\[
C(r) = \int_{t_n}^{t_f} T(t)\sigma(r(t))c(r(t), d)dt, \text{ where } T(t) = \exp\left(-\int_{t_n}^{t} \sigma(r(s))ds\right)
\]
Distilling a 3D generation model

- The takeaway: we can make an image from a 3D representation (e.g., a volume) using a differentiable rendering function
 \[x = R(\theta) \]

- And, with a image diffusion model, we can push that image closer to the distribution of real images

1. Start with a guide image (a target)
2. Add “small” amount of noise
3. Iteratively denoise to produce sample from target image distribution
Distilling a 3D generation model

- The takeaway: we can make an image from a 3D representation (e.g., a volume) using a differentiable rendering function

\[x = R(\theta) \]

- And, with a text-conditioned image diffusion model, we can push image closer to the distribution of real images associated with a given prompt. That diffusion denoting step produces…

\[\Delta x \]

- Now, given \(\nabla R(\theta) \) (recall \(R() \) was differentiable), optimize the parameters \(\theta \) of the 3D representation to produce…

\[x + \Delta x \]

- In other words, we’ve converted the score function of a text-conditioned image diffusion model into a training procedure for a text-conditioned 3D diffusion model.
Image-conditioned 3D diffusion

- Now let’s say we want to condition 3D generation based on an image, not text:
- How about a simpler image editing problem: given a reference image X, and camera change parameters (rotation, translation), produce a novel view of the object in the image.
Take a (pretty big) dataset of objects, fine tune image diffusion model on pairs

Input (conditioning) (X,R,T)

Output

Rendered from viewpoint 1

Rendered from viewpoint 2

Down 30° Left: 90°
Now let’s apply the same distillation trick

- We can now train an image conditioned 3D generation model using a similar process as described before in lecture
Animation diffusion
Text-conditioned animation generation

“A person walks forward, bends down to pick something up off the ground.”
Audio-conditioned dance generation