Lecture 17:

Learning Scene Representations

Visual Computing Systems
Stanford C5348K, Spring 2024

Computer science in a nutshell:
Choose the right representation for the task at hand

Today’s task

m Recovering a 3D scene representation from a collection of photos

m Why?
- So we can render them from novel viewpoints
- S0 we can perform editing
- Geometric edits vs. material edits vs. lighting edits
- To aid interpretation of their contents

Stanford C5348K, Spring 2024

Many scene representations

Sparse voxels

DNN (MLP)

Oriented 3D Gaussians

Point cloud (list of points) Stanford C5348K, Spring 2024

Rendering triangles

Given camera position and 3D position of vertices: (1) project vertices onto screen (2) color pixels within 2D triangle

Stanford C5348K, Spring 2024

https://blender.stackexchange.com/questions/3315/how-to-get-perfect-uv-sphere-mercator-projection

Example: rendering three opaque triangles

Stanford (5348K, Spring 2024

Depth buffer (aka “Z buffef”)

e !

1 -
C— i
e —. \
.
!

Color buffer:
(stores color per sample... e.g., RGB)

Depth buffer:
(stores depth per sample)

Stores depth of closest surface drawn so far
black = close depth
white = far depth

. -

Stanford (5348K, Spring 2024

Occlusion using the depth buffer (opaque surfaces)

bool pass_depth test(dl, d2) {
return dl < d2;

}

depth_test(tri_d, tri_color, x, y) {

1f (pass_depth _test(tri_d, depth buffer[x]l[y]) {

depth_buffer[x][y] = tri_d; // update depth_buffer
color[x][y] = tri_color; // update color buffer

}
}

Stanford C5348K, Spring 2024

Basic rasterization algorithm

Sample = 2D point
Coverage: 2D triangle/sample tests (does projected triangle cover 2D sample point)
Occlusion: depth buffer

initialize z closest[] to INFINITY // store closest-surface-so-far for all samples
initialize color|[] // store scene color for all samples
for each triangle t in scene: // loop 1: over triangles

t _proj = project _triangle(t)

for each 2D sample s in frame buffer: // loop 2: over visibility samples

if (t_proj covers s)
compute color of triangle at sample

if (depth of t at s is closer than z_closest[s])

update z closest[s] and color[s]

“Given a triangle, find the samples it covers”

(finding the samples is relatively easy since they are distributed uniformly on screen)

Stanford C5348K, Spring 2024

Another way of rendering triangles: ray-scene intersection

Given a scene defined by a set of N primitives and a ray r, find the closest point of intersection
of r with the scene

t _closest = inf
for each primitive p in scene:
t = p.intersect(r)
if t >= 0 && t < t closest:
t closest =t

// closest hit is:
// r.o + t closest * r.d

(Assume p.intersect(r) returns value of t corresponding to the
point of intersection with ray r)

Stanford C5348K, Spring 2024

Representing rays

origin unit direction
() = o+td”
“Distance” or
“time”

point along ray

Rasterization and ray casting are two algorithms for
solving the same problem:
determining surface “visibility” from a virtual camera

Stanford C5348K, Spring 2024

Recall triangle visibility problem:

Question 1: what samples does the triangle overlap?
(“coverage”)

Sample Question 2: what triangle is closest to the

camera in each sample? (“occlusion”)

Stanford (5348K, Spring 2024

The visibility problem (described differently)

m In terms of casting rays from the camera:

- Is a scene primitive hit by a ray originating from a point on the virtual sensor and traveling through
the opening of a pinhole camera? (coverage)

- What primitive is the first hit along that ray? (occlusion)

Camera
(0,0)

Virtual
Sensor

Stanford C5348K, Spring 2024

Basic ray casting algorithm

Sample=arayin3D
Coverage: 3D ray-triangle intersection tests (does ray “hit” triangle)
Occlusion: closest intersection along ray

initialize color|] // store scene color for all samples
for each sample s in frame buffer: // loop 1: over visibility samples (rays)
r = ray from s on sensor through pinhole aperture
r.min_t = INFINITY // only store closest-so-far for current ray
r.tri = NULL;
for each triangle tri in scene: // loop 2: over triangles
if (intersects(r, tri)) { // 3D ray-triangle intersection test

if (intersection distance along ray is closer than r.min_t)
update r.min_t and r.tri = tri;

}

color[s] = compute surface color of triangle r.tri at hit point

Compared to rasterization approach: just a reordering of the loops!
“Given a ray, find the closest triangle it hits.”

Stanford C5348K, Spring 2024

Rendering 3D points

iven camera position and 3D position of point

t point onto screen (2) color pixel if closest

: (1) projec

e o £ = Ot

S SR NHEGEGN . REE
> 'y - .

§
~a
s
-

fv ~
3 3 ‘> -.
. i : 3
"3 X % ey
a - . . Ty -
- s “r -
'w-}» - iy
'
o 3
\ IR i Py
. = . -
& * e + 4 ¥ * Ny
- . L
ey
! 5 ;‘,:.:'- Fo
-l
L | ' L 5 e o A
» '.'C‘_ g o .
#‘.‘
’:'- -
- yu s A
=

> o) P
- o
< - 2 R
- P &)
>
_
.
i .
’ B
-
’ L/ 3
T '
d ~
>\ = L
LSS e ¢ -
L NC T .

Rendering “splats” / 3D gaussians / surfels

m Treat surface as a collection of “Gaussian blobs” (convolve points with Gaussian filter)

local parameterization

3D object space » 2D parameterization

- ‘_\

screen space object space
i/ around Q basis function ri(u-uy) e e
X X X X X X X X e & S
X X X X x x x X L T

m 3D Gaussians turn into oriented 2D gaussians when Ko
projected onto the 2D screen "

m (Canrender the blobs back to front (requires alpha W N Mmapping x=m(u)
compositing) Af ----- i discrete output g(x)

~ resampling kernel py(x)

[Zwicker 2001] Stanford (S348K, Spring 2024

48K, Spring 2024

el
X

S0P

h
.'L"..a
v

-
2.5

Consider representing a triangle with Gaussians

m Could approximate the triangle with a lot of small 3D gaussians near the triangle’s edges
m Notso efficient, eh?

Image Credit: [Dylan Ebert] https://huggingface.co/blog/gaussian-splatting Stanford (5348K, Spring 2024

Another representation: regular 3D grid representation

Consider storage requirements:
10243 cells

Ignore directional dependency: rgho 4 bytes/cell
(~4 GB)

Now consider directional dependency on (¢, 0)
... much worse

Typical challenge of
dense voxel
representations:

limited resolution , : -
Credit: Voxel Ville NFT (voxelville.io)

Volumetric effects

Stanford (5348K, Spring 2024

Another motivation for non-triangle representations like points/gaussians/

world situations

Stanford C5348K Spring 2024

Absorption in a volume

L(p,w L +dL
(p)_@ O'a(p) >—+ P = (CC,y,Z)
W

—ds—|

dL(p,w) = —04(p) L(p,w) ds

dL(p,w)
ds

— ~0Oa (p)L(p, w)

m [(p,w) radiance along a ray from p in direction
m Absorption cross section at point in space: 7. (P)

- Probability of being absorbed per unit length

- Units: 1/distance

Stanford C5348K, Spring 2024

Absorption in a volume

L(p,w) L +dL
) o)) — p = (2,5,2)
W

(¢,0)

—ds—|

dL(p,w)
L(p,w)

L(p + sw,w) = e~ Jo 72T AL (p) = T(s) L(p,w)

= —0,(p)ds

Transmittance: 7'(s) = e~ IS oa(p+s’ w,w)ds’

Stanford C5348K, Spring 2024

Absorption: lower density

Credit: Walt Disney Animation Studios Stanford (348K, Spring 2024

Absorption: higher density

Credit: Walt Disney Animation Studios Stanford (S348K, Spring 2024

Rendering volumes

o(p)

<4——— \/olume density and color at all points in space.
C (p W) e.g., Values stored in a 3D grid
,

s

C(r) = /t :f T(t)o(x(t))e(x(t), d)dt, where T(t) = exp (— /t t 0(r(s))ds>

Stanford C5348K, Spring 2024

Dense 3D volumes = high storage cost

Consider storage requirements:
10243 cells

Ignore directional dependency: rgho 4 bytes/cell
(~4 GB)

Now consider directional dependency on (¢, 0)
... much worse

Typical challenge of
dense voxel
representations:
limited resolution |

Credit: Voxel Ville NFT (voxelville.io)

Sparse volumes

Quad-tree: nodes have 4 children (partitions 2D space)
Octree: nodes have 8 children (partitions 3D space)

u
u
u *
n

n

n

Stanford C5348K, Spring 2024

A very compressed volume representation

m Use DNN to compress information in a volume

m Why not just learn an approximation to the continuous function that matches observations from
different viewpoints?

o(p)
c(p,w)

o _—l
(rgbo)
128-d

vector

(pvw) — Fg(p,w) —

(x,7,2) 6, $)

Stanford C5348K, Spring 2024

Many different parameterizations

Mesh vertex positions + texture values
3D point positions + colors

3D oriented Gaussians + colors

Dense 3D voxels

Sparse 3D voxels

DNN weights

Many combinations not discussed: sparse 3D grid of DNN weights, hash table of DNN
weights, etc...

Stanford C5348K, Spring 2024

Reconstruction problem

m Given many views of a scene for which camera position is known, recover the parameters
of a scene representation SO THAT rendering the scene representation from that known
view generates the captures image!

m Need a differentiable renderer to recover parameters!

Stanford C5348K, Spring 2024

Novel view synthesis problem

Input photos (from a fixed set of views)

WA A B R A
PR TRy P VY
FaAaWIEFR AR
:‘gﬁ'}{?@"ﬁ 311’."'& ‘%*
,,':), ag ?‘ g@-z e Q ag- f-—- e

Novel views
(camera position different from those in input photos)

Stanford C5348K, Spring 2024

Optimizing volumes

C(r) = /t :f T(t)o (r(t))c(r(t), d)dt, where T(t) = exp (— /t t a(r(s))ds)

|dea: optimize volume values (opacity and color)
so that ((r) matches that of photos.

For many rays.... trace through volume... see if the result matches the

photo... use error to update volume opacity/color values

Compute radiance along Compare to
ray through volume actual image
. Oy Ray 1 / /\
& ol

f ., >
P “ i
W v ’
";)r' '; 4)
] ol d " 4
W S ﬁ
?: ,:"I“ 0- A Ray 2 /||\

>

Ray Distance

F§k\\
o

N —g.t.

- g.t.

r(s)

e

\‘\‘

TS

2

2

2

2

Stanford C5348K, Spring 2024

Learning neural radiance fields (NeRF)

Input Images Optimize NeRF Render new views
B A g & e Y
& ANy TS
AN EFE L0l -8 7 T
3#”%&%&&&@ 7 & B 8
FRAEFBEESEN |
o FU e B Y R G R
e TR S R A I
S 0L
LS B TG W B Bkl A
3“‘5’:&3'\ S i

5D Input Output Volume Rendering
Position + Direction Color + Density Rendering Loss
~ (x2.2.0.9) —>[||:||]—> RGBo)

/ F

¢ Rwl///F\\\

2
| B -c.t.
2

2

 —-g.t.

2

\ﬁ”w Ray 2 //’H\
(¥

Ray Distance

Key idea: differentiable volume renderer to compute dC/d(color)d(opacity)

Stanford C5348K, Spring 2024

Great visual results!

- - . 4B
‘! A ¢ &\l ‘:}‘;

Credit: Mildenhall 2023

What just happened?

m Continuous coordinate-based representation vs reqular grid: DNN “learns” how to use its weights to
produce high-resolution output where needed... given input data

m Compact representation: trades-off space for expensive rendering

- Good: a few MBs = effectively very high-resolution dense grid
- Bad: must evaluate DNN every step during ray marching
- And the DNN is a“big” MLP (8-layer x 256) < Mir mus bres work o asadte L

- Bad: must step densely (because we dont know where the surface is)

m Compact representation: optimization can learn to interpolate views despite complexity of volume
density and radiance function

- Only prior is the separation into positional O and directional rgb
- Training time: hours to a day to learn a good NeRF

Stanford C5348K, Spring 2024

Without sparsity loss With sparsity loss

-y ST D g Pt
- R W iy e
T P

Let’s just run optimization for a bit...

m Optimization will push some opacity values to 0
m DNN tells us where the empty space is!

m Then convert dense opacity grid to an octree representation that’s more efficient to render from...
m With the octree structure *fixed*, we can continue to optimize color/density at leaves

S €=
> / X 2
e — I 5
%
R J
A
Use the initial MLP to densely sample volume Note:
(Find the empty space that’s used to build the octree) This implementation uses 2-level octreee

Credit: Yu 2021 Stanford CS348K, Spring 2024

Finally...back to where we began

Plenoxels [CVPR 22] S
O
m Start with a dense 3D grid of SH coefficients, optimize those 2
coefficients at low resolution
m Now move to a sparse higher resolution representation (octree) s 4
m Directly optimize for opacities and SH coefficients using L &+
differentiable volume rendering z

m No neural networks. Just optimizing the octree representation of
baked SH lighting

m Takeaway: conventional computer graphics representations are
efficient representations to learn/optimize on

- Plenoxel

20 —— NeRF

0 10 20 30 40 50 60
Training Time (minutes)
024

Optimization to produce Gaussians, not voxels

m Earlierinlecture: optimization

) Compute radiance along Compare to
produces color and opacity at each ray through scene actual image
voxel % Rayl /_\ ’

N —g.t.

'™
A .
all , ¥ ?
n) "y
P e
; ’o,: . én)
‘l Prs” :’ ﬁ
p iy
2: e JA
A ay

)

2

m Now:same idea, but optimization

2

chooses color, position, and radius /

of the Gaussians -o.t.

2

- Now: also need to decide on the Ray Distance

number of Gaussians (a bit
tricker)

Key idea: differentiable Gaussian splatting rendering to compute dC/d(color)d(radius)d(location)

See “3D Gaussian Splatting for Real-Time Radiance Field Rendering” [Kerbl 2023]

Stanford C5348K, Spring 2024

ovel View Synthesis

Menu Views Capture » 3D Gaussians » Camera Poink view

o

' o
¥ Mekrics

181,08 (9.89ms) FPS - Naﬁve OpenGL | 8 ' T 48 ' V‘:\

[Kerbl 2023] Stanford CS348K, Spring 2024

But it’s hard to accurately estimate depth or geometry

Stanford C5348K, Spring 2024

Discussion: what have we learned?

Key idea 1:“unreasonable effectiveness of large-scale optimization”

- High-performance optimization can recover parameter values for complex parameterized models
- (Credit: Ren Ng for this perspective

Key idea 2: Many different scene representations can be reconstructed
- Differentiable rendering of these representations is the key technology

There’s a huge “art” to getting optimization to work
- | doubt | could get these things to successfully optimize without a lot of practice and learning myself!

- Ifl was a early career graphics student, I'd want to hecome very accomplished in the “art” of getting an optimizer
to work for me

Neural representations != preferred representations: neural data compression can be a good thing

- But techniques like Gaussian splatting, sparse voxels, and Plenoxels are strong evidence that even better
compact representations are already present (and don't require resorting to neural representations)

Stanford C5348K, Spring 2024

