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Today’s themes
Techniques for e!ciently mapping image processing applications (like those we’ve 
discussed in the past two classes) to multi-core CPUs and GPUs 

The design of programming abstractions that facilitate e!cient image processing 
applications 
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Reminder: key aspect in the design of any system 
Choosing the “right” representations for the job

Good representations are productive to use: 
- Embody the natural way of thinking about a problem 

Good representations enable the system to provide useful services: 
- Validating/providing certain guarantees (correctness, resource bounds, conversion of quantities, 

type checking) 
- Performance optimizations (parallelization, vectorization, use of specialized hardware) 
- Implementations of common, di!cult-to-implement functionality  (complex array indexing code, 

texture mapping in 3D graphics, auto-di"erentiation, etc.) 



Stanford CS348K, Spring 2024

C++ code for a 3x3 “box blur”
int WIDTH = 1024; 

int HEIGHT = 1024; 

float input[(WIDTH+2) * (HEIGHT+2)]; 

float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/9, 1.f/9, 1.f/9, 

                   1.f/9, 1.f/9, 1.f/9, 

                   1.f/9, 1.f/9, 1.f/9}; 

for (int j=0; j<HEIGHT; j++) { 

  for (int i=0; i<WIDTH; i++) { 

    float tmp = 0.f; 

    for (int jj=0; jj<3; jj++) 

      for (int ii=0; ii<3; ii++) 

        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 

    output[j*WIDTH + i] = tmp; 

  } 

}
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Consider a new task: sharpening an image

Input Output

Question:  imagine you were asked to design a system for executing sharpen 
as e!ciently as possible on a variety of parallel processors (CPUs, GPUs, etc.) 

What would the interface to your system be?



float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {0., -1., 0., 
                   -1., 5, -1., 
                   0., -1., 0.}; 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      for (int ii=0; ii<3; ii++) 
        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] 
             * weights[jj*3 + ii]; 
    output[j*WIDTH + i] = tmp; 
  } 
}
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Four di"erent representations of sharpen
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Image input; 
Image output = convolve(input, F);

Image input; 
Image output; 
output[i][j] 
    = F[0][0] * input[i-1][j-1] + 
      F[0][1] * input[i-1][j]   + 
      F[0][2] * input[i-1][j+1] + 
      F[1][0] * input[i][j-1]   + 
      F[1][1] * input[i][j]     + 
      … 

Image input; 
Image output = sharpen(input);
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Diversity of tasks: image processing tasks from previous lectures 
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float f(image input) { 
   float min_value = min( min(input[x-1][y], input[x+1][y]), 
                     min(input[x][y-1], input[x][y+1]) ); 
   float max_value = max( max(input[x-1][y], input[x+1][y]), 
                     max(input[x][y-1], input[x][y+1]) ); 
output[x][y] = clamp(min_value, max_value, input[x][y]); 
output[x][y] = f(input);

Sobel Edge Detection

Local Pixel Clamp

2
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3x3 Gaussian blur

Gamma Correction
output[x][y] = pow(input[x][y], 0.5f);

Histogram
bin[input[x][y]]++;

2x2 downsample (via averaging)
output[x][y] = (input[2x][2y]   + input[2x+1][2y] + 
                input[2x][2y+1] + input[2x+1][2y+1]) / 4.f;

output[x][y] = lookup_table[input[x][y]];
LUT-based correction 
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Image processing workload characteristics
Structure: sequences (more precisely: DAGs) of operations on images 

Natural to think about algorithms in terms of their local, per-pixel behavior: e.g., output at pixel (x,y) is 
function of input image pixels in the neighborhood around (x,y)  

Common case: computing value of output pixel (x,y) depends on access to a bounded local “window” of input 
image pixels around (x,y)… (e.g. convolution, but also true of median #lter, bilateral #lter, etc.) 

Some algorithms require data-dependent data access (e.g., data-dependent access to lookup tables) 

Upsampling/downsampling (e.g., to create image pyramids) 

Computations that reduce information across many pixels (e.g., computing maximum brightness pixel in an 
image, building a histogram) 

FFTs on small patches of an image (to convert from pixel domain to frequency domain)
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Halide language for image processing
[Ragan-Kelley / Adams 2012]
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Halide goals

Expressive: facilitate intuitive expression of a broad class of image processing applications 
- e.g., all the components of a modern camera RAW pipeline 

High performance: want to generate code that e!ciently utilizes the multi-core and SIMD 
processing resources of modern CPUs and GPUs, and is memory bandwidth e!cient
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Halide used in practice
Halide used to implement camera processing pipelines on Google phones 
- HDR+, aspects of portrait mode, etc… 
Industry usage at Instagram, Adobe, etc.
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C++ code for a 3x3 “box blur”
float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9}; 

for (int j=0; j<HEIGHT; j++) { 
   for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<3; jj++) 
         for (int ii=0; ii<3; ii++) 
            tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 
      output[j*WIDTH + i] = tmp; 
  } 
}

For now: ignore boundary pixels and assume output 
image is smaller than input (makes convolution loop 
bounds much simpler to write) 

Total work per output image =  
    9 x WIDTH x HEIGHT
For NxN #lter:  N2 x WIDTH x HEIGHT
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3x3 box blur in Halide

Var x, y; 
Func blurx, out; 
Image<uint8_t> in = load_image(“myimage.jpg”); 

// expression for computing convolution result for one output pixel 
out(x,y) = 1/9.f * (in(x-1,y-1) + in(x,y-1) + in(x+1,y-1) + 
                    in(x-1,y)   + in(x,y)   + in(x+1,y) + 
                    in(x-1,y+1) + in(x,y+1) + in(x+1,y+1) ); 

// execute pipeline on domain of size 1024x1024 
Image<uint8_t> result = out.realize(1024, 1024);

Total work per output image =  
    9 x WIDTH x HEIGHT
For NxN #lter:  N2 x WIDTH x HEIGHT

Value of blurx at coordinate (x,y) is given by expression 
that accesses three values of in

Functions map integer coordinates to values 
(e.g., colors of corresponding pixels)

Halide function: an in#nite (but discrete) set of values de#ned on N-D domain 
Halide expression: a side-e"ect free expression that describes how to compute a 
function’s value at a point in its domain in terms of the values of other functions. 
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An example application: two-pass blur

Input Horizontal Blur Vertical Blur

Note: I’ve exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

A 2D separable #lter (such as a box #lter) can be evaluated via two 1D #ltering operations 



Stanford CS348K, Spring 2024

Two-pass 3x3 blur in C++
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<(HEIGHT+2); j++) 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int ii=0; ii<3; ii++) 
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; 
    tmp_buf[j*WIDTH + i] = tmp; 
  } 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

Total work per image = 6 x WIDTH x HEIGHT
For NxN #lter:  2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage 
2x lower arithmetic intensity than 2D blur. Why?

input 
(W+2)x(H+2)

tmp_buf 
W x (H+2)

output 
W x H
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Two pass blur in Halide

Var x, y; 
Func blurx, out; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 

// perform 3x3 box blur in two-passes 
blurx(x,y) = 1/3.f * (in(x-1,y)    + in(x,y)      + in(x+1,y)); 
out(x,y) =   1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)); 

// execute pipeline on domain of size 800x600 
Halide::Buffer<uint8_t> result = out.realize(800, 600);

Value of blurx at coordinate (x,y) is given by expression 
that accesses three values of in

Functions map integer coordinates to values 
(e.g., colors of corresponding pixels)

Halide function: an in#nite (but discrete) set of values de#ned on N-D domain 
Halide expression: a side-e"ect free expression that describes how to compute a 
function’s value at a point in its domain in terms of the values of other functions. 

Simple domain-speci#c language embedded in C++ for describing sequences of image processing operations
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A more complicated Halide program
Simple domain-speci#c language embedded in C++ for describing sequences of image processing operations

Var x, y; 
Func blurx, blury, bright, out; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 
Halide::Buffer<uint8_t> lookup = load_image(“s_curve.jpg”);  // 255-pixel 1D image 

// perform 3x3 box blur in two-passes 
blurx(x,y) = 1/3.f * (in(x-1,y)    + in(x,y)      + in(x+1,y)); 
blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)); 

// brighten blurred result by 25%, then clamp 
bright(x,y) = min(blury(x,y) * 1.25f, 255);   

// access lookup table to contrast enhance 
out(x,y) = lookup(bright(x,y)); 

// execute pipeline to materialize values of out in range (0:800,0:600) 
Halide::Buffer<uint8_t> result = out.realize(800, 600);

Value of blurx at coordinate (x,y) is given by expression 
accessing three values of in

Functions map integer coordinates to values 
(e.g., colors of corresponding pixels)
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Image processing as a DAG
Simple domain-speci#c language embedded in C++ for describing sequences of image processing operations

blurx

blury

brighten

in lookup
myimage.jpg s_curve.jpg

out
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Image processing pipelines feature complex DAGs of functions

Two-pass blur 
Unsharp mask 
Harris Corner detection 
Camera RAW processing 
Non-local means denoising 
Max-brightness #lter 
Multi-scale interpolation 
Local-laplacian #lter 
Synthetic depth-of-#eld 
Bilateral #lter 
Histogram equalization 
VGG-16 deep network eval

2 
9 
13 
30 
13 
9 
52 
103 
74 
8 
7 
64

Benchmark Number of Halide functions

Real-world production applications may features hundreds to thousands of functions! 
Google HDR+ pipeline: over 2000 Halide functions.
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Key aspects of representation
Intuitive expression: 
- Adopts local “point wise” view of expressing algorithms 
- Halide language is declarative. It does not de#ne order of iteration over elements in a domain, or even 

what values in domain are stored! 
- It only de#nes what operations are needed to compute these values. 
- Iteration over domain points is implicit (no explicit loops) 

Var x, y; 
Func blurx, out; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 

// perform 3x3 box blur in two-passes 
blurx(x,y) = 1/3.f * (in(x-1,y)    + in(x,y)      + in(x+1,y)); 
out(x,y) =   1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)); 

// execute pipeline on domain of size 800x600 
Halide::Buffer<uint8_t> result = out.realize(800, 600);
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E!ciently executing Halide programs



▪ Caches operate at the granularity of “cache lines”. 
In the #gure, the cache: 

- Has a capacity of 2 lines 
- Each line holds 4 bytes of data
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Review (I hope): what is a data cache?
A cache is a hardware implementation detail that does not impact the output of a program, only its performance  
Cache is on-chip storage that maintains a copy of a subset of the values in memory 
If an address is stored “in the cache” the processor can load/store to this address more quickly than if the data resides only in DRAM

Address Value
0x0
0x1
0x2
0x3
0x4
0x5
0x6
0x7
0x8
0x9
0xA
0xB
0xC
0xD
0xE
0xF
0x10

16
255
14
0

128

0
0

0
6

32
48
255
255
255

0
0
0

0x1F

. . 
.

. . 
.

0

Data Cache
Line Address Values in line

0x4   0   0   6   0 

0xC 255   0   0   0

Fetch/ 
Decode

Execution 
Context

ALU 
(Execute)

Processor

DRAM
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Which program performs better?
void add(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] + B[i];     
} 

void mul(int n, float* A, float* B, float* C) { 
    for (int i=0; i<n; i++) 
       C[i] = A[i] * B[i];     
} 

float* A, *B, *C, *D, *E, *tmp1, *tmp2; 

// assume arrays are allocated here 

// compute E = D + ((A + B) * C) 
add(n, A, B, tmp1); 
mul(n, tmp1, C, tmp2); 
add(n, tmp2, D, E);

void fused(int n, float* A, float* B, float* C, float* D, float* E) { 
    for (int i=0; i<n; i++) 
       E[i] = D[i] + (A[i] + B[i]) * C[i];     
} 

// compute E = D + (A + B) * C 
fused(n, A, B, C, D, E);

Program 1

Program 2

Which code structuring style would you 
rather write? 
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Two-pass 3x3 blur in C++
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<(HEIGHT+2); j++) 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int ii=0; ii<3; ii++) 
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; 
    tmp_buf[j*WIDTH + i] = tmp; 
  } 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

Total work per image = 6 x WIDTH x HEIGHT
For NxN #lter:  2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage 
2x lower arithmetic intensity than 2D blur. Why?

input 
(W+2)x(H+2)

tmp_buf 
W x (H+2)

output 
W x H
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Two-pass image blur: locality
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<(HEIGHT+2); j++) 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int ii=0; ii<3; ii++) 
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; 
    tmp_buf[j*WIDTH + i] = tmp; 
  } 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

Data from input reused three times.  (immediately reused in next two 
i-loop iterations after #rst load, never loaded again.) 
- Perfect cache behavior: never load required data more than once 
- Perfect use of cache lines (don’t load unnecessary data into cache)

Data from tmp_buf reused three times (but three rows of image 
data are accessed in between) 
- Never load required data more than once… if cache has capacity 

for three rows of image 
- Perfect use of cache lines (don’t load unnecessary data into cache)

Two pass: loads/stores to tmp_buf are overhead (this memory tra!c 
is an artifact of the two-pass implementation: it is not intrinsic to 
computation being performed)

Intrinsic bandwidth requirements of blur algorithm: 
Application must read each element of input image 
and must write each element of output image.
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Two-pass image blur, “chunked” (version 1)
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * 3]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<HEIGHT; j++) { 

  for (int j2=0; j2<3; j2++) 
    for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int ii=0; ii<3; ii++) 
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii]; 
      tmp_buf[j2*WIDTH + i] = tmp; 
   
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[jj*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

input 
(W+2)x(H+2)

tmp_buf

output 
W x H

(Wx3)

Produce 3 rows of tmp_buf 
(only what’s needed for one 
row of output)

Total work per row of output: 
- step 1: 3 x 3 x WIDTH work 
- step 2: 3 x WIDTH work 

Total work per image = 12 x WIDTH x HEIGHT    ???? 

Loads from tmp_bu"er are cached 
(assuming tmp_bu"er #ts in cache)

Combine them together to get one row of output

Only 3 rows of intermediate 
bu"er need to be allocated
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Two-pass image blur, “chunked” (version 2)
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (CHUNK_SIZE+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) { 

  for (int j2=0; j2<CHUNK_SIZE+2; j2++) 
    for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int ii=0; ii<3; ii++) 
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii]; 
      tmp_buf[j2*WIDTH + i] = tmp; 
   
  for (int j2=0; j2<CHUNK_SIZE; j2++) 
    for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<3; jj++) 
        tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj]; 
      output[(j+j2)*WIDTH + i] = tmp; 
    } 
}

input 
(W+2)x(H+2)

tmp_buf

output 
W x H

W x (CHUNK_SIZE+2)Produce  enough rows of tmp_buf to 
produce a CHUNK_SIZE number of rows 
of output

Total work per chuck of output: (assume CHUNK_SIZE = 16) 
- Step 1: 18 x 3 x WIDTH work 
- Step 2: 16 x 3 x WIDTH work 

Total work per image: (34/16) x 3 x WIDTH x HEIGHT  
                                                 = 6.4 x WIDTH x HEIGHT

Produce CHUNK_SIZE rows of output

Sized so entire bu"er #ts in cache 
(capture all producer-consumer locality)

Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased! 
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Still not done
We have not parallelized loops for multi-core execution 
We have not used SIMD instructions to execute loops bodies 
Other basic optimizations: loop unrolling, etc…
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Optimized implementation of 3x3 box blur in x86 SSE intrinsics 
Good: ~10x faster on a quad-core CPU than my original two-pass code  
Bad: speci#c to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

use of SIMD vector 
intrinsics

Modi#ed iteration order: 
256x32 tiled iteration (to 
maximize cache hit rate)

Multi-core execution 
(partition image vertically)

two passes fused into one: 
tmp data read from cache
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One (serial) implementation of Halide
Func blurx, out; 
Var  x, y, xi, yi; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 

// the “algorithm description”  (declaration of what to do) 
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

// execute pipeline on domain of size 1024x1024 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate blurx(1024,1024+2);   // (width,height) 
allocate out(1024,1024);       // (width,height) 

for y=0 to 1024:   
   for x=0 to 1024+2: 
      blurx(x,y) = … compute from in 

for y=0 to 1024:   
   for x=0 to 1024: 
      out(x,y) = … compute from blurx

Equivalent “C-style” loop nest:

input 
(W+2)x(H+2)

blurx 
W x (H+2)

out 
W x H
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Key aspect in the design of any system: 
Choosing the “right” representations for the job

▪ Good representations are productive to use: 
- Embody the natural way of thinking about a problem 

▪ Good representations enable the system to provide the application useful services: 
- Validating/providing certain guarantees (correctness, resource bounds, type checking) 
- Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but 
generating an e!cient implementation of a speci#c Halide program.
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A second set of representations for “scheduling”

When evaluating out, use 2D tiling order 
(loops named by x, y, xi, yi). 
Use tile size 256 x 32.

Vectorize the xi loop (8-wide) 

Use threads to parallelize the y loop

Produce elements  blurx on demand for 
each tile of output. 
Vectorize the x (innermost) loop

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a 
parallel machine, but leave the details of emitting the low-level platform-speci#c code to the Halide compiler

“Schedule”

Func blurx, out; 
Var  x, y, xi, yi; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 

// the “algorithm description” (declaration of what to do) 
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

// “the schedule” (how to do it) 
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y); 

blurx.compute_at(x).vectorize(x, 8); 

// execute pipeline on domain of size 1024x1024 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);
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Primitives for orderation order
Specify both order and how to parallelize 
(multi-thread, vectorize via SIMD instr)

2D blocked iteration order

t0
t1

(In diagram, numbers indicate sequential order of processing within a thread)
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Ordering Halide loop nests

blurx_y_loop

allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate blurx(1024,1024+2);   // (width,height) 
allocate out(1024,1024);       // (width,height) 

for y=0 to 1024:   
   for x=0 to 1024+2: 
      blurx(x,y) = … compute from in 

for y=0 to 1024:   
   for x=0 to 1024: 
      out(x,y) = … compute from blurx

Loops for computing values of blurx

Loops for computing values of out

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide algorithm:

Loop nest diagram of implementation: One possible implementation:

blurx_x_loop

out_y_loop

out_x_loop

<root>



allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate out(1024,1024);       // (width,height) 

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
       
      allocate blurx(258, 34) 
      for yi=0 to 32+2: 
         for xi=0 to 256+2: 
            tmp_blurx(xi,yi) = // compute blurx from in 

      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi 
            out(idx_x, idx_y) = …

Stanford CS348K, Spring 2024

Ordering Halide loop nests

Loops for computing 
values of blurx

Inner loops for computing 
values of out (loops over elements)

Halide algorithm:

Another possible implementation:

Outer loops for computing values of out 
(loops over tiles)

Only allocate a tile of blurx

out_y_loop

out_x_loop

blurx_yi_loop

blurx_yi_loop

out_yi_loop

out_yi_loop

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);
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Primitives for how to interleave producer/consumer 
processing
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_root();

allocate blurx(1024,1024+2) 
for y=0 to HEIGHT: 
  for x=0 to WIDTH: 
     blurx(x,y) = … // access values from buffer “in” 

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi 
            out(idx_x, idx_y) = … // access values from buffer blurx

Do not compute blurx within out’s loop nest. 
Compute all of blurx, then all of out

all of blurx is computed here

values of blurx consumed here



for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi 

            allocate blurx(1,3) 

            // compute 3 elements of blurx needed for out(idx_x, idx_y) here  
            for blurx_y=0 to 3: 
                blurx(0, blurx_y) = … // access values from buffer “in”              

            out(idx_x, idx_y) = … // access values from buffer blurx Stanford CS348K, Spring 2024

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, xi);
Compute necessary elements of blurx 
within out’s xi loop nest

Primitives for how to interleave producer/consumer 
processing

Note: Halide compiler performs 
analysis that the output of each 
iteration of the xi loop required 3 
elements of blurx
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blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

out.tile(x, y, xi, yi, 256, 32);

blurx.compute_at(out, x);

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
       
      allocate blurx(256,34) 
      for yi=0 to 32+2: 
         for xi=0 to 256: 
            blurx(xi, yi) = // compute blurx from in 

      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi 
            out(idx_x, idx_y) = … // access values from buffer blurx

Compute necessary elements of blurx within out’s x 
loop nest (all necessary elements for one tile of out)

Primitives for how to interleave producer/consumer 
processing

tile of blurx is computed here

tile of blurx is consumed here
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An interesting Halide schedule
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

out.tile(x, y, xi, yi, 256, 32);

blurx.store_at(out, x) 
blurx.compute_at(out, xi);

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
       
      allocate blurx(256,34) 

      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi; 
             
            // compute 3 elements of blurx needed for out(idx_x, idx_y) here  
            for blurx_y=0 to 3: 
               blurx(xi, yi + blurx_y) = … // access values from buffer “in” 

            out(idx_x, idx_y) = … // access values from buffer blurx 

Compute necessary elements of blurx within out’s xi loop 
nest, but #ll in tile-sized bu"er allocated at x loop nest.

This recomputes values. Can compiler be smarter?
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“Sliding optimization” (reduces redundant computation)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

out.tile(x, y, xi, yi, 256, 32);

blurx.store_at(out, x) 
blurx.compute_at(out, xi);

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
      allocate blurx(256x34) 

      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi; 
             
            if (yi=0) { 
               // compute 3 elements of blurx needed for out(idx_x, idx_y) here 
               for blurx_y=0 to 3: 
                 blurx(xi, yi + blurx_y) = … // access values from buffer “in” 
            } else 
                 blurx(xi, yi + 2) = … // only compute one additional element of blurx 
             
            out(idx_x, idx_y) = … // access values from buffer blurx 

Compute necessary elements of blurx within out’s xi loop 
nest, but #ll in tile-sized bu"er allocated at x loop nest.

Steady state: only one new element of blurx 
needs to be computed per output
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“Folding optimization” (reduces intermediate storage)

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

out.tile(x, y, xi, yi, 256, 32);

blurx.store_at(out, x) 
blurx.compute_at(out, xi);

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
      allocate tmp_blurx(256, 3) 

      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi; 
             
            if (yi=0) { 
               // compute 3 elements of blurx needed for out(idx_x, idx_y) here 
               for blurx_y=0 to 3: 
                 blurx(xi, blurx_y) = … 
            } else 
                 blurx(xi, (yi + 2) % 3) = … // only compute one additional element of blurx 
             
            out(idx_x, idx_y) = …

Compute necessary elements of blurx within out’s xi loop 
nest, but #ll in tile-sized bu"er allocated at x loop nest.

Steady state: only one new element of blurx 
needs to be computed per output

Circular bu"er of 3 rows

Accesses to blurx modi#ed to access appropriate row of circular 
bu"er: e.g.,  ((idx_y+1)%3)
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Summary of scheduling the 3x3 box blur
// the “algorithm description”  (declaration of what to do) 
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

// “the schedule” (how to do it) 
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y); 
blurx.compute_at(out, x).vectorize(x, 8);

for y=0 to num_tiles_y:   // iters of this loop are parallelized using threads 
   for x=0 to num_tiles_x: 
      allocate blurx(256, 34) 
      for yi=0 to 32+2: 
         for xi=0 to 256+2 by 8: 
            blurx(xi,yi) = … // compute blurx from in using 8-wide 
                                 // SIMD instructions here 
                                 // compiler generates boundary conditions 
                                 // since 256+2 isn’t evenly divided by 8 
      for yi=0 to 32: 
         for xi=0 to 256 by 8: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi 
            out(idx_x, idx_y) = … // compute out from blurx using 8-wide 
                                  // SIMD instructions here

Equivalent parallel loop nest:
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What is the philosophy of Halide
Programmer is responsible for describing an image processing algorithm 
Programmer has knowledge to schedule application e!ciently on machine (but it’s slow and tedious), 
so give programmer another language to express their high-level scheduling decisions 
- Loop structure of code  
- Unrolling / vectorization / multi-core parallelization 

The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the nitty 
gritty details of implementing the schedule using mechanisms available on the target machine 
(pthreads, AVX intrinsics, CUDA code, etc.) 
- There are deviations from this philosophy in Halide? What are they?
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Constraints on language 
(to enable compiler to provide desired services)

Application domain scope: computation on regular N-D domains 

Only feed-forward pipelines (includes special support for reductions and #xed recursion depth) 

All dependencies inferable by compiler
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Initial academic Halide results
Application 1: camera RAW processing pipeline 
(Convert RAW sensor data to RGB image) 

- Original: 463 lines of hand-tuned ARM NEON assembly 
- Halide: 2.75x less code, 5% faster

▪ Application 2: bilateral #lter 
(Common image #ltering operation used in many applications) 
- Original 122 lines of C++ 
- Halide: 34 lines algorithm + 6 lines schedule 

- CPU implementation: 5.9x faster 
- GPU implementation: 2x faster than hand-written CUDA

[Ragan-Kelley 2012]
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Stepping back: what is Halide?

Halide is a DSL for helping expert developers optimize image processing code more rapidly 
- Halide does not decide how to optimize a program for a novice programmer (ignoring the auto scheduler, 

see tonight’s reading) 
- Halide provides a small number of primitives for a programmer that has strong knowledge of code 

optimization to rapidly express what optimizations the system should apply 
- parallel, vector, unroll, split, reorder, store_at, compute_at... 

- Halide compiler carries out the mapping of that strategy to a machine
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Automatically generating Halide schedules
▪ Problem: it turned out that very few programmers have the technical ability to write 

good Halide schedules 
- Circa 2017… 80+ programmers at Google write Halide 
- Very small number trusted to write schedules 

▪ Recent work: Halide compiler analyzes the Halide program to automatically generate 
e!cient schedules for the programmer [Mullapudi 2016, Adams 2019] 
- As of Adams 2019, you’d have to work hard to manually author a schedule that is better than the schedule 

generated by the Halide autoscheduler for a complex image processing pipeline 
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Halide extensions

[Li 2018] [Anderson 2021] 
Better GPU support
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In$uence on code generation for ML applications
Example: Apache TVM
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Darkroom/Rigel/Aetherling
Goal: directly synthesize ASIC or FGPA implementation of image processing pipelines from a 
high-level algorithm description (a constrained “Halide-like” language)

[Hegarty 2014, Hegarty 2016, Durst 2020]Darkroom: Compiling High-Level Image Processing Code into Hardware Pipelines

James Hegarty John Brunhaver Zachary DeVito Jonathan Ragan-Kelley† Noy Cohen Steven Bell

Artem Vasilyev Mark Horowitz Pat Hanrahan

Stanford University †MIT CSAIL

Line-buffered pipeline

ISP

Corner Detection

Edge Detection

bx#=#im(x,y)#
##(I(x,1,y)#+#
###I(x,y)#+#
###I(x+1,y))/3#
end
by#=#im(x,y)#
##(bx(x,y,1)#+#
###bx(x,y)#+#
###bx(x,y+1))/3
end
sharpened#=#im(x,y)#
##I(x,y)#+#0.1*
##(I(x,y)#,#by(x,y))#
end Stencil Language

FPGA

ASIC

CPU

Darkroom

Corner Detection

Darkroom

Figure 1: Our compiler translates programs written in a high-level language for image processing into a line-buffered pipeline, modeled after
optimized image signal processor hardware, which is automatically compiled to an ASIC design, or code for FPGAs and CPUs. We implement
a number of example applications including a camera pipeline, edge and corner detectors, and deblurring, delivering real-time processing
rates for 60 frames per second video from 480p to 16 megapixels, depending on the platform.

Abstract

Specialized image signal processors (ISPs) exploit the structure of
image processing pipelines to minimize memory bandwidth using
the architectural pattern of line-buffering, where all intermediate data
between each stage is stored in small on-chip buffers. This provides
high energy efficiency, allowing long pipelines with tera-op/sec. im-
age processing in battery-powered devices, but traditionally requires
painstaking manual design in hardware. Based on this pattern, we
present Darkroom, a language and compiler for image processing.
The semantics of the Darkroom language allow it to compile pro-
grams directly into line-buffered pipelines, with all intermediate
values in local line-buffer storage, eliminating unnecessary com-
munication with off-chip DRAM. We formulate the problem of
optimally scheduling line-buffered pipelines to minimize buffering
as an integer linear program. Finally, given an optimally scheduled
pipeline, Darkroom synthesizes hardware descriptions for ASIC or
FPGA, or fast CPU code. We evaluate Darkroom implementations
of a range of applications, including a camera pipeline, low-level fea-
ture detection algorithms, and deblurring. For many applications, we
demonstrate gigapixel/sec. performance in under 0.5mm2 of ASIC
silicon at 250 mW (simulated on a 45nm foundry process), real-
time 1080p/60 video processing using a fraction of the resources
of a modern FPGA, and tens of megapixels/sec. of throughput on a
quad-core x86 processor.

CR Categories: B.6.3 [Logic Design]: Design Aids—Automatic
Synthesis; I.3.1 [Computer Graphics]: Hardware Architecture—
Graphics Processors; I.3.6 [Computer Graphics]: Methodology and
Techniques—Languages; I.4.0 [Image Processing and Computer
Vision]: General—Image Processing Software

Keywords: Image processing, domain-specific languages, hard-
ware synthesis, FPGAs, video processing.

Links: DL PDF WEB

1 Introduction

The proliferation of cameras presents enormous opportunities for
computational photography and computer vision. Researchers are
developing ways to acquire better images, including high dynamic
range imaging, motion deblurring, and burst-mode photography.
Others are investigating new applications beyond photography. For
example, augmented reality requires vision algorithms like optical
flow for tracking, and stereo correspondence for depth extraction.
However, real applications often require real-time throughput and
are limited by energy efficiency and battery life.

To process a single 16 megapixel sensor image, our implementation
of the camera pipeline requires approximately 16 billion operations.
In modern hardware, energy is dominated by storing and loading in-
termediate values in off-chip DRAM, which uses over 1,000⇥ more
energy than performing an arithmetic operation [Hameed et al. 2010].
Simply sending data from mobile devices to servers for processing
is not a solution, since wireless transmission uses 1,000,000⇥ more
energy than a local arithmetic operation.

Often the only option to implement these algorithms with the re-
quired performance and efficiency is to build specialized hardware.
Image processing on smartphones is performed by hardware image
signal processors (ISPs), implemented as deeply pipelined custom
ASIC blocks. Intermediate values in the pipeline are fed directly

Goal: very-high e!ciency image processing


