Lecture 12:

Creating Al Agents + Simulating Virtual Worlds for Training

Visual Computing Systems
Stanford CS348K, Spring 2024

First: resuming discussion of LLM-based agents from last time (Generative agents + Voyager papers)

LLM-driven problem solving vs. trial and error

- Problem solving approach of the previous lecture and our discussion up until now:
 - State problem in plain text
 - Use LLM as a general purpose problem solver
 - LLM provides text-based (or code based) solution strategy
 - Execute strategy in a virtual world

■ Now let's consider problems where it's less obvious how to describe the problem in text...

Dexterous

Why learning via trial and error requires a lot of simulated experience (reinforcement learning example)

Model Inference

environment observation \longrightarrow $\pi \theta \longrightarrow$ agent action e.g. RGB image

Model Inference

environment observation \longrightarrow $\pi \theta \longrightarrow$ agent action e.g. RGB image

Model Training

Model Inference

environment observation
$$\longrightarrow$$
 $\pi \theta \longrightarrow$ agent action e.g. RGB image

Model Training

Many rollouts:

- Agents independently navigating same environments

Batch Model Training

Many rollouts:

- Agents independently navigating same environments
- Or different environments

Batch Model Training

compute loss

gradients

 π_{θ}

update

model

via SGD

Rollout 1

Rollout 2

Rollout 3

Rollout 4

Rollout 5

•••

Rollout N-1

Learning skills can require many trials (billions) of learning experience

- **■** Training in diverse set of virtual environments
- Many training trials in each environment

Need significant amounts of simulated expe

Example: even for simple PointGoal navigation task: need billions of steps of "experience" to exceed traditional non-learned approaches

Accurate

Many interactive virtual home environments

Navigate to a location
Find an object
Rearrange the room so objects are in desired locations
Pour oneself a glass of milk

Multi-agent games

Hanabi (Card Game)

Overcooked (Sims-Like Env)

Atari Games

Basketball Pong

Boxing

Combat Plane

Combat Tank

Double Dunk

Entombed Competitive

Entombed Cooperative

Flag Capture

Foozpong

Ice Hockey

Joust

Mario Bros

RL workload summary

- Within a rollout
 - For each step of a rollout:
 - Render \rightarrow Execute policy inference \rightarrow simulate next world state

- Across many independent rollouts
 - Simulated agents may (or may not) share scene state
 - Diversity in scenes in a batch of rollouts is desirable to avoid overfitting, sample efficiency of learning

Common simulation approach: treat simulator as a black box, gain high throughput via scale-out parallelization

Treat existing simulation engines as a black box.

Run many copies of the black box in parallel.

OpenAl's "OpenAl 5" Dota 2 bot

CPUs

GPUs

Experience collected

Size of observation

Observations per

Batch size

second of gameplay

Batches per minute

1,048,576 observations

~60

Generating simulated experience is computationally demanding

OpenAl Five

Rapid: 128,000 CPUs, days of training

Navigation in 3D scanned environments

64 GPUs over 2.5 days (2B experience samples)

Game playing

Deepmind Lab Training with 4000 CPUs and 64 TPUs

Large-scale agent training is expensive!

OpenAl Five

Robotics in Virtual World

64 GPUs over 2.5 days (2B experience samples)

OpenAl Hide and Seek

High-level strategies emerge after billions of world time steps

Learning Dota 2: Months of training

CPUs

0.00	120,000 <u>preemptible</u> or o cores on cor
GPUs	256 P100 GPUs on GCP
Experience collected	~180 years per day (~900 years per day counting each hero separately)

128 000 preemptible CPU cores on GCP

Example: PointGoal navigation task system components

Basic design: parallelize over workers

Example: Rapid (OpenAI)

Example renderings from common RL learning environments

- Low resolution
- Simple lighting/shading

Design issues

 Inefficient simulation/rendering: rendering a small image does not make good use of a modern GPU (rendering throughput is low)

 Duplication of computation and memory footprint (for scene data) across renderer/ simulator instances

Seems wasteful, right?

Tonight's reading

The design of a game engine for the specific case of running many independent world simulations at the same time on a GPU [Shacklett et al 2023]