
Visual Computing Systems
Stanford CS348K, Spring 2024

Lecture 13:

Simulating Virtual Worlds for Training

Stanford CS348K, Spring 2024

Today
Slides on the landscape of high-performance world simulation e!orts designed for
improving the e"ciency of training embodied AI agents
Discussion of the Madrona system
Discussion: do we even need to simulate from a traditional world model at all?
- Can’t generative AI just make our training data?
- Setup for ionight’s reading: Genie

Stanford CS348K, Spring 2024

Recall from last time
1. Training and agent to learn complex skills can require many (millions, even billions) of

trial-and-error steps (aka large amounts of “training experience”)

2. Researchers create virtual environments to simulate all this experience.

Stanford CS348K, Spring 2024

Basic training system components
Database of 3D assets

(meshes, textures collision meshes)

Simulation
(advance world)

Generate Agent
Observations

Compute
Rewards/Loss

Given agent viewpoint,
render image,

lidar, visibility? etc.

Run game logic,
Physics calculations,

etc.

Agent Policy
Inference/Learning

DNN evaluation,
gradient update step

(from observations)

World
Construction

Load assets,
programmatically

create world instance

Next agent action

A simple example game: Hide and seek with four agents

Stanford CS348K, Spring 2024

Hide and seek state: world entities

Stanford CS348K, Spring 2024

Pos Bbox

Action

Reward

Hide and seek: examples of per-entity state (for agents)

Hide and seek: example observations (which agents does each agent see?)

Stanford CS348K, Spring 2024

Common simulation approach: treat simulator as a black box,
increase simulation throughput via “scale-out” parallelization

Treat existing simulation engines
as an unmodi#able black box.

Run many copies of the black box
in parallel.

Stanford CS348K, Spring 2024

A basic design: parallelize over workers

DNN ops
Inference +

learning: update
policy from experience)

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Simulation

Generate Obs

Env 0 state

Node 0

Observations

Simulation

Generate Obs

Env 1 state

Node 1

Simulation

Generate Obs

Env 2 state

Node 2
Simulation

Generate Obs

Env 3 state

Node 3

Actions

Actions

Observations
Compute Rewards

Stanford CS348K, Spring 2024

One example of this design:
EnvPool (one multi-core node)

Pros:
- Use any existing simulator, unmodi#ed
- Collects observations from environments, provides

them to Python as a Tensor
Cons:
- See upcoming slides (simulator-learning code sync

costs, running many independent simulators is not
optimal on high throughput machines)

Stanford CS348K, Spring 2024

Similar design for distributed system: parallelize over workers

Learning
Update policy model

from experience)
<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Rollouts
(list of [obs, action, reward])

New policy

New policy

Rollouts
(list of [obs, action, reward])

Simulation

Generate Obs

Env 1 state

Node 1

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 0 state

Node 2

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 0 state

Node 0

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 3 state

Node 3

Compute Rewards

Policy Inference

Stanford CS348K, Spring 2024

Example: Rapid by (OpenAI) OpenAI Five stats (Dota 2)

Stanford CS348K, Spring 2024

Example public RL learning environments
- Lower complexity worlds
- Lower #delity observations

Stanford CS348K, Spring 2024

What game engines are designed to simulate

Unreal Nanite Demo

In contrast: what a modern GPU is designed to render
(Very high #delity observations)

Large-scale agent training is expensive!
OpenAI Five Robotics in Virtual World OpenAI Hide and Seek

Learning Dota 2:
Months of training

High-level strategies emerge
after billions of world time steps

64 GPUs over 2.5 days
(2B experience samples)

Stanford CS348K, Spring 2024

Design issues of basic scale-out approach
Ine"cient simulation/rendering: low-complexity worlds do not make good use of a
modern parallel processor’s resources
- GPUs won’t achieve high-throughput rendering/physics with smaller workloads

Ine"cient communication between simulation and inference/training

Duplication of computation and memory footprint (for scene data) across environment
simulator instances

Seems wasteful, right?

Stanford CS348K, Spring 2024

A new visual computing systems research question:

Can we execute embodied AI training more e"ciently if we
architect a world simulation engine from the ground up

to process many independent worlds at once?

Stanford CS348K, Spring 2024

Batch environment simulation

Stanford CS348K, Spring 2024

CuLE: Rewriting an Atari emulator in CUDA
One CUDA thread = work for one enumerator instance
Large numbers of threads execute

Stanford CS348K, Spring 2024

NVIDIA Issac Gym
Batched many-environment execution applied to rigid body physics sim
Simulate 100’s to 1000’s of world environments simultaneously on the GPU
Current state for all environments packaged in a single PyTorch tensor
User can write GPU-accelerated loss/reward functions in PyTorch on this tensor
Result: tight loop of simulate/infer/train

Stanford CS348K, Spring 2024

Waymax
Self-driving car simulator built using Jax programming environment
Environment state stored in JAX tensors (max number of objects across all environments in a batch)

Example: navigation in 3D scanned environments
(these are multi-room floorplans…)

40,000 fps batch
rendering of small
images from popular
3D scanned virtual
environments
(Gibson/Matterport)

100x End-to-End Gain with Optimized Policy DNN

Benchmarked with RTX 3090

ICLR 2020 Baseline (ResNet50)

Our System
(ResNet50)

Our System
(ResNet9)

Frames of Experience Per Second
0 5000 10000 15000 20000

19900

2300

180

13300

2000

140 RGB Depth

2.5B frames of experience in 48 hrs on a single RTX 3090

Run render->infer->train loop
runs at 13,000 fps per GPU

“PointGoal Navigation” in Gibson environments (Habitat Labs)

"Large Batch Simulation for Deep Reinforcement Learning", B. Shacklett, E. Wijmans, A.Petrenko, M. Savva, D. Batra, V. Koltun, K. Fatahalian, ICLR 2021

BPS3D: Home NavigationCuLE: AtariIsaac Gym: GPU Physics

~10000 envs per GPU ~5000 envs per GPU ~1000 envs per GPU

The story so far… reimplement learning environments
as “batch simulators" for 100x Speedups

WaymaxMuJoCo MJX

What about training new kinds of agents for new tasks?
Floorplan NavigationAtariGPU Physics

(c) Unity

Novel Research Task New Types of Games

We need a “game engine” for
building batch simulators!

Maximize throughput: millions of sim steps/sec for simple 3D environments
(When running many environments in parallel)

Programmable: environment creators should be able to author diverse set of worlds,
de#ne custom world rules/behavior

Productive: quickly be able to create novel worlds

Stanford CS348K, Spring 2024

Madrona
Key idea: the Entity Component System (ECS) architecture, which is a programming
structure used in some games today, provides useful structure needed to build a many-
world game engine on the GPU

Entities (ECS)

Components (ECS)

EnvID PosId
12

32

51

0

0

0

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

Bbox Action
{min...

{min...

{min...

0.1

-0.1

-2.5

Agents
EnvID PosId

13

72

61

0

0

0

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

Bbox
{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

EnvID PosId
12

32

51

0

0

0

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

Bbox Action
{min...

{min...

{min...

0.1

-0.1

-2.5

Agents
EnvID PosId

13

72

61

0

0

0

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

Bbox
{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

49 1 [0.5,1,2] ...{min...

70 1 [-0.5,1,0] ...{min...

33 2 [1.5,0,2.5] ...{min...

81 3 [2.5,0.5,2] ...{min...

11 3 [1.5,0.5,2] ...{min...

62 1 [1.5,0.5,1] {min... 0.3RIGHT

65 1 [-0.5,0,0] {min... 0.5RIGHT

20 2 [0.5,1,1] {min... 1.5LEFT

23 2 [-1.5,0,0] {min... 10.5LEFT

41 2 [0.5,1,0] {min... -10BACK

...

...

...

...

...

Batch ECS: Store Data Across All Environments in
Unified Tables in GPU Memory

Systems (ECS)

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

Systems (ECS)

GPU Thread

GPU Thread

GPU Thread

GPU Thread

ECS Systems Combined into Task Graph and
Executed in Parallel on the GPU

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

Scheduling the ECS on the GPU

Fully GPU-Driven Scheduling Challenges
Dynamic GPU-Driven Memory Allocation:

- Game logic needs to create entities at runtime (during a simulation step)
- Entity lifetimes can vary wildly (<1 frame to hundreds)

How to Efficiently Execute Task Graph Given Dynamic Workload Each Frame?
- Task graph can contain > 100 nodes!
- # of entities matching each system may depend on prior nodes in task graph

Growable ECS Table Storage By (Ab)using
GPU Virtual Memory Support

EnvID PosId
13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles

Unbacked
Virtual Memory

EnvID PosId
13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles

Unbacked
Virtual Memory

27 2 [1.5,1,2.5] ...{min...

28 2 [1,0,3.5] ...{min...

New Entities
Created

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

EnvID PosId
12

32

51

0

X

X

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

ECS Systems
Execute

23 0 [2,1,1.5] ...

24 1 [0,1,2.5] ...

EnvID PosId
12

32

51

0

X

X

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Radix Sort
23 0 [2,1,1.5] ...

24 1 [0,1,2.5] ...

EnvID PosId
12 0 [0,0,.5] ...

22 2 [2.5,0,1.5] ...

Reclaim
Memory 23 0 [2,1,1.5] ...

24 1 [0,1,2.5] ...

Achieving Dynamic GPU Memory Allocation &
Improving Coherence Using Parallel Radix Sort

Megakernel(taskgraph, envs):
while true: 
 system_id, invocation_id = getNext(taskgraph)  
 switch system_id: 
 case 0: physicsSystemEntry(envs, invocation_id)  
 case 1: ProcessActionEntry(envs, invocation_id)  
 case 2: visibilitySystemEntry(envs, invocation_id)  
 case -1: break 
 
 threadFinished(taskgraph) 

getNext(taskgraph):
node = taskgraph.currentNode()  
if node.currentInvocation < node.numInvocations: 
 return node.systemID, node.currentInvocation++  

return taskgraph.advanceNode()

Low-Overhead Dynamic Task Graph Execution
Using Persistent Megakernel Design

ProcessAction(env, id, pos, force, team, action):
if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(env, pos)

if hit_obj:

...

ProcessActionEntry(envs, ecs_state, gpu_thread_idx):
ids, world_ids, positions, forces, teams, actions = 
 ecs_state.getColumns<Id, EnvID, Pos, Force, Team, Action>()

row = gpu_thread_idx

env_id = env_ids[row] 
if env_id is not valid: 
 return  
 
ProcessAction(envs[env_id], ids[row], positions[row], 
 forces[row], teams[row], actions[row])

Example ECS System: Mapping GPU Threads to
Hide & Seek ProcessAction

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

EnvID PosId
12

32

51

0

X

X

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

ECS Systems
Execute

23 0 [2,1,1.5] ...

24 1 [0,1,2.5] ...

EnvID PosId
12

32

51

0

X

X

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Radix Sort
23 0 [2,1,1.5] ...

24 1 [0,1,2.5] ...

EnvID PosId
12 0 [0,0,.5] ...

22 2 [2.5,0,1.5] ...

Reclaim
Memory 23 0 [2,1,1.5] ...

24 1 [0,1,2.5] ...

Mitigating Megakernel Inefficiencies
Using Profile-Guided Optimization
• Megakernel Implies One-Size-Fits-All Register Allocation

- Observation: Can afford more than 1 kernel launch per batched simulation step

• Profile-Guided Optimization: Empirically test performance of each system
with different register allocations & choose best!
- Negligible cost in a 100 million step training run

Mitigating Megakernel Inefficiencies Using
Profile-Guided Optimization

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

2 Thread Blocks
Per SM

4 Thread Blocks
Per SM

time (7.9 ms)

1 2{{ 2{ 2{ 2{ 1 3{ 4

BVH & Broad Phase Physics Sub-Step LIDARAgent Observations & Rewards321 43

{ {
G

PU
 S

M
 0

G
PU

 S
M

 1
27

Performance Analysis: One Step Across 16K Environments

Stanford CS348K, Spring 2024

Procedural content creation

Stanford CS348K, Spring 2023

Example: ProcTHOR
Signi#cant value in diversity of scenes

Procedurally generated $oorpans, furniture
arrangements, random material assigmments, etc.

Stanford CS348K, Spring 2024

Greater diversity of scenes wins

Better o! training on a large number of highly diverse scenes, than a small number of photorealistic ones

Stanford CS348K, Spring 2024

Generative AI as a means to generate
world simulation output

Stanford CS348K, Spring 2024

Enhancing CG images to look like real-world images using
image-to-image transfer

Stanford CS348K, Spring 2024

Modifying real-world images to create novel situations

Remove or
move this car.

Stanford CS348K, Spring 2024

Genie
Key idea: learn a world simulator from videos of video game play
- From video, learn latency user actions, and dynamics model that steps work given (current state, action)

- Then at “test time” given a novel world state (perhaps one generated from a prompt), and given user input,
time step the novel world forward in time

Stanford CS348K, Spring 2024

Next time: the great debate
Class debate: you have to choose a side!

What’s the right way to build a world simulator?
- Like a “game engine” : humans model and build a simulator
- Data driven: just learn it from big data

What are the pros/cons?

In what situations might one be preferable?

