Lecture 13:

Simulating Virtual Worlds for Training

Visual Computing Systems
Stanford C5348K, Spring 2024

Today

m Slides on the landscape of high-performance world simulation efforts designed for
improving the efficiency of training embodied Al agents

m Discussion of the Madrona system

m Discussion: do we even need to simulate from a traditional world model at all?
- (Can’t generative Al just make our training data?
- Setup for ionight’s reading: Genie

Stanford C5348K, Spring 2024

Recall from last time

1. Training and agent to learn complex skills can require many (millions, even billions) of
trial-and-error steps (aka large amounts of “training experience”)

i

Stanford (5348K, Spring 2024

Basic training system components

Database of 3D assets
(meshes, textures collision meshes)

Agent Policy
Inference/Learning

DNN evaluation,
gradient update step

Next agent action

Stanford (S348K, Spring 2024

ASImplelexampleigamesiiide and seeKwithfouragents

Hide anaseek

ride and seek: example observations (which agents does each agent see?)

—

-

-
~——

Common simulation approach: treat simulator as a black box,
Increase simulation throughput via “scale-out” parallelization

Inference &
Learning

Treat existing simulation engines
as an unmodifiable black box.

Run many copies of the black box
in parallel.

Stanford C5348K, Spring 2024

A basic design: parallelize over workers

~

Node 0

Env 0 state

~

Node 2

Env 2 state

_J

~

Node 1

Env 1 state

~

Node 3

Env 3 state

J

Observations

—

Actions

—»

Observations

DNN ops

Inference +
learning: update
policy from experience)

o

Stanford (5348K, Spring 2024

One example of this design:
EnvPool (one multi-core node)

m Pros:
- Use any existing simulator, unmodified

- Collects observations from environments, provides
them to Python as a Tensor

m Cons:

- See upcoming slides (simulator-learning code sync
costs, running many independent simulators is not
optimal on high throughput machines)

[0 README & Code of conduct 58 Apache-2.0 license 4

NVI[PO Ol

v0.8:4 | PyPI Download [1%k | arXiv 2206.10558 C) Bazel Build and Test |passing] issues [4950pen I @ Tt JRRT
Q Forks 90 _,-.;.;3,;_:..;:-;/..&77.

EnvPool is a C++-based batched environment pool with pybind11 and thread pool. It has high performance (~1M
raw FPS with Atari games, ~3M raw FPS with Mujoco simulator on DGX-A100) and compatible APIs (supports both
gym and dm_env, both sync and async, both single and multi player environment). Currently it supports:

Atari games

Mujoco (gym)

Classic control RL envs: CartPole, MountainCar, Pendulum, Acrobot

Toy text RL envs: Catch, FrozenLake, Taxi, NChain, CliffWalking, Blackjack
ViZDoom single player

DeepMind Control Suite

Box2D

Procgen
Minigrid

Here are EnvPool's several highlights:

o Compatible with OpenAl gym APIs, DeepMind dm_env APIs, and gymnasium APIs;
 Manage a pool of envs, interact with the envs in batched APIs by default;

e Support both synchronous execution and asynchronous execution;

e Support both single player and multi-player environment;

» Easy C++ developer API to add new envs: Customized C++ environment integration;

* Free ~2x speedup with only single environment;

1 Million Atari frames / 3 Million Mujoco steps per second simulation with 256 CPU cores, ~20x throughput of
Python subprocess-based vector env;

» ~3x throughput of Python subprocess-based vector env on low resource setup like 12 CPU cores;

» Comparing with existing GPU-based solution (Brax [/ Isaac-gym), EnvPool is a general solution for various
kinds of speeding-up RL environment parallelization;

Similar design for distributed system: parallelize over workers

s

Node 0

Policy Inference

Env 0 state

~

~

N (.

Node 2

Policy Inference

Env 0 state

O\

Node 1)

Policy Inference

Env 1 state

N (.

\

Node 3

Policy Inference

Env 3 state

Rollouts

(list of [obs, action, reward])

—

New policy

New policy

Rollouts

(list of [obs, action, reward])

Learning

Update policy model
from experience)

Uy’

Stanford (5348K, Spring 2024

Example: Rapid by (OpenAl

Optimizer + Connected Rollout Workers (x256)

Rollout Workers
~500 CPUs

Run episodes
» 80% against current bot

» 20% against mixture of past versions Rollout
. N Data
Randomized game settings Samples

Push data every 60s of gameplay
» Discount rewards across the 60s using
generalized advantage estimation

Model Parameters

(10M floats)

Eval Workers

~2500 CPUs
Play in various environments Model
for evaluation Parameters

* vs hardcoded “scripted” bot

- vS previous similar bots (used to
compute Trueskill)

* vs self (for humans to watch
and analyze)

Optimizers

use NCCL2 to
average gradients
at every step.

Gradient

Updates

OpenAl Five stats (Dota 2)

CPUs

GPUs

Experience collected

Size of observation

Observations per

second of gameplay

Batch size

Batches per minute

OPENAI FIVE

128,000 preemptible CPU cores on GCP

256 P100 GPUs on GCP

~180 years per day (~900 years per day
counting each hero separately)

~36.8 kB

7.9

1,048,576 observations

Stanford C5348K, Spring 2024

Example public RL learning environments

- Lower complexity worlds
- Lower fidelity observations

Achik-sior

.....................

[Abigail] : Hey Klaus, mind if
I join you for coffee?

[Klaus]: Not at all, Abigail.
How are you?

Finishing a !

~L
morning routine H;
—== = |
\%

[John]: Hey, have you heard
anything new about the
upcoming mayoral election?
[Tom] : No, not really. Do you
know who is running?

a0 i

&’

Mine Amethyst

Mine Gold o

Build Nether Portal [l -
with Human Feedback Hunt Pig |

e emeeaw ——- 28K, Spring 2024

] 'c;"" /

A Y

’

s Fimd”
.W)s\‘"
(]

1to render

S

st

In contra

-0

T
d
U=
——
(2

—

(Veryh

. 3 B
- -

TSR SRy 8
- - - e A

- Ty

Demo

ite

Unreal Nan

Large-scale agent training is expensive!

OpenAl Five Robotics in Virtual World OpenAl Hide and Seek
a. Plaver Hero b. Allied Hero c. Allied Team d. Enemy Team l X \ \ ii a - ' v

e. Enemy Creep

. Q@Q- f. Enemy Heroes (RS _"___‘_:;,_ ‘.,, |

. g. Allied Creeps [
6(& |

k. Fog of War

. Allied Tower

h. Modifiers

I. ltems

Learning Dota 2: 64 GPUs over 2.5 days High-level strategies emerge
Months of training (2B experience samples) after billions of world time steps
CPUs 128,000 preemptible CPU cores on GCP
GPUs 256 P100 GPUs on GCP

Experience collected ~180 years per day (~900 years per day
counting each hero separately)

Design issues of basic scale-out approach

m Inefficient simulation/rendering: low-complexity worlds do not make good use of a
modern parallel processor’s resources

- GPUs won't achieve high-throughput rendering/physics with smaller workloads
m [nefficient communication between simulation and inference/training

m Duplication of computation and memory footprint (for scene data) across environment
simulator instances

m Seems wasteful, right?

Stanford C5348K, Spring 2024

A new visual computing systems research question:

Can we execute embodied Al training more efficiently if we
architect a world simulation engine from the ground up
to process many independent worlds at once?

Stanford C5348K, Spring 2024

Batch environment simulation

Stanford C5348K, Spring 2024

CuLE: Rewriting an Atari emulator in CUDA

m One CUDA thread = work for one enumerator instance

m Large numbers of threads execute ** a—
800
200 , | | | 5 600 |
- CuLE¢py D400 |
CuLE 200 f

g_) - OpenAl %0 20 40 60 80 100
LL 100 “ Time [mins]
\'d

(a) Assault, 20M training frames

) —— o A
10 10° 3000

= —
8 | S
1000 | fFre
0
40 60 80 100
Time [mins]

(¢) Ms-Pacman, 20M training frames

2000

4000

3000

Score

2000

1000

i P
0 20 40 60 80 100

Time [mins]

(b) Asterix, 20M training frames

20 —
10
—OpenAl envs: 120 N=steps: 5 SPU: 5 batches: 1

OpenAl envs: 120 N=steps: 5 SPU: 1 batches: 5
OpenAl envs: 120 N=steps: 20 SPU: 1 batches: 20
OpenAl envs: 1200 N=steps: 20 SPU: 1 batches: 20
—CuLE envs: 1200 N=steps: 5 SPU: 5 batches: 1
—CuLE envs: 1200 N=steps: 5 SPU: 1 batches: 5
CuLE envs: 1200 N=steps: 20 SPU: 1 batches: 20
—CuLE envs: 4800 N=steps: 20 SPU: 1 batches: 20

0 10 20 30 40
Time [mins]

Score
(@)

(d) Pong, 8M training frames

Stanford C5348K, Spring 2024

NVIDIA Issac Gym

Batched many-environment execution applied to rigid body physics sim
Simulate 100’s to 1000’s of world environments simultaneously on the GPU
Current state for all environments packaged in a single PyTorch tensor

User can write GPU-accelerated loss/reward functions in PyTorch on this tensor
Result: tight loop of simulate/infer/train

env, env, env,

franka, table, box, franka, table, box,

bodys body,,
(left finger) ? (right finger)
EEREEETEETREEEEES
\ Y) | \ A 'y . \ J

. | A | J
) ' '

|

P9 Q9 V9 g P1o Q1o Vio 10 Stanford (348K, Spring 2024

Waymax

m Self-driving car simulator built using Jax programming environment
m Environment state stored in JAX tensors (max number of objects across all environments in a batch)

Device BS-1 BS-16 Reset Step Transition Metrics RolloutExpert

Single- CFU v 1.09 131 090 112 1.0x10°
Agent CPU v/ 122 1.7x10% 109 1.69x103 1.4x105
Epy GPU-v100 v 0.58 0.75 0.47 0.21 56.2

GPU-v100 v 067 248 0.52 227 279
Multi. CPU v 623 129 1.0l 112 1.dx10°
Agent CPU /498 1.1x10%3 143 1.72x10%3 1.6x10°
Eny OPU-v100 v 0.64 092 0.53 0.19 733

GPU-v100 v/ 081 286 0.51 2.24 OOM

able 2: Runtime benchmark in milliseconds: the environment controls all objects in the scene (up to
128 as defined in WOD).

................

\ .
| [
|
_

Stanford C5348K, Spring 2024

Example: navigation in 3D scanned environments

(these are multi-room floorplans...)

P - -* -~

40,000 fps batch

rendering of small 50000 -
Images from popular s00-
3D scanned virtual —
environments

(Gibson/Matterport)

Frames per Second
N W W
un o un
- = o
o) o
D o)

20000 -

15000 A

10000 A

32

256

" Agent Sensor Resolution
Batch Size
— 8 —_— 32 - 128 — 512

512

1024

100x End-to-End Gain with Optimized Policy DNN

|14o B RGB Depth
ICLR 2020 Baseline (ResNet50)
180
Our System -2000
(ResNet50) 5300
oo systors I 13300
(ResNet9) 19900
0 5000 10000 15000 20000

Frames of Experience Per Second

Benchmarked with RTX 3090

2.5B frames of experience in 48 hrs on a single RTX 3090

"PointGoal Navigation™ in Gibson environments (Habitat Labs)

Run render->infer->train loop

runs at 13,000 fps per GPU 100%

S 80%

I3

an

»n 60%

o 40%f
L .
=~ 20%

P

0% < :
0 10 20 30 40

Wall-Clock Training Time (Hours)

"Large Batch Simulation for Deep Reinforcement Learning”, B. Shacklett, E. Wijmans, A.Petrenko, M. Savva, D. Batra, V. Koltun, K. Fatahalian, ICLR 2021

The story so far... reimplement learning environments

‘batch simulators” for 100x Speedups
Isaac Gym: GPU Physics CuLE: Atari BPS3D: Home Navigation

.‘ ‘ ¢p)l k" .' .ttml “% * J" " .
~1 000 envs per GPU

~10000 envs per GPU
MuJoCo MJX

MuJoCo XLA (MJX)

Starting with version 3.0.0, MuJoCo includes MuJoCo XLA (MJX) under the mjx directory. MJX
allows MuJoCo to run on compute hardware supported by the XLA compiler via the JAX framework.
MJX runs on a all platforms supported by JAX: Nvidia and AMD GPUs, Apple Silicon, and Google
Cloud TPUs.

The MJX APl is consistent with the main simulation functions in the MudJoCo AP, although it is
currently missing some features. While the API documentation is applicable to both libraries, we
indicate features unsupported by MJX in the notes below.

MJX is distributed as a separate package called mujoco-mjx on PyPl. Although it depends on the

main misarca Nackace for model combpilation and vicrialization it ie a re—imbnlementation of M loC o

What about training new kinds of agents for new tasks?

GPU Physics Atari

REARETHREERTARE
(NPT

We need a “game engine” for
building batch simulators!

Maximize throughput: millions of sim steps/sec for simple 3D environments
(When running many environments in parallel)

Programmable: environment creators should be able to author diverse set of worlds,
define custom world rules/behavior

Productive: quickly be able to create novel worlds

Madrona

m Keyidea: the Entity Component System (ECS) architecture, which is a programming
structure used in some games today, provides useful structure needed to build a many-
world game engine on the GPU

Stanford C5348K, Spring 2024

Entities (ECS)

Components (ECS)

Agents

Obstacles

Pos

Bbox

Action

EnvID

Pos

Bbox

[0,0,.5]

{min...

LEFT

[0.5,0,.5]

{min...

[2,1,0]

{min...

FWD

[1.5,0,1]

{min...

FWD

[051,3]

{min...

[1,1,2]

{min...

Batch ECS: Store Data Across All Environments in
Unified Tables in GPU Memory

Agents Obstacles

Pos Bbox | Action | Reward EnvID Pos Bbox

[0,0,.5] | {min... LEFT : e [0.5,0,.5] | {min...

[2,1,@] {m'in... FWD 0 v [0,1,3] {m-in'°°

[105,0,1] {m'in... FWD o c e [1,1,2] {m-inooo

Systems (ECS)

Agents

Pos Bbox

Action | Reward

[0,0,.5] | {min...

LEFT

[2,1,0] {min...

FWD

[1.5,0,1] | {min...

FWD

[2.5,0,1.5] | {min...

RIGHT

~ o N
ProcessActions

Pos, Action

o J

Obstacles

EnvID Pos

Bbox

[0.5,0,.5]

{min...

[0,1,3]

{min...

[1,1,2]

{min...

[1.5,1,2.5]

{min...

/ ® ®
Collisions
Id, Pos, Bbhox

&

~

/ R
ComputeRewards
L Pos, Reward Y

Systems (ECS)

Agents

Pos Bbox

Action | Reward

[0,0,.5] [{min...

LEFT

[2,1,0] {min...

FWD

[1.5,0,1] | {min...

FWD

2,5,0,1.5]| {min...

RIGHT

/\

~ o ™
ProcessActions

Pos, Action

_ L

Obstacles

EnvID

Pos

Bbox

[0.5,0,.5]

{min...

[0,1,3]

{min...

[1,1,2]

{min...

[1.5,1,2.5]

{min...

4 ¢ o
Collisions
Id, Pos, Bbox

N

/

4 R
ComputeRewards
Pos, Reward p

ECS Systems Combined into Task Graph and
Executed in Parallel on the GPU

|

[GenerateEnv J [

VelSolve

v

)=
{

[ProcessActionsJ [

PosSolve]

\

{t

{ BVHRef1it]

[NarrowPhase]

v

{t

[FindOverlaps J [

Integrate }<#;

|

i

Y
[BVHRefit J

ool v

[CheckVisible J

Vv

[Observations]L__

\

[>[MaskOutput J

V
[ComputeRewardsJ

| | U

Scheduling the ECS on the GPU

Fully GPU-Driven Scheduling Challenges

Dynamic GPU-Driven Memory Allocation:
- Game logic needs to create entities at runtime (during a simulation step)
- Entity lifetimes can vary wildly (<1 frame to hundreds)

How to Efficiently Execute Task Graph Given Dynamic Workload Each Frame?
- Task graph can contain > 100 nodes!
- # of entities matching each system may depend on prior nodes in task graph

Growable ECS Table Storage By (Ab)using
GPU Virtual Memory Support

Obstacles

EnvID Pos Bhox

Obstacles

EnvID Pos Bbox

[0.5,0,.5] | {min... [0.5,0,.5] | {min...

New Entities
[0,1,3] {min... e Created [0,1,3] {min...

[1,1,2] | {min... | " i::> [1,1,2] | {min...

[105,1,205] {m-inooo [105,1,205] {M'in...

[1.5,1,2.5] | {min...

[1,0,3.5] | {min...

Unbacked

Virtual Memory Unbacked
Virtual Memory

Pos

[0,0,.5]

[2,1,6]

[1.5,0,1]

[205,0,105] e

ECS Systems
Execute

>

Pos

[0,6,.5]

[2,1,6]

[1.5,0,1]

[205,0,105] e

[2,1,1.5]

[0,1,2.5]

Radix Sort

>

Pos

[0,0,.5]

[2,1,1.5]

[0,1,2.5]

[205,0,105] e

[2,1,0]

[1.5,0,1]

Achieving Dynamic GPU Memory Allocation &
Improving Coherence Using Parallel Radix Sort

Reclaim
Memory

>

Pos

[0,0,.5]

[2,1,1.5]

[0,1,2.5]

[205,0’105] e

Low-Overhead Dynamic Task Graph Execution
Using Persistent Megakernel Design

Megakernel(taskgraph, envs):

while true:
system_.id, invocation_id = getNext(taskgraph)
switch system_id.
case 0: physicsSystemEntry(envs, invocation_id)
case 1: ProcessActionEntry(envs, invocation_id)
case 2: visibilitySystemEntry(envs, invocation_id)
case -1: break

threadFinished(taskgraph)

getNext(taskgraph):

node = taskgraph.currentNode()
If node.currentlnvocation < node.numlnvocations:
return node.systeml|D, node.currentinvocation++

return taskgraph.advanceNode()

Example ECS System: Mapping GPU Threads to
Hide & Seek ProcessAction

ProcessAction(env, id, pos, force, team, action):
if action.type == MOVE:
force = computeMovementForce(action.dir)
if action.type == LOCK:
hit_obj = raycastForward(env, pos)

if hit_obj:

ProcessActionEntry(envs, ecs_state, gpu_thread_idx):

ids, world_ids, positions, forces, teams, actions =
ecs_state.getColumns<ld, EnvID, Pos, Force, Team, Action>()

row = gpu_thread_idx Pos
env_id = env_ids[row] [0,0,.5]
if env_id is not valid:

[2,1,0]
return

[1.5,0,1]

ProcessAction(envs[env_id], ids[row], positions[row],
forces[row], teams[row], actions[row]) [2.5,0,1.5]] -

[2,1,1.5]

[0,1,2.5]

Mitigating Megakernel Inefficiencies
Using Profile-Guided Optimization

 Megakernel Implies One-Size-Fits-All Register Allocation
- Observation: Can afford more than 1 kernel launch per batched simulation step

* Profile-Guided Optimization: Empirically test performance of each system
with different register allocations & choose best!

- Negligible cost in a 100 million step training run

Mitigating Megakernel Inefficiencies Using
Profile-Guided Optimization

| Y

[GenerateEnv } [VelSolve]:::— [BVHRef1t J
{} M . M
v 7 N
{ProcessActions] [PosSolve J { CheckVisible J [Lidar
A || \
v h
. [Observations JE:?
[BVHRef 1t] [NarrowPhase J
¥ A v
[FindOverlaps J [Integrate J<$:_ ‘;i>[MaskOutput J
ﬂ {T [ComputeRewards]
2 Thread Blocks 4 Thread Blocks @ V \V4

Per SM Per SM

ironments

One Step Across 16K Env

IS

Performance Analys

1

f

\

W wu_mm I

[ITITRNNTS
IM‘“

TIELET L FHEL
LR B L A

LLLLY
‘TrrL

- l.h.....AlI
li.... sSE= -...l‘
“dn z -

. 1111 SnEnn

L

'TT I gugs sHR e 1| 1| - - sEn -
- - | - -l.ylllr * - -
SHEELEEL L nl - ...11.3;.11 +] - o Set

AT EEEE T R L L T .

ﬁ|o_>_m:% NN_Emza@|g

A

time (7.9 ms)

Agent Observations & Rewards LIDAR

BVH & Broad Phase Physics Sub-Step

Procedural content creation

Stanford C5348K, Spring 2024

Example: ProcTHOR = i =

=i T :
i i
’ Par ™ W

P ro CEd u ra I Iy g e n e ratEd ﬂ oo rpa n S’ fu rn itu re ~ sample Interior Create Structure Sample Doors Sample Floor Objects ~ Sample Surface Objects
arrangements, random material assigmments, etc.

® ® ® ® ® , _ _ ,
Sample Room Spec Sample Floor Plan Add Lights Sample Exterior Materials Sample Wall Objects
Ignl can va ue In Ive rSI y o scenes g Bedroom | d

Greater diversity of scenes wins

5 éArchitecTHOR Zero-Shot SPL

0,15 -

a
& 0.1 -

0.05

O
10 100 1,000 10,000

Number of Houses (log scale)

5 RoboTHOR Zero-Shot SPL

0.165 -
a 0.11 ~

0.055 +

0
10 100 1,000 10,000

Number of Houses (log scale)

0.0

0.045 -

A 0.03 A

0015 ~

10 100 1,000

Number of Houses (log scale)

Habitat Zero-Shot SPL

10,000

2 Al2-ITHOR Zero-Shot SPL

0.45 -

o
3 03 -

0:15

O
10 100 1,000 10,000

Number of Houses (log scale)

Better off training on a large number of highly diverse scenes, than a small number of photorealistic ones

Stanford (S348K, Spring 2024

Generative Al as a means to generate
world simulation output

Stanford C5348K, Spring 2024

-! |mage tran

Ours

Stanford C5348K, Spring 2024

.

A8

A

Genie

m Keyidea: learn a world simulator from videos of video game play

- Fromvideo, learn latency user actions, and dynamics model that steps work given (current state, action)

Video

tokenizer

(

&

model

N

Latent action

—

J

Latent actions @

Video tokens 2

- Then at “test time” given a novel world state (perhaps one generated from a prompt), and given user input,
time step the novel world forward in time

Text-to-
Image

Hand-drawn
sketch

l Prompt I

. -
,'. e "-. "'_ e .
D\ QA
)

s P = ,0'.

Ploy: M8 {a, B, X, Y}

Stanford C5348K, Spring 2024

Next time: the great debate

m (lass debate: you have to choose a side!

m What's the right way to build a world simulator?
- Like a“game engine” : humans model and build a simulator
- Datadriven: just learn it from big data

m What are the pros/cons?

m In what situations might one be preferable?

Stanford C5348K, Spring 2024

