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Simulating Virtual Worlds for Training
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Today
Slides on the landscape of high-performance world simulation e!orts designed for 
improving the e"ciency of training embodied AI agents 
Discussion of the Madrona system 
Discussion: do we even need to simulate from a traditional world model at all? 
- Can’t generative AI just make our training data? 
- Setup for ionight’s reading: Genie
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Recall from last time
1. Training and agent to learn complex skills can require many (millions, even billions) of 

trial-and-error steps (aka large amounts of “training experience”)

2. Researchers create virtual environments to simulate all this experience.
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Basic training system components
Database of 3D assets 

(meshes, textures collision meshes)

Simulation 
(advance world)

Generate Agent 
Observations

Compute 
Rewards/Loss

Given agent viewpoint, 
render image, 

lidar, visibility? etc.

Run game logic, 
Physics calculations, 

etc.

Agent Policy 
Inference/Learning

DNN evaluation, 
gradient update step

(from observations)

World 
Construction

Load assets, 
programmatically 

create world instance

Next agent action



A simple example game: Hide and seek with four agents
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Hide and seek state: world entities 
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Pos Bbox

Action

Reward

Hide and seek: examples of per-entity state (for agents)



Hide and seek: example observations (which agents does each agent see?)
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Common simulation approach: treat simulator as a black box, 
increase simulation throughput via “scale-out” parallelization  

Treat existing simulation engines 
as an unmodi#able black box. 

Run many copies of the black box 
in parallel.
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A basic design: parallelize over workers

DNN ops 
Inference + 

learning: update 
policy from experience)
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Simulation

Generate Obs

Env 0 state

Node 0

Observations

Simulation

Generate Obs

Env 1 state

Node 1

Simulation

Generate Obs

Env 2 state

Node 2
Simulation

Generate Obs

Env 3 state

Node 3

Actions

Actions

Observations
Compute Rewards
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One example of this design: 
EnvPool (one multi-core node)

Pros: 
- Use any existing simulator, unmodi#ed 
- Collects observations from environments, provides 

them to Python as a Tensor 
Cons: 
- See upcoming slides (simulator-learning code sync 

costs, running many independent simulators is not 
optimal on high throughput machines)
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Similar design for distributed system: parallelize over workers

Learning 
Update policy model 

from experience)
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Rollouts 
(list of [obs, action, reward])

New policy

New policy

Rollouts 
(list of [obs, action, reward])

Simulation

Generate Obs

Env 1 state

Node 1

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 0 state

Node 2

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 0 state

Node 0

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 3 state

Node 3

Compute Rewards

Policy Inference
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Example: Rapid by (OpenAI) OpenAI Five stats (Dota 2)
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Example public RL learning environments 
- Lower complexity worlds 
- Lower #delity observations
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What game engines are designed to simulate

Unreal Nanite Demo

In contrast: what a modern GPU is designed to render 
(Very high #delity observations)



Large-scale agent training is expensive!
OpenAI Five Robotics in Virtual World OpenAI Hide and Seek

Learning Dota 2:  
Months of training

High-level strategies emerge 
after billions of world time steps

64 GPUs over 2.5 days 
(2B experience samples)
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Design issues of basic scale-out approach
Ine"cient simulation/rendering: low-complexity worlds do not make good use of a 
modern parallel processor’s resources 
- GPUs won’t achieve high-throughput rendering/physics with smaller workloads 

Ine"cient communication between simulation and inference/training 

Duplication of computation and memory footprint (for scene data) across environment 
simulator instances 

Seems wasteful, right?



Stanford CS348K, Spring 2024

A new visual computing systems research question: 

Can we execute embodied AI training more e"ciently if we 
architect a world simulation engine from the ground up 

to process many independent worlds at once?
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Batch environment simulation
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CuLE: Rewriting an Atari emulator in CUDA
One CUDA thread = work for one enumerator instance 
Large numbers of threads execute 
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NVIDIA Issac Gym
Batched many-environment execution applied to rigid body physics sim 
Simulate 100’s to 1000’s of world environments simultaneously on the GPU 
Current state for all environments packaged in a single PyTorch tensor 
User can write GPU-accelerated loss/reward functions in PyTorch on this tensor 
Result: tight loop of simulate/infer/train
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Waymax
Self-driving car simulator built using Jax programming environment 
Environment state stored in JAX tensors (max number of objects across all environments in a batch)



Example: navigation in 3D scanned environments 
(these are multi-room floorplans…)





40,000 fps batch 
rendering of small 
images from  popular 
3D scanned virtual 
environments 
(Gibson/Matterport)



100x End-to-End Gain with Optimized Policy DNN

Benchmarked with RTX 3090

ICLR 2020 Baseline (ResNet50)

Our System
(ResNet50)

Our System
(ResNet9)

Frames of Experience Per Second
0 5000 10000 15000 20000

19900

2300

180

13300

2000

140 RGB Depth



2.5B frames of experience in 48 hrs on a single RTX 3090

Run render->infer->train loop 
runs at 13,000 fps per GPU

“PointGoal Navigation” in Gibson environments (Habitat Labs)

"Large Batch Simulation for Deep Reinforcement Learning", B. Shacklett, E. Wijmans, A.Petrenko, M. Savva, D. Batra, V. Koltun, K. Fatahalian, ICLR 2021



BPS3D: Home NavigationCuLE: AtariIsaac Gym: GPU Physics

~10000 envs per GPU ~5000 envs per GPU ~1000 envs per GPU

The story so far… reimplement learning environments 
as “batch simulators" for 100x Speedups

WaymaxMuJoCo MJX



What about training new kinds of agents for new tasks?
Floorplan NavigationAtariGPU Physics

(c) Unity

Novel Research Task New Types of Games



We need a “game engine” for 
building batch simulators!

Maximize throughput: millions of sim steps/sec for simple 3D environments 
(When running many environments in parallel)

Programmable: environment creators should be able to author diverse set of worlds, 
de#ne custom world rules/behavior

Productive: quickly be able to create novel worlds
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Madrona
Key idea: the Entity Component System (ECS) architecture, which is a programming 
structure used in some games today, provides useful structure needed to build a many-
world game engine on the GPU



Entities (ECS)



Components (ECS)
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...

...

...

...

...

Batch ECS: Store Data Across All Environments in 
Unified Tables in GPU Memory



Systems (ECS)
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Systems (ECS)

GPU Thread
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GPU Thread



ECS Systems Combined into Task Graph and 
Executed in Parallel on the GPU

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput



Scheduling the ECS on the GPU



Fully GPU-Driven Scheduling Challenges 
Dynamic GPU-Driven Memory Allocation: 

- Game logic needs to create entities at runtime (during a simulation step) 
- Entity lifetimes can vary wildly (<1 frame to hundreds) 

How to Efficiently Execute Task Graph Given Dynamic Workload Each Frame? 
- Task graph can contain > 100 nodes! 
- # of entities matching each system may depend on prior nodes in task graph



Growable ECS Table Storage By (Ab)using  
GPU Virtual Memory Support

EnvID PosId
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28 2 [1,0,3.5] ...{min...

New Entities
Created



EnvID PosId
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Achieving Dynamic GPU Memory Allocation & 
Improving Coherence Using Parallel Radix Sort



Megakernel(taskgraph, envs):
while true: 
    system_id, invocation_id = getNext(taskgraph)  
    switch system_id: 
        case 0: physicsSystemEntry(envs, invocation_id)  
        case 1: ProcessActionEntry(envs, invocation_id)  
        case 2: visibilitySystemEntry(envs, invocation_id)  
        case -1: break 
 
    threadFinished(taskgraph) 

getNext(taskgraph):
node = taskgraph.currentNode()  
if node.currentInvocation < node.numInvocations: 
  return node.systemID, node.currentInvocation++  

return taskgraph.advanceNode()

Low-Overhead Dynamic Task Graph Execution 
Using Persistent Megakernel Design



ProcessAction(env, id, pos, force, team, action):
if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(env, pos)

if hit_obj:

...

ProcessActionEntry(envs, ecs_state, gpu_thread_idx):
ids, world_ids, positions, forces, teams, actions = 
    ecs_state.getColumns<Id, EnvID, Pos, Force, Team, Action>()

row = gpu_thread_idx

env_id = env_ids[row] 
if env_id is not valid: 
   return  
 
ProcessAction(envs[env_id], ids[row], positions[row], 
              forces[row], teams[row], actions[row])

Example ECS System: Mapping GPU Threads to 
Hide & Seek ProcessAction
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Mitigating Megakernel Inefficiencies 
Using Profile-Guided Optimization
• Megakernel Implies One-Size-Fits-All Register Allocation 

- Observation: Can afford more than 1 kernel launch per batched simulation step 

• Profile-Guided Optimization: Empirically test performance of each system 
with different register allocations & choose best! 
- Negligible cost in a 100 million step training run



Mitigating Megakernel Inefficiencies Using 
Profile-Guided Optimization

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

2 Thread Blocks 
Per SM

4 Thread Blocks 
Per SM



time (7.9 ms)
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Performance Analysis: One Step Across 16K Environments
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Procedural content creation
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Example: ProcTHOR
Signi#cant value in diversity of scenes

Procedurally generated $oorpans, furniture 
arrangements, random material assigmments, etc.
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Greater diversity of scenes wins

Better o! training on a large number of highly diverse scenes, than a small number of photorealistic ones



Stanford CS348K, Spring 2024

Generative AI as a means to generate 
world simulation output 
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Enhancing CG images to look like real-world images using 
image-to-image transfer
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Modifying real-world images to create novel situations

Remove or 
move this car.



Stanford CS348K, Spring 2024

Genie
Key idea: learn a world simulator from videos of video game play 
- From video, learn latency user actions, and dynamics model that steps work given (current state, action)

- Then at “test time” given a novel world state (perhaps one generated from a prompt), and given user input, 
time step the novel world forward in time
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Next time: the great debate
Class debate: you have to choose a side! 

What’s the right way to build a world simulator? 
- Like a “game engine” : humans model and build a simulator 
- Data driven: just learn it from big data 

What are the pros/cons? 

In what situations might one be preferable?


