Lecture 9:

Generating Behaviors:
Al Agents for Virtual Worlds

Visual Computing Systems
Stanford (5348K, Spring 2025



Why is there interest in creating agents that
Can successfully perform tasks in virtual worlds?




Application area 1: robotics

Train in simulation to learn behaviors that work in the real world.
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Train embodied agents in simulation prior to deploying
them in the real world

Using the virtual world as a proxy for the real world.
Example task: navigating an autonomous vehicle
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Simulation need not be “photorealistic”

Simulator state Agent observation

m Choose to simulate at level of detailed
needed for task at hand

- e.g., separate needs of world perception
from planning
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Train embodied agents in simulation prior to deploying
them in the real world

Using the virtual world as a proxy for the real world.
Example task navigating the home and mampulatmg items in the home
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Dexterous
manipulation

Example task: precise manipulation
of objects
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Simple sim-to-real transfer with domain randomization
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Application area 2: video game agents

Train agents to function as autonomous game players

(Both in pursuit of better bots, and as a pure science exercise)
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Mid-to-late 2010's: pursuit of superhuman performance via large-

scale deep RL

DeepMind AlphaGo
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Demonstrations of large-scale use of reinforcement learning
to learn “creative” play and expert levels skills

e. Enemy Creep

f. Enemy Heroes

k. Fog of War
. Allied Tower

h. Modifiers

I. ltems

OpenAl et al, Arxiv 2019
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Scale of experience collected: OpenAl’s “OpenAl 5" Dota 2 bot

CPUs

GPUs

Experience collected

Size of observation

Observations per

second of gameplay

Batch size

Batches per minute

OPENAI FIVE

128,000 preemptible CPU cores on GCP O p e n A

256 P100 GPUs on GCP

~180 years per day (~900 years per day
counting each hero separately)

~36.8 kB

7.9

1,048,576 observations

~60

ooooooooooo

Stanford C5348K, Spring 2024



Cam play uses of virtual characters in interactive experiences

m Virtual teammates in team-based games
m Narrative elements
m Coaches, etc.

Start Client Stop Client

,
Agents discussing

the case outside
of the crime scene
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| will definitely let you know if Francesco or Richard find out anything about
Ahmed's death. It's important to me too
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[Aaliyah Williams] says: | will

definitely let you know if Francesco ot §
or Richard find out anything about ’J
Ahmed's-death. It's important to me

too.

[Francesco Bianchi] says: |

appreciate your willingness to keep

me informed, Aaliyah. It's crucial for .

ok i s s ‘\[Hu,r;ean pl

Learning to race in Tran Truism Sport PPt caty pr = - S
[Wurman et al. 2022] | et -
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Application area 3: video game “verifiers”

Using agents as proxy play testers to aid game design

Stanford C5348K, Spring 2025



As proxies for predicting future behavior of real humans

m Feedback on game design

m Game testing

Where can a player get to on a map?
What sections are not reachable?
What sections are reachable but
should not be?

How long does it take to get there?

Sestini et al. Trans. on Games 2022
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As proxies for predicting future behavior of real humans

How difficult will future players find a game? And can we adjust difficulty to meet certain
experience goals?

Example from tonight’s reading: [Isaksen et al. 2018]
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A model of player skill score: X

Running agent in game generates
statistics of play (expected score)

(Deviation from optimal play)
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In an area of generative Al, many interesting possibilities for
using Al agents to “verify” created content

\

m Isamap fora FPS game fair?

Simulation Settings

o Free Camera Config
. Top Left Right Bottom
. Perspective Orthographic Projection
60 FOV }
—— B

m How does changing the damage done
by a weapon change game strategy?
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Strategies for designing agents

m Major theme of upcoming readings/lectures
m Pros/cons of each approach

Behavior defined by
human-crafted rules

Objective Fight Support

Plan Spacing Give Up Fall Back

Goal . Target Leader
: Pathing : :
Selection Selection | Selection

Danger
Estimation

Pathing

Pathing

Cover Cover
Evaluation i Selection

Good: controllable
Bad: formulaic behavior,
brittle, laborious to create
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Good: “humanlike” by construction
Bad: data collection challenges,

Hard to generalize
to unseen situations
(need massive datasets)

Learn from brute force
trial-and-error (RL)
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Good: superhuman skill potential,
Bad: high cost training,
difficult to successfully train,
hard to control behavior

Leverage common sense
embodied by LLM

7 { (1d) ReAct (Reason + Act) } ~N

Thought 1: I need to search Cirque du Soleil show Mystere,
find the hotel it is in, then find the number of rooms in
the hotel.

Act 1: Search[Cirque du Soleil show Mystere ]

Obs 1: Could not find Cirque du Soleil show Mystere
Similar: ['Cirque du Soleil' ..

Thought 2: To find the hotel, I can search Mystere (Cirgue
du Soleil) .
Act 2: Search[Myst

ere (Cirque du Soleil) ]
Obs 2: Mystére (my-steer i Hel i

. Held in a custom theatre at

) 18
the Treasure Island Hotel and Casino ..
Thought 3: Mystere is held in om eat h
Treasure Island Hotel and Ca So I ed t
Treasure Island Hotel and Ca d find
of rooms in the hotel.
Act 3: arch[Treasure Island Hotel and Casino ]
Obs 3: Treasure Island Hotel and Casino .. with 2,884 rooms
nd 220
Thought 4: T ure Island Hotel and Casino has 2,884 rooms

and 220 suites. So the answer is 3,104.
Act 4: Finish([3,104] Up-to-date
\_ v')

Good: low effort to create,
surprising adept at many tasks
Bad: lack of grounding in actual

environment, high runtime cost,
unpredictable failures
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Full-stack challenges

m Agent design challenges

m Systems challenges

- High-performance execution of training for millions/billions of trials
- Large-scale logging of human traces, new data selection challenges

m Evaluation challenges
- How do we design automated metrics of success beyond just “success on task”?
- What is an agent that is “human like”? “Fun to play with?”, “Lacks this skill”

- You'll see an increasing emphasis on quality of evaluation in our in-class discussions,
because evaluating this work is a challenge on its own!
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Example thought experiment

m You are trying to train an agent to be “fun” to play with in your favorite FPS game
m What does “fun” mean, and how would you evaluate success?
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