
Visual Computing Systems
Stanford CS348K, Spring 2025

Lecture 10:

High-Throughput World Simulation
for Agent Training

Stanford CS348K, Spring 2025

Today
Slides on the landscape of high-performance world simulation efforts designed for
improving the efficiency of training embodied AI agents
Discussion of the Madrona system
Discussion: do we even need to simulate from a traditional world model at all?
- Can’t generative AI just make our training data?
- Setup for tonight’s reading: Genie

Stanford CS348K, Spring 2025

Background:
Why learning via trial and error requires

a lot of simulated experience
(reinforcement learning example)

Stanford CS348K, Spring 2025

RL in 30 seconds

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓
agent
action

environment
observation

e.g. RGB image

Model Inference

Stanford CS348K, Spring 2025

RL in 30 seconds

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓
agent
action

environment
observation

e.g. RGB image

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

sequence of
observations

…

sequence of
agent actions

…

Reward: change in
distance from goal

update
model

via SGD

Model Training

Model Inference

compute loss
gradients

Stanford CS348K, Spring 2025

RL in 30 seconds

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓
agent
action

environment
observation

e.g. RGB image

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Model Training

Model Inference

Rollout
update
model

via SGD

compute loss
gradients

Stanford CS348K, Spring 2025

RL in 30 seconds

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Batch Model
Training

Rollout 0

update
model

via SGD

Rollout 1

Rollout 2

Rollout N-1

compute loss
gradients

…

Many rollouts:
- Agents independently navigating

same environments

Stanford CS348K, Spring 2025

RL in 30 seconds

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Batch Model
Training

Rollout 0

update
model

via SGD

Rollout 1

Rollout 2

Rollout N-1

compute loss
gradients

…

Rollout 3

Rollout 4

…Rollout 5
…

Many rollouts:
- Agents independently navigating

same environments
- Or different environments

Stanford CS348K, Spring 2025

Learning skills can require many trials (billions) of
learning experience

Training in diverse set of virtual environments
Many training trials in each environment

Stanford CS348K, Spring 2025

Need significant amounts of simulated
experience to learn skills
Example: even for simple PointGoal navigation task: need
billions of steps of “experience” to exceed traditional non-
learned approaches

Stanford CS348K, Spring 2025

Training agents to perform different tasks requires
implementation of virtual environments to carry out

the required simulations

Stanford CS348K, Spring 2025

Many interactive virtual home environments

Navigate to a location
Find an object
Rearrange the room so objects are in desired locations
Pour oneself a glass of milk

Stanford CS348K, Spring 2025

Multi-agent games
Hanabi (Card Game)

Overcooked (Sims-Like Env)

Atari Games

Stanford CS348K, Spring 2025

Robot hand manipulation

Stanford CS348K, Spring 2025

Practice in simulation…

Stanford CS348K, Spring 2025

The story so far
1. Training and agent to learn complex skills can require many (millions, even billions) of

trial-and-error steps (aka large amounts of “training experience”)

2. Researchers create virtual environments to simulate all this experience.

Stanford CS348K, Spring 2025

Basic training system components
Database of 3D assets

(meshes, textures collision meshes)

Simulation
(advance world)

Generate Agent
Observations

Compute
Rewards/Loss

Given agent viewpoint,
render image,

lidar, visibility? etc.

Run game logic,
Physics calculations,

etc.

Agent Policy
Inference/Learning

DNN evaluation,
gradient update step

(from observations)

World
Construction

Load assets,
programmatically

create world instance

Next agent action

Stanford CS348K, Spring 2025

Procedural world generation
Many examples of procedurally creating novel environments per “training episode”.
Interesting questions about how to pick examples to train on

Stanford CS348K, Spring 2025

Example: ProcTHOR

1. Many environments, many variants of task

Value of diversity of scenes

Procedurally generated floorpans, furniture
arrangements, random material assigmments, etc.

Stanford CS348K, Spring 2025

Greater diversity of scenes wins

Better off training on a large number of highly diverse scenes than a small number of photorealistic ones

Stanford CS348K, Spring 2025

Value of diversity of tasks
DeepMind’s XLand: procedurally generate terrains and the rules of the game.

Wide range of “games” requiring different strategies and skills can be
defined by specifying goals for agents

Example 1: agent 1 must find a yellow
sphere and hold it, while agent 2 must stand by a yellow pyramid

Example 2: goals for hide and seek: Agent 1 should move to see its
opponent. Agent 2’s goal is to not be seen by agent 1.

Example 3: encourage teamwork. Give both agents the same goal of
moving one object by another

Stanford CS348K, Spring 2025

Need for high-throughput simulation

Stanford CS348K, Spring 2025

Common parallel simulation approach: treat simulator as a black box, gain high
throughput via scale-out parallelization

Treat existing simulation engines as a
black box.

Run many copies of the black box in
parallel.

Stanford CS348K, Spring 2025

A basic design: parallelize over workers

DNN ops
Inference +

learning: update
policy from experience)

<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Simulation

Generate Obs

Env 0 state

Node 0

Observations

Simulation

Generate Obs

Env 1 state

Node 1

Simulation

Generate Obs

Env 2 state

Node 2
Simulation

Generate Obs

Env 3 state

Node 3

Actions

Actions

Observations
Compute Rewards

Stanford CS348K, Spring 2025

One example of this design:
EnvPool (one multi-core node)

Pros:
- Use any existing simulator, unmodified
- Collects observations from environments, provides

them to Python as a Tensor
Cons:
- See upcoming slides (simulator-learning code sync

costs, running many independent simulators is not
optimal on high throughput machines)

Stanford CS348K, Spring 2025

Similar design for distributed system: parallelize over workers

Learning
Update policy model

from experience)
<latexit sha1_base64="hnA2DqiYnD41J2Yjv1wLIcjx4mo=">AAAB8XicbVBNS8NAEN3Ur1q/qh69LBbBU0lE0WPRi8cKthabUDbbSbt0swm7E6GE/gsvHhTx6r/x5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h+0TZJpDi2eyER3QmZACgUtFCihk2pgcSjhIRzdTP2HJ9BGJOoexykEMRsoEQnO0EqPfip6Pg4BWa9ac+vuDHSZeAWpkQLNXvXL7yc8i0Ehl8yYruemGORMo+ASJhU/M5AyPmID6FqqWAwmyGcXT+iJVfo0SrQthXSm/p7IWWzMOA5tZ8xwaBa9qfif180wugpyodIMQfH5oiiTFBM6fZ/2hQaOcmwJ41rYWykfMs042pAqNgRv8eVl0j6rexd19+681rgu4iiTI3JMTolHLkmD3JImaRFOFHkmr+TNMc6L8+58zFtLTjFzSP7A+fwBqV+Q6A==</latexit>⇡✓

Rollouts
(list of [obs, action, reward])

New policy

New policy

Rollouts
(list of [obs, action, reward])

Simulation

Generate Obs

Env 1 state

Node 1

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 0 state

Node 2

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 0 state

Node 0

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 3 state

Node 3

Compute Rewards

Policy Inference

Stanford CS348K, Spring 2025

Example: Rapid by (OpenAI) OpenAI Five stats (Dota 2)

Stanford CS348K, Spring 2025

Design issues of basic scale-out approach
Inefficient simulation/rendering: low-complexity worlds do not make good use of a
modern parallel processor’s resources
- GPUs won’t achieve high-throughput rendering/physics with smaller workloads

Inefficient communication between simulation and inference/training

Duplication of computation and memory footprint (for scene data) across environment
simulator instances

Seems wasteful, right?

Stanford CS348K, Spring 2025

A new visual computing systems research question:

Can we execute embodied AI training more efficiently if we
architect a world simulation engine from the ground up

to process many independent worlds at once?

More recent design: Batch Simulators: achieve millions of steps/sec
by executing thousands of environments in parallel on a single GPU

Google MJX:
GPU Physics

Craftax:
Open-Ended 2D Exploration

Kinetix:
Physics Based
Problem Solving

Maniskill:
Robotic Manipulation

Isaac Gym:
GPU Physics

CuLE:
Atari RL Benchmarks

BPS3D:
Home Navigation

Zakka et al, 2025 Makoviychuk et al, NeurIPS 2021 Dalton et al, NeurIPS 2020
Shacklett et al, ICLR 2021

Gu et al, ICLR 2023

Matthews et al, ICLR 2025 Matthews et al, ICML 2024

But… requires a simulator rewrite for the GPU

Batch simulator's global view of a batch of
environments allows much higher training efficiency

Batch Simulator Agent Training

GPU

Stanford CS348K, Spring 2025

CuLE: Rewriting an Atari emulator in CUDA
One CUDA thread = work for one Atari simulator instance
Large numbers of threads execute

Stanford CS348K, Spring 2025

NVIDIA Issac Gym
Batched many-environment execution applied to rigid body physics sim
Simulate 100’s to 1000’s of world environments simultaneously on the GPU
Current state for all environments packaged in a single PyTorch tensor
User can write GPU-accelerated loss/reward functions in PyTorch on this tensor
Result: tight loop of simulate/infer/train

Stanford CS348K, Spring 2025

Waymax
Self-driving car simulator built using Jax programming environment
Environment state stored in JAX tensors (reserve space for max number of objects across all
environments in a batch)

What about building new batch simulators for
training new kinds of agents?

(c) Unity

Support Novel ML
Research

Train Agents for New Game

Bowen et al, ICLR 2020

Tons of engineering to build new GPU-accelerated
batch simulator from scratch!

(c) Unity

Task Knowledge GPU Programming Skill

+

Engineering Time

+

Running example: Simulating OpenAI's
3D "Hide and Seek" learning environment

Parallel Systems Programming
Requirements

1. Nested Parallelism: Task logic for each object in each world

2. Irregular Nested Parallelism & Irregular Collection Sizes:
Worlds with varying numbers of objects

3. Dynamic GPU-controlled memory allocation & parallelism:
Physics contacts, sparse events

4. Complex Spatial Joins: Ray casting, 3D collisions

Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
 if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
 lockObject(hit_obj)

 ...

Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
 if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
 lockObject(hit_obj)

 ...

5. Implicit Parallelism: Logic written in terms of 1 environment,
automatically batched

Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
 if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
 lockObject(hit_obj)

 ...

6. Convenience of standard SPMD control flow

Claim:
We need to create a "game engine" for building

batch simulators that meets these requirements!

1. Nested Parallelism
2. Irregular Parallelism & Collection Sizes
3. Dynamic GPU-Controlled Allocation
4. Complex Spatial Joins
5. Implicit Parallelism
6. SPMD-Style Control Flow

What About Using Existing Systems /
Frameworks to Help to Build Complex

Batch Simulators?

Lowest-level option: Where does CUDA C++ fall short
for our needs?

Writing a batch simulator in raw CUDA requires
custom parallel memory management & scheduling

CUDA C++

Nested Parallelism ✓
Irregular Parallelism & Collection Sizes X
Dynamic GPU-Controlled Allocation X
Complex Spatial Joins X
Implicit Parallelism X
SPMD-style control flow ✓

Higher-level GPU kernel languages:
friendlier syntax, but same abstraction as CUDA C++

Array-based programming: Describe simulation in
terms of bulk operations on fixed-size tensors

Mujoco MJX Craftax

Matthews et al, ICML 2024 Zakka et al, 2025

Array-based programming: Variable environment
structures, procedural generation are challenging

Nested Parallelism ✓ ✓
Irregular Parallelism & Collection Sizes ~ X
Dynamic GPU-Controlled Allocation X X
Complex Spatial Joins X X
Implicit Parallelism ~ ✓
SPMD-style control flow X X

What about building batch simulators by reusing
existing GPU simulation libraries?

NVIDIA Isaac Sim

Makoviychuk et al, NeurIPS 2021

Gu et al, ICLR 2023

Existing GPU simulation libraries (PhysX) are
designed to accelerate a CPU-controlled simulation

GPU PhysX

Nested Parallelism ✓
Irregular Parallelism & Collection Sizes ~
Dynamic GPU-Controlled Allocation X
Complex Spatial Joins ✓
Implicit Parallelism X
SPMD-style control flow X

Existing Systems Do Not Meet the Requirements!

PyTorch JAX CUDA C++ Warp / NUMBA GPU PhysX

Nested Parallelism ✓ ✓ ✓ ✓ ✓
Irregular Parallelism &
Collection Sizes ~ X X X ~
Dynamic GPU-Controlled
Allocation X X X X X
Complex Spatial Joins X X X X ✓
Implicit Parallelism ~ ✓ X X X
SPMD-style control flow X X ✓ ✓ X

Stanford CS348K, Spring 2025

Tonight’s reading
Madrona engine project (Stanford project)

A framework for building GPU batch simulators using entity component system (ECS)
design patterns

Tutorial:
Entity Component System (ECS)

Design Patterns on the GPU

Concept 1: Entities (ECS)

Concept 2: Components (ECS)

Pos Bbox

Action

Reward

Concept 2: Components (ECS)

EnvID PosId
12

32

51

0

0

0

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

Bbox Action
{min...

{min...

{min...

0.1

-0.1

-2.5

Agents
EnvID PosId

13

72

61

0

0

0

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

Bbox
{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

Batch simulation ECS: Store data across all
environments in unified tables in GPU memory

EnvID PosId
12

32

51

0

0

0

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

Bbox Action
{min...

{min...

{min...

0.1

-0.1

-2.5

Agents
EnvID PosId

13

72

61

0

0

0

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

Bbox
{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

49 1 [0.5,1,2] ...{min...

70 1 [-0.5,1,0] ...{min...

33 2 [1.5,0,2.5] ...{min...

81 3 [2.5,0.5,2] ...{min...

11 3 [1.5,0.5,2] ...{min...

62 1 [1.5,0.5,1] {min... 0.3RIGHT

65 1 [-0.5,0,0] {min... 0.5RIGHT

20 2 [0.5,1,1] {min... 1.5LEFT

23 2 [-1.5,0,0] {min... 10.5LEFT

41 2 [0.5,1,0] {min... -10BACK

...

...

...

...

...

Unified table storage also enables throughput-
oriented dynamic memory allocation

EnvID PosId
12

32

51

0

0

X

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

Bbox Action
{min...

{min...

{min...

0.1

-0.1

-2.5

Agents
EnvID PosId

13

72

61

0

0

0

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

Bbox
{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

49 X [0.5,1,2] ...{min...

70 1 [-0.5,1,0] ...{min...

33 2 [1.5,0,2.5] ...{min...

81 3 [2.5,0.5,2] ...{min...

11 X [1.5,0.5,2] ...{min...

62 1 [1.5,0.5,1] {min... 0.3RIGHT

65 1 [-0.5,0,0] {min... 0.5RIGHT

20 2 [0.5,1,1] {min... 1.5LEFT

23 2 [-1.5,0,0] {min... 10.5LEFT

41 2 [0.5,1,0] {min... -10BACK

...

...

...

...

...

51 1 [0.5,1,1] {min... -10BACK ... 15 2 [1.5,1.5,2] ...{min...

12 0 [2.5,0.5,3] ...{min...

Concept 3: Systems (ECS)

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

Concept 3: Systems (ECS)

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

Systems written as straight-line, per-entity logic

def process_action(agent_position, action): 
 if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

 lockObject(hit_obj)

 ...

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

Parallel GPU threads execute system logic over
each table row

GPU Thread

GPU Thread

GPU Thread

GPU Thread

def process_action(agent_position, action): 
 if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

 lockObject(hit_obj)

 ...

ECS systems combined into task graph and
executed in parallel on the GPU

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

time (7.9 ms)

1 2{{ 2{ 2{ 2{ 1 3{ 4

BVH & Broad Phase Physics Sub-Step LIDARAgent Observations & Rewards321 43

{ {

G
PU

 S
M

 0
G

PU
 S

M
 1

27
Scheduling batch of worlds onto GPU

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

def process_action(agent_position, action): 
 if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

 lockObject(hit_obj)

 ...

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

What about spatial queries?

Madrona standard library provides high-performance
per-world 3D acceleration structure (BVH)

World 1 BVH World 2 BVH

...

World N BVH

BVH Standard Library Calls Allow ECS Systems to
Make Spatial Queries

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

def find_overlaps(world, my_id, position, bbox):
 for bvh_node in world.bvh.find_overlapping(bbox)
 world.createEntity(CollisionPair(my_id, bvh_node.id))

World BVH

Madrona needs a straightforward imperative language for
authoring ECS systems

def process_action(world,
 agent_position,
 action): 
 if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj =

 raycastForward(world, agent_position)

if hit_obj:

 lockObject(hit_obj)

 ...

void process_action(World &world,
 Position &position,
 AgentAction &action) { 
 if (action.type == MOVE) {

Vector3 force =

computeMovementForce(action.dir);

}

if (action.type == LOCK) {

Entity hit_obj =

 raycastForward(world, agent_position);

if (hit_obj) {

 lockObject(hit_obj);

}

}

 ...
}

Madrona Framework Summary

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

World N BVH

ECS Storage

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

Parallel ECS
Scheduler for GPU

ECS-Integrated
Standard Library

(BVH, Physics, etc)

Summary: Madrona meets core requirements for
building wide range of batch simulators

Multi-World ECS Tables}
} ECS Systems &

Parallel GPU Task Graph Scheduling

} Built on General-Purpose
Programming Language (CUDA C++)

Madrona

Irregularly Sized Collections ✓
Dynamic GPU-Controlled Allocation ✓
Irregular Nested Parallelism ✓
Dynamic GPU-Controlled Parallelism ✓
Implicit Parallelism ✓
Complex Spatial Joins ✓
SPMD-Style Control Flow ✓

Stanford CS348K, Spring 2025

An Alternative approach:
Generative AI as a means to generate

world simulation output

(previewing parts of next week)

Stanford CS348K, Spring 2025

Enhancing CG images to look like real-world images using
image-to-image transfer

Stanford CS348K, Spring 2025

Modifying real-world images to create novel situations

Remove or
move this car.

Stanford CS348K, Spring 2025

Genie
Key idea: learn a world simulator from videos of video game play
- From video, learn latency user actions, and dynamics model that steps work given (current state, action)

- Then at “test time” given a novel world state (perhaps one generated from a prompt), and given user input,
time step the novel world forward in time

