Lecture 10:

High-Throughput World Simulation
for Agent Training

Visual Computing Systems
Stanford C5348K, Spring 2025

Today

m Slides on the landscape of high-performance world simulation efforts designed for
improving the efficiency of training embodied Al agents

m Discussion of the Madrona system

m Discussion: do we even need to simulate from a traditional world model at all?
- (Can’t generative Al just make our training data?
- Setup for tonight’s reading: Genie

Stanford C5348K, Spring 2025

Background:
Why learning via trial and error requires
a lot of simulated experience
(reinforcement learning example)

Stanford C5348K, Spring 2025

RLin 30 seconds

Model Inference

environment
observation —» 7-‘-9 —>
e.g. RGB image

agent
action

Stanford (S348K, Spring 2025

RLin 30 seconds

Model Inference

environment

i agent
observation —» /| 9 —p agE
i action
e.g. RGB image
Model Training
sequence of
observations
sequence of \ compute loss
qt ti gradients update
agent actions Ipate
‘adhadie din Sl ad Uy via SGD

Reward: change in /

distance from goal

Stanford (S348K, Spring 2025

RLin 30 seconds

Model Inference

environment
observation —» 7‘-9 —>
e.g. RGB image

agent
action

Model Training

compute loss
gradients update

—p — model
T via SGD

Stanford (S348K, Spring 2025

RLin 30 seconds

Many rollouts:
- Agents independently navigating
same environments

Batch Model
Training

compute loss

gradients update
—— —p model
T via SGD

Stanford (S348K, Spring 2025

RLin 30 seconds

Many rollouts:

- Agents independently navigating
same environments

= Or different environments

Batch Model
Training

Rollout 2 compute loss
gradients update

— - model
T via SGD

Rollout 3

Stanford (S348K, Spring 2025

Learning skills can require many trials (billions) of
learning experience

m Training in diverse set of virtual environments

m Many training trials in each environment

Stanford (S348K, Spring 2025

Need significant amounts of simulated
experience to learn skills

Example: even for simple PointGoal navigation task: need
billions of steps of “experience” to exceed traditional non-
learned approaches

Performance on Gibson validation split

1.0
0.8
0. 6 ..____.7-.,34'.'./:‘.. _____ B e e i e e
] A -
& ™ \ W o4
0.4 l"’n\"! ey 4 ; .
)’; ALl - RGB
W . — Depth
0.2|| [4F —— RGBD
/] — Blind
0 10 20 30 40 50 60 70

Number of training steps taken (experience) in million .
Stanford C5348K, Spring 2025

Training agents to perform different tasks requires
implementation of virtual environments to carry out
the required simulations

Many interactive virtual home environments

LR nf

}

Navigate to a location

Find an object

Rearrange the room so objects are in desired locations
Pour oneself a glass of milk

Stanford (5348K, Spring 2025

Multi-agent games Atar Games

D @ [G2 Basketball Pong

Hanabi (Card Game)

- [l

Stacks De

| o o |
ck Discards
wal v1[G3 Rs B1 R2 KE BS B3 B4 B2
PO P1 P2 P3 | [

Combat Tank Double Dunk Entombed Competitive

.a
SRRRRRAN

-ntombed Cooperative Flag Capture Foozpong

G1

Combat Plane

6/8 3/3

Overcooked (Sims-Like Env)

, .
2

000000
01

lce Hockey Joust Mario Bros

Stanford C5348K, Spring 2025

Robot hand manipulation

Stanford (5348K, Spring 2025

\\\

- QQ

‘r
-

The story so far

1. Training and agent to learn complex skills can require many (millions, even billions) of
trial-and-error steps (aka large amounts of “training experience”)

i

Stanford (5348K, Spring 2025

Basic training system components

Database of 3D assets
(meshes, textures collision meshes)

Agent Policy
Inference/Learning

DNN evaluation,
gradient update step

Next agent action

Stanford (S348K, Spring 2025

Procedural world generation

m Many examples of procedurally creating novel environments per “training episode”.

m Interesting questions about how to pick examples to train on

£ “ Es F £ “ = Aé\ b
= = T =

Stanford (S348K, Spring 2025

®
Sample Room Spec Sample Floor Plan Add Lights Sample Exterior Materials Sample Wall Objects

|

Procedurally generated floorpans, furniture . - B .. < e
arrangements, random material assigmments, etc.

Greater diversity of scenes wins

5 éArchitecTHOR Zero-Shot SPL

0,15 -

a
& 0.1 -

0.05

O
10 100 1,000 10,000

Number of Houses (log scale)

5 RoboTHOR Zero-Shot SPL

0.165 -
a 0.11 ~

0.055 +

0
10 100 1,000 10,000

Number of Houses (log scale)

0.0

0.045 -

A 0.03 A

0015 ~

10 100 1,000

Number of Houses (log scale)

Habitat Zero-Shot SPL

10,000

2 Al2-ITHOR Zero-Shot SPL

0.45 -

o
3 03 -

0:15

O
10 100 1,000 10,000

Number of Houses (log scale)

Better off training on a large number of highly diverse scenes than a small number of photorealistic ones

Stanford (S348K, Spring 2025

Value of diversity of tasks

DeepMind’s XLand: procedurally generate terrains and the rules of the game.

Wide range of “games” requiring different strategies and skills can be

defined by specifying goals for agents

Example 1: agent 1 must find a yellow

sphere and hold it, while agent 2 must stand by a yellow pyramid
g1 :=hold(me, yellow sphere)

gs :=near (me, yellow pyramid)

Example 2: goals for hide and seek: Agent 1 should move to see its

opponent. Agent 2's goal is to not be seen by agent 1.
g1 := see(me, opponent)

gs :=not (see(opponent, me))

Example 3: encourage teamwork. Give both agents the same goal of
moving one object by another

g1 :=near(yellow pyramid, yellow sphere)
go :=near(yellow pyramid, yellow sphere)

The result of this training process is an agent that is gen-
erally capable across the held-out evaluation space. Qual-
itatively, we observe the agent exhibiting behaviours that
are generally applicable, rather than optimal for any specific
task. Examples of such behaviours include: experimentation
through directed exploration until the agent recognises a
rewarding state has been achieved; seeking another player
out to gather information of its state irrespective of its goal;
and tagging another player if it is holding an object that
is related to the agent’s goal irrespective of that player’s
intention. We also probe quantitatively the behaviour of
agents in test-time multi-agent situations and see evidence
of cooperation emerging with training. In addition to the
agent exhibiting zero-shot capabilities across a wide eval-
uation space, we show that finetuning on a new task for
just 100 million steps (around 30 minutes of compute in our
setup) can lead to drastic increases in performance relative
to zero-shot, and relative to training from scratch which
often fails completely.

Need for high-throughput simulation

Common parallel simulation approach: treat simulator as a black box, gain high
throughput via scale-out parallelization

Treat existing simulation engines as a
black box.

Run many copies of the black box in
parallel.

N Actions

Inference &

-
|
|
|
|
|
-
|
Learning Ni)bservations -:
- T T 1 Act.
|
|
-
|
|
|
|
|

Stanford C5348K, Spring 2025

A basic design: parallelize over workers

~

Node 0

Env 0 state

~

Node 2

Env 2 state

_J

~

Node 1

Env 1 state

~

Node 3

Env 3 state

J

Observations

—

Actions

—»

Observations

DNN ops

Inference +
learning: update
policy from experience)

o

Stanford (5348K, Spring 2025

One example of this design:
EnvPool (one multi-core node)

m Pros:
- Use any existing simulator, unmodified

- Collects observations from environments, provides
them to Python as a Tensor

m Cons:

- See upcoming slides (simulator-learning code sync
costs, running many independent simulators is not
optimal on high throughput machines)

[0 README & Code of conduct 58 Apache-2.0 license 4

NVI[PO Ol

v0.8:4 | PyPI Download |1k | arXiv 2206.10558 () Bazel Build and Test |passing] issues [4550pen I @ Tt JRRT
Q Forks 90 _,-.;.;3,;_:..;:-;/..&77.

EnvPool is a C++-based batched environment pool with pybind11 and thread pool. It has high performance (~1M
raw FPS with Atari games, ~3M raw FPS with Mujoco simulator on DGX-A100) and compatible APIs (supports both
gym and dm_env, both sync and async, both single and multi player environment). Currently it supports:

Atari games

Mujoco (gym)

Classic control RL envs: CartPole, MountainCar, Pendulum, Acrobot

Toy text RL envs: Catch, FrozenLake, Taxi, NChain, CliffWalking, Blackjack
ViZDoom single player

DeepMind Control Suite

Box2D

Procgen
Minigrid

Here are EnvPool's several highlights:

o Compatible with OpenAl gym APIs, DeepMind dm_env APIs, and gymnasium APIs;
 Manage a pool of envs, interact with the envs in batched APIs by default;

e Support both synchronous execution and asynchronous execution;

e Support both single player and multi-player environment;

» Easy C++ developer API to add new envs: Customized C++ environment integration;

* Free ~2x speedup with only single environment;

1 Million Atari frames / 3 Million Mujoco steps per second simulation with 256 CPU cores, ~20x throughput of
Python subprocess-based vector env;

» ~3x throughput of Python subprocess-based vector env on low resource setup like 12 CPU cores;

» Comparing with existing GPU-based solution (Brax [/ Isaac-gym), EnvPool is a general solution for various
kinds of speeding-up RL environment parallelization;

Similar design for distributed system: parallelize over workers

s

Node 0

Policy Inference

Env 0 state

~

~

N (.

Node 2

Policy Inference

Env 0 state

O\

Node 1)

Policy Inference

Env 1 state

N (.

\

Node 3

Policy Inference

Env 3 state

Rollouts

(list of [obs, action, reward])

—

New policy

New policy

Rollouts

(list of [obs, action, reward])

Learning

Update policy model
from experience)

Uy’

Stanford (5348K, Spring 2025

Example: Rapid by (OpenAl

Optimizer + Connected Rollout Workers (x256)

Rollout Workers
~500 CPUs

Run episodes
» 80% against current bot

» 20% against mixture of past versions Rollout
. N Data
Randomized game settings Samples

Push data every 60s of gameplay
» Discount rewards across the 60s using
generalized advantage estimation

Model Parameters

(10M floats)

Eval Workers

~2500 CPUs
Play in various environments Model
for evaluation Parameters

* vs hardcoded “scripted” bot

- vS previous similar bots (used to
compute Trueskill)

* vs self (for humans to watch
and analyze)

Optimizers

use NCCL2 to
average gradients
at every step.

Gradient

Updates

OpenAl Five stats (Dota 2)

CPUs

GPUs

Experience collected

Size of observation

Observations per

second of gameplay

Batch size

Batches per minute

OPENAI FIVE

128,000 preemptible CPU cores on GCP

256 P100 GPUs on GCP

~180 years per day (~900 years per day
counting each hero separately)

~36.8 kB

7.9

1,048,576 observations

Stanford C5348K, Spring 2025

Design issues of basic scale-out approach

m Inefficient simulation/rendering: low-complexity worlds do not make good use of a
modern parallel processor’s resources

- GPUs won't achieve high-throughput rendering/physics with smaller workloads
m [nefficient communication between simulation and inference/training

m Duplication of computation and memory footprint (for scene data) across environment
simulator instances

m Seems wasteful, right?

Stanford C5348K, Spring 2025

A new visual computing systems research question:

Can we execute embodied Al training more efficiently if we
architect a world simulation engine from the ground up
to process many independent worlds at once?

Stanford C5348K, Spring 2025

More recent design: Batch Simulators: achieve millions of steps/sec
by executing thousands of environments in parallel on a single GPU

But... requires a simulator rewrite for the GPU

Google MJX: S CULE:

GPU Physics e — Atari RL Benchm

BPS3D:

Home Navi
T "N s

([) =y { - 4 ‘.
» s““‘; l‘," '_'7.0“ SN L
3 o, o . B - -
gation .
— .- " -
' s. | ¥ F Lr gt = \ qla*"
T 3 — 3 = A
\ % . ! iy ;
_‘,‘"‘s'ﬂ. \V P 7 o - =
'i' ., ‘ r ,. _A_ .
-, TR N P UANI tg .
: : t—— e - X -
a S N i , \
p > v - 8 - -1

GPU Physics

arks

L2

LT

: §

Makoviychuk et al, NeurlPS 2021

Kinetix: Craftax:

Physics Based Open-Ended 2D Exploration
Problem Solving

Maniskill:

Robotic Manipulation

o i
»
CY Ty ON PR e
IR A , e [
ﬂ ‘“'3‘.'_’1 ‘ - ‘--_>
L b g ‘ 1 3815 14
- Matthews et al, ICLR 2025 &R I,J'l'., JT

Batch simulator's global view of a batch of
environments allows much higher training efficiency

GPU

4) (")

Batch Simulator Agent Training

U o L L

CuLE: Rewriting an Atari emulator in CUDA

m One CUDA thread = work for one Atari simulator instance

m Large numbers of threads execute ** a—
800
200 , | | | 5 600 |
- CuLE¢py D400 |
CuLE 200 f

g_) - OpenAl %0 20 40 60 80 100
LL 100 “ Time [mins]
\'d

(a) Assault, 20M training frames

) —— o A
10 10° 3000

= —
8 | S
1000 | fre
0
40 60 80 100
Time [mins]

(¢) Ms-Pacman, 20M training frames

2000

4000

3000

Score

2000

1000

i P
0 20 40 60 80 100

Time [mins]

(b) Asterix, 20M training frames

20 —
10
—OpenAl envs: 120 N=steps: 5 SPU: 5 batches: 1

OpenAl envs: 120 N=steps: 5 SPU: 1 batches: 5
OpenAl envs: 120 N=steps: 20 SPU: 1 batches: 20
OpenAl envs: 1200 N=steps: 20 SPU: 1 batches: 20
—CuLE envs: 1200 N=steps: 5 SPU: 5 batches: 1
—CuLE envs: 1200 N=steps: 5 SPU: 1 batches: 5
CuLE envs: 1200 N=steps: 20 SPU: 1 batches: 20
—CuLE envs: 4800 N=steps: 20 SPU: 1 batches: 20

0 10 20 30 40
Time [mins]

Score
(@)

(d) Pong, 8M training frames

Stanford C5348K, Spring 2025

NVIDIA Issac Gym

Batched many-environment execution applied to rigid body physics sim
Simulate 100’s to 1000’s of world environments simultaneously on the GPU
Current state for all environments packaged in a single PyTorch tensor

User can write GPU-accelerated loss/reward functions in PyTorch on this tensor
Result: tight loop of simulate/infer/train

env, env, env,

franka, table, box, franka, table, box,

bodys body,,
(left finger) ? (right finger)
EEREEETEETREEEEES
\ Y) | \ A 'y . \ J

. | A | J
) ' '

|

P9 Q9 V9 g P1o Q1o Vio 10 Stanford (348K, Spring 2025

Waymax

m Self-driving car simulator built using Jax programming environment

m Environment state stored in JAX tensors (reserve space for max number of objects across all
environments in a batch)

Device BS-1 BS-16 Reset Step Transition Metrics RolloutExpert

Single- CFU v 1.09 131 090 112 1.0x10°
Agent CPU v/ 122 1.7x10% 109 1.69x103 1.4x105
Epy GPU-v100 v 0.58 0.75 0.47 0.21 56.2

GPU-v100 v 067 248 0.52 227 279
Multi. CPU v 623 129 1.0l 112 1.dx10°
Agent CPU /498 1.1x10%3 143 1.72x10%3 1.6x10°
Eny OPU-v100 v 0.64 092 0.53 0.19 733

GPU-v100 v/ 081 286 0.51 2.24 OOM

able 2: Runtime benchmark in milliseconds: the environment controls all objects in the scene (up to
128 as defined in WOD).

................

* T \\H H .’ ZZE\ o

Stanford C5348K, Spring 2025

What about building new batch simulators for
training new kinds of agents?

Support Novel ML Train Agents for New Game
Research

(c) Unity

Tons of engineering to build new GPU-accelerated
batch simulator from scratch!

Task Knowledge GPU Programming Skill Engineering Time

SM-0 SM-1 SM-(N-1)

Global Memory (DRAM, 40 GB in A100)

Running example: Simulating OpenAl's
3D "Hide and Seek" learning environment

Parallel Systems Programming
Requirements

ol :__ i
_ﬁ

__/ m
t _Vr

.‘ 4 —

,—_ _

i

—.r\ _u.ﬂ—

R—\..4 ﬁ

_E

__—1 —wj —
g |

__ ___ _ 1y ! W

,F &4

___ _._E
i L

Hy |

|
@
y

- u‘t

F...\

1. Nested Parallelism: Task logic for each object in each world

et

it

—__
L

=

2. Irregular Nested Parallelism & Irregular Collection Sizes:
Worlds with varying numbers of objects

/ |

3. Dynamic GPU-controlled memory allocation & parallelism:
Physics contacts, sparse events

_.""...-—.---.l 75 ' 5 % \
= i B
o \"\\
A X
7 S e ———— \‘— —————————————
\

S

4. Complex Spatial Joins: Ray casting, 3D collisions

Usability: Easy scripting of task-specific logic

def process_action(agent_position, action):
if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:
hit_obj = raycastForward(agent_position)
iIf hit_ob;:
lockObject(hit_obj)

Usability: Easy scripting of task-specific logic
def process_action(agent_position, action):
if action.type == MOVE_CHARACTER:
force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:
hit_obj = raycastForward(agent_position)
iIf hit_ob;:
lockObject(hit_obj)

5. Implicit Parallelism: Logic written in terms of 1 environment,
automatically batched : ErpaaEaa

—— ——c g wm— w_ —%
CT. A2 AR T FR =
- M¢ — — = ' ‘\ T
e == —— Jr f—— =
VAT T\ P\ oo\ Py Bt B
-\ Y rdonx N y rdonx A=5=s Sy
LI~ = /“—;a— SN A= oo Jo=.
= Y o R
1 w— . . . W —
A - \ —_— === —— 7= —
NN LN AN AT D
T e e ey LN e [= s
PR U

e =l e /5 =

= F= B B2 L7 [&6
=k PO\ § et ¥ = S /EmaN ey
=== - A= —. g= LT &=
g ST A A Be £S
I~ e e i N <K [N ==

a
. R —m, EEEEE———S. LLL—S RSSS—S e, — e —

Usability: Easy scripting of task-specific logic

def process_action(agent_position, action):
if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:
hit_obj = raycastForward(agent_position)
iIf hit_ob;:
lockObject(hit_obj)

6. Convenience of standard SPMD control flow

GRS RN A= EEe BRI 5T ===
et 77 [V v o= S
b e e e e —— et ——— . E—
LT = A= opls /s TR O£E
N a l : N“ l 3 l L i ‘ = ' 4\ l P g
[— C— D, V——eeee—m, et ——— —
PR e P\ oo\ Bl Blln S5
N F'#\ it _ “/ == [—u L it \— L) e = »
— i ﬂ-: N 3 = |_ .
- B A~ e B2 Fo =
b e a _X_ —d, e e— — C—
FEEN N LN LS AR SN T
/“\‘P\ Pt e— e e S — Ny F—‘ —_— \ .
b e — e e —— ———— S ——— e s s i e, | e el e sl
nz ! T p— — = =)
Shed [f— A/ £ [< i, B i
1 ”‘—4—_ eA T — er' ‘!_4‘ S = l \F g __
A L. 8 A B= A= AL
J BT =N et N g £ T=SEEEE § Jain == § ey oy

—t a
| T, TSS—88 S, _—S—S—S—™—3558R.% ——_—S—S5S58™\ — R . -

Claim:

We need to create a 'game engine’ for building
patch simulators that meets these requirements!

Nested Parallelism

Irregular Parallelism & Collection Sizes
Dynamic GPU-Controlled Allocation
Complex Spatial Joins

Implicit Parallelism

SPMD-Style Control Flow

A L i i e

What About Using Existing Systems /
Frameworks to Help to Build Complex
Batch Simulators?

Lowest-level option: Where does CUDA C++ fall short
for our needs?

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)

{

int 1 = threadIdx.x;
Cl[i] = Al[i] + B[i];
h

int main()

{

// Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);

Writing a batch simulator in raw CUDA requires
custom parallel memory management & scheduling

CUDA C++

SPMD-style control flow v

Higher-level GPU kernel languages:
friendlier syntax, but same abstraction as CUDA C++

NVIDIA Warp 9 Numba

import warp as wp

@wp .kernel

def integrate(p: wp.array(dtype=wp.vec3),
v: wp.array(dtype=wp.vec3),
f: wp.array(dtype=wp.vec3),
m: wp.array(dtype=float)):

thread id
tid = wp.tid()

Semi-implicit Euler step
vitid] = v[tid] + (f[tid] * m[tid] + wp.vec3(©0.0, -9.8, 0.0)) * dt
x[tid] = x[tid] + v[tid] * dt

kernel launch
wp.launch(integrate, dim=1024, inputs=[x, v, f, ..], device="cuda:0")

Array-based programming: Describe simulation in
terms of bulk operations on fixed-size tensors

.‘ |
\

\

\

4 i

ot LA R 49
%1 3819 1u
))

Array-based programming: Variable environment
structures, procedural generation are challenging

OPyTorch a4l

-y ww

Nested Parallelism v v

Irregular Parallelism & Collection Sizes .~ X
Dynamic GPU-Controlled Allocation X X
Complex Spatial Joins x X
implicit Parallelism . v

..

SPMD-style control flow X X

What about building batch simulators by reusing
existing GPU simulation libraries?

; NVIDIA Isaac Sim 5o

,‘

NVIDIA.

PHYSX

' =

fisid
(=
4
’ k ~
- | 2
2 ‘ \
= £a .
: < ‘Q ' 4 N\ \ , ™
— \ \

ny

Existing GPU simulation libraries (PhysX) are
designed to accelerate a CPU-controlled simulation

GPU PhysX
Nested Parallelism
Imegular Parallelism & Collection Sizes o~
Dynamic GPU-Controlled Allocation X
ComplexSpatial Joins

..

SPMD-style control flow

Existing Systems Do Not Meet the Requirements!

PyTorch ~ JAX CUDAC++ Warp/NUMBA GPU PhysX

...

...

Irregular Parallelism &
Collection Sizes X X

...

Dynamic GPU-Controlled
Allocation

"""

..

"""

SPMD-style control flow

Tonight’s reading O
m Madrona engine project (Stanford project) fﬁ

m Aframework for building GPU batch simulators using entity component system (ECS)
design patterns

Stanford C5348K, Spring 2025

Tutorial:
Entity Component System (ECS)
Design Patterns on the GPU

b

Concept 2: Components (ECS)

Pos Bbox P l ’
Act1on

I

Reward

A =

e

Concept 2: Components (ECS)

Agents Obstacles

Pos Bbox | Action EnvID Pos Bbox

[@,@,05] {M'il‘l... LEFT ¢ o0 [@05,@,05] {m-in’°'

[2,1,0] | {min... FWD : y [0,1,3] | {min...

[105,0,1] {m'in... FWD ° ¢ [1,1,2] {m.inooo

Batch simulation ECS: Store data across all
environments in unified tables in GPU memory

Agents Obstacles

Pos Bbox | Action| Reward EnvID Pos Bbox

[@,0,05] {m-inooo LEFT ¢ e [605,@,.5] {m-inooo

[2,1,0] {m'in... FWD 0 cee [@,1,3] {m.in°°'

[105,@,1] {m'in... FWD o c e [1,1,2] {m-inooo

[1.5,0.5,1]

[_@05,0,@]

[1.5,0,2.5]

[2.5,0.5,2]

[1.5,0.5,2]

Unified table storage also enables throughput-
oriented dynamic memory allocation

Agents Obstacles

Pos Bbox | Action| Reward EnvID Pos Bbox

[@,0,05] {m-inooo LEFT ¢ e [605,@,.5] {m-inooo

[2,1,@] {m'in... FWD 0 cee [@,1,3] {m-in°°'

{min...

[1.5,0.5,1]

[-0.5,0,0] : 70
1

1
33 2 [1.5,0,2,5] | {min
8

2 o o

[) , , ®] o 00
3 [2.5,0.5,2] | {min...

il A b bbb dalll AN I
15

Concept 3: Systems (ECS)

Agents

Pos Bbox

Action | Reward

[0,0,.5] [{min...

LEFT

~ o N
ProcessActions

Pos, Action

o J

Obstacles

EnvID Pos

Bbox

[0.5,0,.5]

{min...

/ ® ®
Collisions
Id, Pos, Bbhox

&

~

/ R
ComputeRewards
L Pos, Reward Y

Concept 3: Systems (ECS)
Agents

Pos Bbox

Action | Reward

[0,0,.5] [{min...

LEFT

~ o ™
ProcessActions

Pos, Action

_ o

Obstacles

EnvID Pos

Bbox

[0.5,0,.5]

{min...

4 ¢ o
Collisions
Id, Pos, Bbox

\\

/

4 R
ComputeRewards
Pos, Reward p

Systems written as straight-line, per-entity logic

def process_action(agent_position, action):

Age N t S if action.type == MOVE:
Id | EnvID Pos Bbox | Action | Reward force = computeMovementForce(action.dir)
12 0 10,0,.5] | {min... LEET 0.1 if action.type == LOCK:

hit_obj = raycastForward(agent_position)
: FWD -
32 1 [2,1,0] {min... 0.1 f hit_obj:
51 2 [1.5,0,1] | {min... FWD 2.5 lockODbject(hit_obj)
22 2 [205,@,105] {M'in... RIGHT 101
- .
ProcessActions

Pos, Action

o /

each table row

Agents

Id | EnvID Pos Bbox | Action | Reward
GPU Threa> 0 [0,0,.5] {min... LEFT 0.1
GPU Thread 1 [2,1,0] | {min... FWD -0.1
GPU Thread 2 [1.5,0,1] | {min... FWD 2.5

GPU Thread 2 [2.5,0,1,5] | {min... | RIGHT 1.1

A\ 4

S I S s S E—

~ o ™
ProcessActions

Pos, Action

o /

Parallel GPU threads execute system logic over

def process_action(agent_position, action):
if action.type == MOVE:

force = computeMovementForce(action.dir)
if action.type == LOCK:
hit_obj = raycastForward(agent_position)
if hit_obj:
lockObiject(hit_obj)

ECS systems combined into task graph and
executed in parallel on the GPU

|

[GenerateEnv J [VelSolve]L——
[ProcessActionsJ [PosSolve]

v {

{ BVHRef1t] [NarrowPhase]

v i

[FindOverlaps J [

| 1

Integrate }<#;

Y

[BVHRef1it

Y%

[CheckVisible J

Vv

[Observations]L__

\

[>[MaskOutput J

V
[ComputeRewardsJ

|

Scheduling batch of worlds onto GPU

Lidar
].:
\4

]

[

BVHRef1it
Observations
MaskOutput

isi
[ComputeRewards]
J

)

[
L
[
[

CheckV

[

<=

)
]
)
]

U47
VelSolve
{
PosSolve
{
NarrowPhase
{
Integrate
it

- - - - - - - —————— . . 1 1 . o . o

[

-

]

ProcessAct1ons] [

\
BVHRefit
\
FindOverlaps]

GenerateEnv

&

L se———
=

-

X
AL

BALRIAALLL

i3
Mm
i

UMMM 50 Ll s At
IO LAt
TEUN, 230 e
UMEI TT 0L e i
ORI AR ALAN NI A
L
T 000 e s
(S R EE F———
Ll PO IINEnAalaa

([ERLRETTRE—Y
[B LR LT RR R
TAA— AN s
T AL AR A
AP AR ALNARDAALS
L T
Py 700 e
[e
(RMAEA BAAMAMARLIALA
PO 30 B e
[RSN ES
(L LIRSV RNTEY FNY
VRRBARS 0 liatanaTtian
AR 0
PR D i andanid VA
[AT TR
TR B Rl L
P A LA
[Y3 P PUPNSNVEIY
DR 04 seasidd 1nan

RIS AR LAALIhbnads

.
- -

T
ol
0 ol ol 0y ool ol

= EEENERE
m.u. 1 NEANEARES

AIJ

TILT IR |
.|....AL!u.u

.

.

.

T X IEEEEER .1|l T ...A||l.l!<:_l.l
A NESEEREEER

s e SESEARESENEERER RS - -
ERREDE 1] 11 - IERRRREEEE] 3 \
(1111 EEEEE R RN NN E R ! 11 I | A

__
[

B T 1T I TT

EEREREN! 31

. STEEEEL §S83iE n !|sx(u..‘ B

SEENREENENEED
o+ sx 1HLL

- — -
B EERREEREEE! - 8 B
v...._lx - - -

BERi
- - A . IS
N - | “n Y 1 "

‘ ___-________________________

IREERAEE JiH L

[RRERRRREGRRERAREE 1588 HELEETEL .

Prrppp— T T T T T T T — S

ro NS :%

/21 NS Nd9

time (7.9 ms)

Agent Observations & Rewards LIDAR

BVH & Broad Phase Physics Sub-Step

What about spatial queries?

def process_action(agent_position, action):
if action.type == MOVE:

force = computeMovementForce(action.dir)
if action.type == LOCK:
hit_obj = raycastForward(agent_position)
if hit_obj:
lockODbject(hit_obj)

Agents

Pos

Bbox

Action

Reward

[0,0,.5]

[1.5,0,1]

{min...

LEFT

0.1

[2.5,0,1.5]

Madrona standard library provides high-performance
per-world 3D acceleration structure (BVH)

World 1 BVH World 2 BVH World N BVH

v N v N

BVH Standard Library Calls Allow ECS Systems to
Make Spatial Queries

|

[GenerateEnv J [VelSolve

def find_overlaps(world, my_id, position, bbox):
for bvh_node in world.bvh.find_overlapping(bbox)

@ ﬁ vxiorld .createEntity(CollisionPairny_id, bvh_node.id))
[ProcessActions} [PosSolve
[BVHRefit]

World BVH

Il

[Findozerlaps J

[

Integrate

i

Madrona needs a straightforward imperative language for
authoring ECS systems

def process_action(world, void process_action(World &world,

- Position &position,
agent_position, AgentAction &action) {

| action): if (action.type == MOVE) {
iIf action.type == MOVE: v 3
ector3 force =
force = computeMovementForce(action.dir)

if action.type == LOCK:

computeMovementForce(action.dir);

}
hit_obj = if (action.type == LOCK) {
raycastForward(world, agent_position) Entity hit_obj =
iIf hit_obj: raycastForward(world, agent_position);
lockObiject(hit_obj) f (hit_obj) {
lockObject(hit_obj);
}
}

Madrona Framework Summary

ECS Storage

Agents
Id | EnvID Pos Bbox |Action | Reward
12 0 [0,0,.5] | {min... | LEFT 0.1
32 1 [2,1,0] {min... FWD -0.1
51 2 [1.5,0,1] | {min... FWD 2.5
22 2 [2.5,0,1.5] | {min... RIGHT 1.1

Parallel ECS
Scheduler for GPU

[

| Ge v | [velsotve |
@ {

[P] [PosSolve]
@ ﬁ

[BVHRef1it] [NarrowP]
v ﬁ

[F ndOverlaps] [Integrate]
| i

H

ﬁ

BVHRef1it

[Ch ckVisible M
OnS

MaskOutput

[c ptRw rds M

ECS-Integrated
Standard Library
(BVH, Physics, etc)

World N BVH

Y
4

2%
L e

Summary: Madrona meets core requirements for
building wide range of batch simulators

Madrona

Irregularly Sized Collections v
-- Multi-World ECS Tables
Dynamic GPU-Controlled Allocation v
Irregular Nested Parallelism v
''' ECS Systems&
Dynamic GPU-Controlled Parallelism

__ ParallelGPUTaskGraphScheduImg‘/
Implicit Parallelism v
Complex Spatial Joins v

SPMD-Style Control Flow Programmlng Language (CUDA C'H') V/

An Alternative approach:
Generative Al as a means to generate
world simulation output

(previewing parts of next week)

-! |mage tran

Ours

Stanford C5348K, Spring 2025

.

A8

A

Genie

m Keyidea: learn a world simulator from videos of video game play

- Fromvideo, learn latency user actions, and dynamics model that steps work given (current state, action)

Video

tokenizer

(

&

model

N

Latent action

—

J

Latent actions @

Video tokens 2

- Then at “test time” given a novel world state (perhaps one generated from a prompt), and given user input,
time step the novel world forward in time

Text-to-
Image

Hand-drawn
sketch

l Prompt I

. -
,'. e "-. "'_ e .
D\ QA
)

s P = ,0'.

Ploy: M8 {a, B, X, Y}

Stanford C5348K, Spring 2025

