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Today
Slides on the landscape of high-performance world simulation efforts designed for 
improving the efficiency of training embodied AI agents 
Discussion of the Madrona system 
Discussion: do we even need to simulate from a traditional world model at all? 
- Can’t generative AI just make our training data? 
- Setup for tonight’s reading: Genie
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Background:  
Why learning via trial and error requires 

a lot of simulated experience 
(reinforcement learning example)
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RL in 30 seconds
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agent 
action

environment 
observation 

e.g. RGB image

Model Inference
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RL in 30 seconds
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action

environment 
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sequence of 
observations

…

sequence of 
agent actions

…

Reward: change in 
distance from goal

update 
model 

via SGD

Model Training

Model Inference

compute loss 
gradients



Stanford CS348K, Spring 2025

RL in 30 seconds
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Model Training

Model Inference

Rollout
update 
model 

via SGD

compute loss 
gradients
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RL in 30 seconds
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Batch Model 
Training

Rollout 0

update 
model 

via SGD

Rollout 1

Rollout 2

Rollout N-1

compute loss 
gradients

…

Many rollouts: 
- Agents independently navigating 

same environments
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RL in 30 seconds
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Batch Model 
Training

Rollout 0

update 
model 

via SGD

Rollout 1

Rollout 2

Rollout N-1

compute loss 
gradients

…

Rollout 3

Rollout 4

…Rollout 5
…

Many rollouts: 
- Agents independently navigating 

same environments 
- Or different environments
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Learning skills can require many trials (billions) of 
learning experience

Training in diverse set of virtual environments 
Many training trials in each environment
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Need significant amounts of simulated 
experience to learn skills 
Example: even for simple PointGoal navigation task: need 
billions of steps of “experience” to exceed traditional non-
learned approaches
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Training agents to perform different tasks requires 
implementation of virtual environments to carry out 

the required simulations



Stanford CS348K, Spring 2025

Many interactive virtual home environments

Navigate to a location 
Find an object 
Rearrange the room so objects are in desired locations 
Pour oneself a glass of milk
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Multi-agent games
Hanabi (Card Game)

Overcooked (Sims-Like Env)

Atari Games
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Robot hand manipulation
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Practice in simulation…
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The story so far
1. Training and agent to learn complex skills can require many (millions, even billions) of 

trial-and-error steps (aka large amounts of “training experience”)

2. Researchers create virtual environments to simulate all this experience.
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Basic training system components
Database of 3D assets 

(meshes, textures collision meshes)

Simulation 
(advance world)

Generate Agent 
Observations

Compute 
Rewards/Loss

Given agent viewpoint, 
render image, 

lidar, visibility? etc.

Run game logic, 
Physics calculations, 

etc.

Agent Policy 
Inference/Learning

DNN evaluation, 
gradient update step

(from observations)

World 
Construction

Load assets, 
programmatically 

create world instance

Next agent action
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Procedural world generation
Many examples of procedurally creating novel environments per “training episode”.  
Interesting questions about how to pick examples to train on
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Example: ProcTHOR

1. Many environments, many variants of task

Value of diversity of scenes

Procedurally generated floorpans, furniture 
arrangements, random material assigmments, etc.
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Greater diversity of scenes wins

Better off training on a large number of highly diverse scenes than a small number of photorealistic ones
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Value of diversity of tasks
DeepMind’s XLand: procedurally generate terrains and the rules of the game.

Wide range of “games” requiring different strategies and skills can be 
defined by specifying goals for agents

Example 1: agent 1 must find a yellow 
sphere and hold it, while agent 2 must stand by a yellow pyramid

Example 2: goals for hide and seek: Agent 1 should move to see its 
opponent. Agent 2’s goal is to not be seen by agent 1.

Example 3: encourage teamwork. Give both agents the same goal of 
moving one object by another
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Need for high-throughput simulation
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Common parallel simulation approach: treat simulator as a black box, gain high 
throughput via scale-out parallelization  

Treat existing simulation engines as a 
black box. 

Run many copies of the black box in 
parallel.
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A basic design: parallelize over workers

DNN ops 
Inference + 

learning: update 
policy from experience)
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Simulation

Generate Obs

Env 0 state

Node 0

Observations

Simulation

Generate Obs

Env 1 state

Node 1

Simulation

Generate Obs

Env 2 state

Node 2
Simulation

Generate Obs

Env 3 state

Node 3

Actions

Actions

Observations
Compute Rewards
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One example of this design: 
EnvPool (one multi-core node)

Pros: 
- Use any existing simulator, unmodified 
- Collects observations from environments, provides 

them to Python as a Tensor 
Cons: 
- See upcoming slides (simulator-learning code sync 

costs, running many independent simulators is not 
optimal on high throughput machines)
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Similar design for distributed system: parallelize over workers

Learning 
Update policy model 

from experience)
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Rollouts 
(list of [obs, action, reward])

New policy

New policy

Rollouts 
(list of [obs, action, reward])

Simulation

Generate Obs

Env 1 state

Node 1

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 0 state

Node 2

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 0 state

Node 0

Compute Rewards

Policy Inference

Simulation

Generate Obs

Env 3 state

Node 3

Compute Rewards

Policy Inference
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Example: Rapid by (OpenAI) OpenAI Five stats (Dota 2)
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Design issues of basic scale-out approach
Inefficient simulation/rendering: low-complexity worlds do not make good use of a 
modern parallel processor’s resources 
- GPUs won’t achieve high-throughput rendering/physics with smaller workloads 

Inefficient communication between simulation and inference/training 

Duplication of computation and memory footprint (for scene data) across environment 
simulator instances 

Seems wasteful, right?



Stanford CS348K, Spring 2025

A new visual computing systems research question: 

Can we execute embodied AI training more efficiently if we 
architect a world simulation engine from the ground up 

to process many independent worlds at once?



More recent design: Batch Simulators: achieve millions of steps/sec 
by executing thousands of environments in parallel on a single GPU

Google MJX: 
GPU Physics

Craftax: 
Open-Ended 2D Exploration

Kinetix: 
Physics Based 
Problem Solving

Maniskill: 
Robotic Manipulation 

Isaac Gym: 
GPU Physics

CuLE: 
Atari RL Benchmarks

BPS3D: 
Home Navigation

Zakka et al, 2025 Makoviychuk et al, NeurIPS 2021 Dalton et al, NeurIPS 2020 
Shacklett et al, ICLR  2021 

Gu et al, ICLR  2023 

Matthews et al, ICLR 2025 Matthews et al, ICML 2024 

But… requires a simulator rewrite for the GPU



Batch simulator's global view of a batch of 
environments allows much higher training efficiency

Batch Simulator Agent Training

GPU
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CuLE: Rewriting an Atari emulator in CUDA
One CUDA thread = work for one Atari simulator instance 
Large numbers of threads execute 
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NVIDIA Issac Gym
Batched many-environment execution applied to rigid body physics sim 
Simulate 100’s to 1000’s of world environments simultaneously on the GPU 
Current state for all environments packaged in a single PyTorch tensor 
User can write GPU-accelerated loss/reward functions in PyTorch on this tensor 
Result: tight loop of simulate/infer/train
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Waymax
Self-driving car simulator built using Jax programming environment 
Environment state stored in JAX tensors (reserve space for max number of objects across all 
environments in a batch)



What about building new batch simulators for  
training new kinds of agents?

(c) Unity

Support Novel ML 
Research 

Train Agents for New Game

Bowen et al, ICLR 2020



Tons of engineering to build new GPU-accelerated 
batch simulator from scratch!

(c) Unity

Task Knowledge GPU Programming Skill

+

Engineering Time

+



Running example: Simulating OpenAI's 
3D "Hide and Seek" learning environment 









Parallel Systems Programming 
Requirements



1. Nested Parallelism: Task logic for each object in each world



2. Irregular Nested Parallelism & Irregular Collection Sizes: 
Worlds with varying numbers of objects 



3. Dynamic GPU-controlled memory allocation & parallelism: 
Physics contacts, sparse events



4. Complex Spatial Joins: Ray casting, 3D collisions



Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
  if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
  lockObject(hit_obj)

 ...



Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
  if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
  lockObject(hit_obj)

 ...

5. Implicit Parallelism: Logic written in terms of 1 environment, 
automatically batched



Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
  if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
  lockObject(hit_obj)

 ...

6. Convenience of standard SPMD control flow 



Claim: 
We need to create a "game engine" for building 

batch simulators that meets these requirements!

1. Nested Parallelism 
2. Irregular Parallelism & Collection Sizes 
3. Dynamic GPU-Controlled Allocation 
4. Complex Spatial Joins 
5. Implicit Parallelism 
6. SPMD-Style Control Flow



What About Using Existing Systems / 
Frameworks to Help to Build Complex 

Batch Simulators?



Lowest-level option: Where does CUDA C++ fall short 
for our needs?



Writing a batch simulator in raw CUDA requires 
custom parallel memory management & scheduling

CUDA C++

Nested Parallelism ✓
Irregular Parallelism & Collection Sizes X
Dynamic GPU-Controlled Allocation X
Complex Spatial Joins X
Implicit Parallelism X
SPMD-style control flow ✓



Higher-level GPU kernel languages: 
friendlier syntax, but same abstraction as CUDA C++



Array-based programming: Describe simulation in 
terms of bulk operations on fixed-size tensors

Mujoco MJX Craftax

Matthews et al, ICML 2024 Zakka et al, 2025 



Array-based programming: Variable environment 
structures, procedural generation are challenging

Nested Parallelism ✓ ✓
Irregular Parallelism & Collection Sizes ~ X
Dynamic GPU-Controlled Allocation X X
Complex Spatial Joins X X
Implicit Parallelism ~ ✓
SPMD-style control flow X X



What about building batch simulators by reusing 
existing GPU simulation libraries?

NVIDIA Isaac Sim

Makoviychuk et al, NeurIPS 2021 

Gu et al, ICLR  2023 



Existing GPU simulation libraries (PhysX) are 
designed to accelerate a CPU-controlled simulation

GPU PhysX

Nested Parallelism ✓
Irregular Parallelism & Collection Sizes ~
Dynamic GPU-Controlled Allocation X
Complex Spatial Joins ✓
Implicit Parallelism X
SPMD-style control flow X



Existing Systems Do Not Meet the Requirements!

PyTorch JAX CUDA C++ Warp / NUMBA GPU PhysX

Nested Parallelism ✓ ✓ ✓ ✓ ✓
Irregular Parallelism & 
Collection Sizes ~ X X X ~
Dynamic GPU-Controlled 
Allocation X X X X X
Complex Spatial Joins X X X X ✓
Implicit Parallelism ~ ✓ X X X
SPMD-style control flow X X ✓ ✓ X
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Tonight’s reading
Madrona engine project (Stanford project) 

A framework for building GPU batch simulators using entity component system (ECS) 
design patterns



Tutorial: 
Entity Component System (ECS) 

Design Patterns on the GPU



Concept 1: Entities (ECS)



Concept 2: Components (ECS)

Pos Bbox

Action

Reward



Concept 2: Components (ECS)

EnvID PosId
12

32

51

0

0

0

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

Bbox Action
{min...

{min...

{min...

0.1

-0.1

-2.5

Agents 
EnvID PosId

13

72

61

0

0

0

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

Bbox
{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD



Batch simulation ECS: Store data across all 
environments in unified tables in GPU memory

EnvID PosId
12

32

51

0

0

0

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

Bbox Action
{min...

{min...

{min...

0.1

-0.1

-2.5

Agents 
EnvID PosId

13

72

61

0

0

0

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

Bbox
{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

49 1 [0.5,1,2] ...{min...

70 1 [-0.5,1,0] ...{min...

33 2 [1.5,0,2.5] ...{min...

81 3 [2.5,0.5,2] ...{min...

11 3 [1.5,0.5,2] ...{min...

62 1 [1.5,0.5,1] {min... 0.3RIGHT

65 1 [-0.5,0,0] {min... 0.5RIGHT

20 2 [0.5,1,1] {min... 1.5LEFT

23 2 [-1.5,0,0] {min... 10.5LEFT

41 2 [0.5,1,0] {min... -10BACK

...

...

...

...

...



Unified table storage also enables throughput-
oriented dynamic memory allocation

EnvID PosId
12

32

51

0

0

X

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

Bbox Action
{min...

{min...

{min...

0.1

-0.1

-2.5

Agents 
EnvID PosId

13

72

61

0

0

0

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

Bbox
{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

49 X [0.5,1,2] ...{min...

70 1 [-0.5,1,0] ...{min...

33 2 [1.5,0,2.5] ...{min...

81 3 [2.5,0.5,2] ...{min...

11 X [1.5,0.5,2] ...{min...

62 1 [1.5,0.5,1] {min... 0.3RIGHT

65 1 [-0.5,0,0] {min... 0.5RIGHT

20 2 [0.5,1,1] {min... 1.5LEFT

23 2 [-1.5,0,0] {min... 10.5LEFT

41 2 [0.5,1,0] {min... -10BACK

...

...

...

...

...

51 1 [0.5,1,1] {min... -10BACK ... 15 2 [1.5,1.5,2] ...{min...

12 0 [2.5,0.5,3] ...{min...



Concept 3: Systems (ECS)
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Id, Pos, Bbox

ProcessActions
Pos, Action
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Systems written as straight-line, per-entity logic

def process_action(agent_position, action): 
  if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

  lockObject(hit_obj)

  ...
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Parallel GPU threads execute system logic over 
each table row

GPU Thread

GPU Thread

GPU Thread

GPU Thread

def process_action(agent_position, action): 
  if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

  lockObject(hit_obj)

  ...



ECS systems combined into task graph and 
executed in parallel on the GPU

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput



time (7.9 ms)
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27
Scheduling batch of worlds onto GPU

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput



def process_action(agent_position, action): 
  if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

  lockObject(hit_obj)

  ...
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What about spatial queries?



Madrona standard library provides high-performance 
per-world 3D acceleration structure (BVH)

World 1 BVH World 2 BVH

...

World N BVH



BVH Standard Library Calls Allow ECS Systems to 
Make Spatial Queries

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

def find_overlaps(world, my_id, position, bbox):
  for bvh_node in world.bvh.find_overlapping(bbox)
    world.createEntity(CollisionPair(my_id, bvh_node.id))

World BVH



Madrona needs a straightforward imperative language for 
authoring ECS systems

def process_action(world,
                   agent_position,
                   action): 
  if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj =

  raycastForward(world, agent_position)

if hit_obj:

  lockObject(hit_obj)

  ...

void process_action(World &world,
                    Position &position,
                    AgentAction &action) { 
  if (action.type == MOVE) {

Vector3 force =

computeMovementForce(action.dir);

}

if (action.type == LOCK) {

Entity hit_obj =

   raycastForward(world, agent_position);

if (hit_obj) {

  lockObject(hit_obj);

}

}

  ...
}



Madrona Framework Summary
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World N BVH

ECS Storage

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

Parallel ECS 
Scheduler for GPU

ECS-Integrated 
Standard Library 

(BVH, Physics, etc)



Summary: Madrona meets core requirements for 
building wide range of batch simulators

Multi-World ECS Tables}
} ECS Systems & 

Parallel GPU Task Graph Scheduling

} Built on General-Purpose 
Programming Language (CUDA C++)

Madrona

Irregularly Sized Collections ✓
Dynamic GPU-Controlled Allocation ✓
Irregular Nested Parallelism ✓
Dynamic GPU-Controlled Parallelism ✓
Implicit Parallelism ✓
Complex Spatial Joins ✓
SPMD-Style Control Flow ✓



Stanford CS348K, Spring 2025

An Alternative approach: 
Generative AI as a means to generate 

world simulation output  

(previewing parts of next week)



Stanford CS348K, Spring 2025

Enhancing CG images to look like real-world images using 
image-to-image transfer



Stanford CS348K, Spring 2025

Modifying real-world images to create novel situations

Remove or 
move this car.



Stanford CS348K, Spring 2025

Genie
Key idea: learn a world simulator from videos of video game play 
- From video, learn latency user actions, and dynamics model that steps work given (current state, action)

- Then at “test time” given a novel world state (perhaps one generated from a prompt), and given user input, 
time step the novel world forward in time


