
Visual Computing Systems
Stanford CS348K, Spring 2025

Lecture 2:

A [Simple] Camera Image
Processing Pipeline

Stanford CS348K, Spring 2025

Theme of the next two lectures…
The pixels you see on screen are quite different than the values recorded by the sensor in a modern digital camera.
Computation (computer graphics, image processing, and ML) is a fundamental aspect of producing high-quality
photographs.

Computation

Sensor
output

(“RAW”)

Beautiful image that impresses
your Instagram friends

Stanford CS348K, Spring 2025

Part 1: image sensing hardware

(how a digital camera measures light,
and how physical limitations of these devices place challenges on software)

Stanford CS348K, Spring 2025

Camera cross section

Image credit: Canon (EOS M)

Sensor

Canon 14 MP CMOS Sensor
(14 bits per pixel)

Stanford CS348K, Spring 2025

Camera cross section

Image credit: https://www.dpreview.com/news/3717128828/the-future-is-bright-technology-trends-in-mobile-photography

Sensor

Stanford CS348K, Spring 2025

The Sensor

Stanford CS348K, Spring 2025

Photoelectric effect

Incident photons

Ejected electrons

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics, and especially for his
discovery of the law of the photoelectric effect"

Albert Einstein

Slide credit: Ren Ng

Stanford CS348K, Spring 2025

CMOS sensor

Row select
Register

ADCAmplify
Bits

…

Active pixel sensor
(2D array of photo-diodes)

“Optically black” region
(shielded from light)

Exposed region
Photodiode

(a pixel)

Column select register

CMOS = complementary metal-oxide semiconductor

Stanford CS348K, Spring 2025

CMOS response functions are linear
Photoelectric effect in silicon:

- Response function from photons to
electrons is linear

(Some nonlinearity close to 0 due to noise
and when close to pixel saturation)

Slide credit: Ren Ng

Stanford CS348K, Spring 2025

Quantum efficiency
Not all photons will produce an electron (depends on quantum efficiency of the device)

- Human vision: ~15%

QE =
electrons
photons

Slide credit: Ren Ng

- Typical digital camera: < 50%

- Best back-thinned CCD: > 90%
(e.g., telescope)

Stanford CS348K, Spring 2025

Sensing Color

Stanford CS348K, Spring 2025

Electromagnetic spectrum
Describes distribution of power (energy/time) by wavelength

Figure credit:

Below: spectrum of various common light sources:

Stanford CS348K, Spring 2025

Example: warm white vs. cool white

Image credit: (Oz Lighting: https://www.ozlighting.com.au/blog/what-is-warm-white-versus-cool-white/)

Stanford CS348K, Spring 2025

Simple model of a light detector

Figure credit: Steve Marschner

R =

Z

�
�(�)r(�)d�

�(�)

r(�)
spectral response function

(overall response)

incoming spectrum

Stanford CS348K, Spring 2025

Spectral response of cone cells in human eye
Three types of cells in eye responsible for color perception: S, M, and L cones (corresponding to peak
response at short, medium, and long wavelengths)

Implication: the space of human-perceivable colors is three dimensional

S =

Z

�
�(�)S(�)d�

M =

Z

�
�(�)M(�)d�

L =

Z

�
�(�)L(�)d�

wavelength (nm)
No

rm
al

ize
d r

es
po

ns
e

Response functions for S, M, and L cones

Stanford CS348K, Spring 2025

Human eye cone cell mosaic

False color image:
red = L cones
green = M cones
blue = R cones

Image Credit: Ramkumar Sabesan Lab

Stanford CS348K, Spring 2025

Color filter array (Bayer mosaic)
Color filter array placed over sensor
Result: different pixels have different spectral response (each pixel measures red, green, or blue light)
50% of pixels are green pixels

Traditional Bayer mosaic
(other filter patterns exist: e.g., Sony’s RGBE)

Pixel response curve: Canon 40D/50D

Image credit:
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm)

f(�)

Stanford CS348K, Spring 2025

Light incident on camera

Stanford CS348K, Spring 2025

What sensor measures

Stanford CS348K, Spring 2025

What sensor measures
(zoomed view)

Defective pixel

Stanford CS348K, Spring 2025

CMOS Pixel Structure

Stanford CS348K, Spring 2025

Front-side-illuminated (FSI) CMOS
Building up the CMOS imager layers

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2025

Pixel pitch:
A few microns

Photodiodes
~50% Fill Factor

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2025

Polysilicon
& Via 1

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2025

Metal 1

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2025

Metal 2

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2025

Metal 3

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2025

Metal 4

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2025

Color filter array

Courtesy R. Motta, Pixim

Stanford CS348K, Spring 2025

Pixel fill factor

Photodiode area Non photosensitive (circuitry)

Fraction of pixel area that integrates incoming light

Slide credit: Ren Ng

Stanford CS348K, Spring 2025

CMOS sensor pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

Color filter attenuates light

Microlens (a.k.a. lenslet) steers light toward photo-
sensitive region (increases light-gathering capability)

Advanced question: Microlens also serves to reduce
aliasing signal. Why?

Stanford CS348K, Spring 2025

Using micro lenses to improve fill factor

Leica M9

Shifted microlenses on M9 sensor.

Slide credit: Ren Ng

Stanford CS348K, Spring 2025

Optical cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng

Stanford CS348K, Spring 2025

Pixel optics for minimizing cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng

Stanford CS348K, Spring 2025

Backside illumination sensor
▪ Traditional CMOS: electronics block light
▪ Idea: move electronics underneath light gathering region

- Increases fill factor
- Reduces cross-talk due since photodiode closer to microns
- Implication 1: better light sensitivity at fixed sensor size
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Illustration credit: Sony

Stanford CS348K, Spring 2025

Pixel saturation and noise

Stanford CS348K, Spring 2025

Saturated
pixels

Photon count for pixels has
saturated (no detail in image)

Stanford CS348K, Spring 2025

Saturated
pixels

Photon count for pixels has
saturated (no detail in image)

Stanford CS348K, Spring 2025

Saturated pixels

Credit: P. Debevec

Stanford CS348K, Spring 2025

Full-well capacity

Graph credit: clarkvision.com

Pixel saturates when photon capacity is exceeded

Saturated pixels

Stanford CS348K, Spring 2025

Bigger sensors = bigger pixels (or more pixels?)
iPhone X (1.2 micron pixels, 12 MP)

Nikon D7000 (APS-C)
(4.8 micron pixels, 16 MP)

Nikon D4 (full frame sensor)
(7.3 micron pixels, 16 MP)
Implication: very high pixel count sensors
can be built with current CMOS technology

-Full frame sensor with iPhone X pixel
size ~ 600 MP sensor

24x16mm

36x24mm

Image credit: Wikipedia

Stanford CS348K, Spring 2025

Measurement noise

We’ve all been frustrated by noise in low-light photographs
(or in shadows in day time images)

Stanford CS348K, Spring 2025

Measurement noise

Grand Teton National Park

Stanford CS348K, Spring 2025

Measurement noise

Grand Teton National Park

Stanford CS348K, Spring 2025

Sources of measurement noise
Photon shot noise:
- Photon arrival rate takes on Poisson distribution
- Standard deviation = sqrt(N) (N = number of photon arrivals)
- Signal-to-noise ratio (SNR) = N/sqrt(N)
- Implication: brighter the signal, the higher the SNR

Dark-shot noise
- Due to leakage current in sensor
- Electrons dislodged due to thermal activity (increases exponentially with sensor temperature)

Non-uniformity of pixel sensitivity (due to manufacturing defects)
Read noise
- e.g., due to amplification / ADC

Stanford CS348K, Spring 2025

Dark shot noise / read noise
Black image examples: Nikon D7000, High ISO

1 sec exposure

Stanford CS348K, Spring 2025

Read noise

Image credit: clarkvision.com

Read noise is largely independent of pixel size
Large pixels + bright scene = large N
So, noise determined largely by photon shot noise

Stanford CS348K, Spring 2025

Maximize light gathering capability
Goal: increase signal-to-noise ratio
- Dynamic range of a pixel (ratio of brightest light measurable to dimmest light measurable) is determined by the

noise floor (minimum signal) and the pixel’s full-well capacity (maximum signal)

Use big pixels
- Nikon D4: 7.3 um

- iPhone X: 1.2 um

Manufacture sensitive pixels
- Good materials

- High fill factor

Stanford CS348K, Spring 2025

Artifacts arising from lenses

Stanford CS348K, Spring 2025

Vignetting
This is a photograph of a white wall
(Note: I contrast-enhanced the image to show effect more prominently)

Stanford CS348K, Spring 2025

Types of vignetting

Image credit: Mark Butterworth

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens

Pixel vignetting: light reaching pixel at an oblique angle is less
likely to hit photosensitive region than light incident from straight
above (e.g., obscured by electronics)

- Microlens reduces pixel vignetting

Stanford CS348K, Spring 2025

Chromatic aberration

Image credit: Wikipedia

Different wavelengths of light are refracted by different amounts

Stanford CS348K, Spring 2025

More challenges
Chromatic shifts over sensor
- Pixel light sensitivity changes over sensor due to interaction with microlens

(Index of refraction depends on wavelength, so some wavelengths are more likely to suffer from cross-talk or reflection.
Ug!)

Lens distortion

Pincushion distortion

Captured Image Corrected Image
Image credit: PCWorld

Stanford CS348K, Spring 2025

The message so far
Physical constraints of image formation by a camera create artifacts in
the recorded image

We are going to rely on processing to reduce / correct for these artifacts

Stanford CS348K, Spring 2025

A simple RAW image processing pipeline

Given the physical reality of how a lens+sensor system works, now let’s look at how software
transforms raw sensor output into a high-quality RGB image.

Adopting terminology from Texas Instruments OMAP Image Signal Processor pipeline
(since public documentation exists)

Assume: software pipeline receiving 12 bits/pixel Bayer mosaiced data from sensor

Stanford CS348K, Spring 2025

Optical clamp: remove sensor offset bias
output_pixel = input_pixel - [average of pixels from optically black region]

Remove bias due to sensor black level
(from nearby sensor pixels at time of shot)

Stanford CS348K, Spring 2025

Correct for defective pixels
Store LUT with known defective pixels
- e.g., determined on manufacturing line, during sensor calibration and test

Example correction methods
- Replace defective pixel with neighbor

- Replace defective pixel with average of neighbors

- Correct defect by subtracting known bias for the defect

output_pixel = (isdefectpixel(current_pixel_xy)) ?
 average(previous_input_pixel, next_input_pixel) :
 input_pixel;

Stanford CS348K, Spring 2025

“Hot pixel” suppression
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float min_value = min(min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
 min(input[j*WIDTH + i-1], input[j*WIDTH + i+1]));
 float max_value = max(max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]),
 max(input[j*WIDTH + i-1], input[j*WIDTH + i+1]));
 output[j*WIDTH + i] = clamp(min_value, max_value, input[j*WIDTH + i]);
 }
}

This filter clamps pixels to the min/max of its cardinal neighbors
(e.g., hot-pixel suppression — no need for a lookup table)

Stanford CS348K, Spring 2025

Lens shading compensation
Correct for vignetting artifacts
- Good implementations will consider wavelength-dependent vignetting

(that creates chromatic shift over the image)

Possible implementations:
- Use “flat-field photo” stored in memory

- e.g., lower resolution buffer, upsampled on-the-fly

- Or use analytic function to model required correction
gain = upsample_compensation_gain_buffer(current_pixel_xy);
output_pixel = gain * input_pixel;

Need to invert the
vignetting effect

Stanford CS348K, Spring 2025

Demosiac
Produce RGB image from mosaiced input image
Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors)
More advanced algorithms:
- Bicubic interpolation (wider filter support region… may overblur)
- Good implementations attempt to find and preserve edges in photo

Image credit: Mark Levoy

Stanford CS348K, Spring 2025

Demosaicing errors

What will demosaiced
result look like if this black
and white signal was
captured by the sensor?

Stanford CS348K, Spring 2025

Demosaicing errors

(Visualization of signal and
Bayer pattern)

Stanford CS348K, Spring 2025

Demosaicing errors

No red measured.

Interpolation of green
yields dark/light pattern.

Stanford CS348K, Spring 2025

Why color fringing? What will demosaiced result
look like if this black and
white signal was captured
by the sensor?

Stanford CS348K, Spring 2025

Why color fringing?

(Visualization of signal
and Bayer pattern)

Stanford CS348K, Spring 2025

Demosaicing errors
Common difficult case: fine diagonal black and white stripes
Result: moire pattern color artifacts

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

RAW data
from sensor

RGB result after
demosaic

Stanford CS348K, Spring 2025

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from grayY’

Cb

Cr

Image credit: Wikipedia

Conversion matrix from R’G’B’ to Y’CbCr:

“Gamma corrected” RGB
(primed notation indicates perceptual (non-linear) space)
We’ll describe what this means this later in the lecture.

Y’CbCr color space
Colors are represented as point in 3-space
RGB is just one possible basis for representing color
Y’CbCr separates luminance from hue in representation

Stanford CS348K, Spring 2025

Example: compression in Y’CbCr

Original picture of Kayvon

Stanford CS348K, Spring 2025

Contents of CbCr color channels downsampled by a factor of 20 in each dimension
(400x reduction in number of samples)

Example: compression in Y’CbCr

Stanford CS348K, Spring 2025

Full resolution sampling of luma (Y’)

Example: compression in Y’CbCr

Stanford CS348K, Spring 2025

Reconstructed result
(looks pretty good)

Example: compression in Y’CbCr

Stanford CS348K, Spring 2025

Better demosaic
Convert demosaic’ed RGB value to YCbCr
Low-pass filter (blur) or median filter CbCr channels
Combine filtered CbCr with full resolution Y from sensor to get RGB

Trades off spatial resolution of chroma information to avoid objectionable color fringing

Stanford CS348K, Spring 2025

White balance
Adjust relative intensity of rgb values (goal: make neutral tones in scene appear neutral in image)

The same “white” object will generate different sensor response when illuminated by different spectra. Camera needs to
infer what the lighting in the scene was.

output_pixel = white_balance_coeff * input_pixel
// note: in this example, white_balance_coeff is vec3
// (adjusts ratio of red-blue-green channels)

Image credit: basedigitalphotography.com

Stanford CS348K, Spring 2025

White balance example

Stanford CS348K, Spring 2025

White balance example

Stanford CS348K, Spring 2025

White balance example

Stanford CS348K, Spring 2025

White balance algorithms
White balance coefficients depend on analysis of image contents

- Calibration based: get value of pixel of “white” object: (rw, gw, bw)
- Scale all pixels by (1/rw, 1/gw, 1/bw)

- Heuristic based: camera must guesse which pixels correspond to white objects in scene
- Gray world assumption: make average of all pixels in image gray
- Brightest pixel assumption: find brightest region of image, make it white ([1,1,1])

▪ Modern white-balance algorithms are based on learning
correct scaling from many “good photograph” examples
- Create database of images for which good white balance

settings are known (e.g., manually set by human)
- Learn mapping from image features to white balance settings
- When new photo is taken, use learned model to predict good

white balance settings

Scale r,g,b values so
these pixels are close
to (1,1,1)

Stanford CS348K, Spring 2025

Denoising

Denoised

Original

Stanford CS348K, Spring 2025Image credit: https://www.colorexpertsbd.com/blog/how-to-fix-blurry-photos-induced-by-camera-shake-in-photoshop

Low light conditions need long exposure…
blur due to camera shake

Stanford CS348K, Spring 2025

Low light photo: many regions underexposed
(short exposure) to avoid blur + some regions
overexposed

Stanford CS348K, Spring 2025

Brightened image to see detail in dark regions,
notice noise in dark regions

Stanford CS348K, Spring 2025

Attempt to denoise… splotchy effect remains

Stanford CS348K, Spring 2025

Long exposure: walking people are blurred…

Stanford CS348K, Spring 2025

Long exposure: walking people are blurred…

Stanford CS348K, Spring 2025

Also: still significant noise in
dark regions

Stanford CS348K, Spring 2025

Reduce noise via image processing: denoising via downsampling

Downsample via point sampling

(noise remains)

Downsample via averaging

Noise reduced

Like a smaller number of
bigger pixels!

Stanford CS348K, Spring 2025

Averaging = discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image
(the result of convolving f with input image I)

input imagefilter

Consider a that is nonzero only when: (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called: “filter weights”, “filter kernel”)

Stanford CS348K, Spring 2025

Simple 3x3 box blur in C code
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

For now: ignore boundary pixels and assume output
image is smaller than input (makes convolution loop
bounds much simpler to write)

Stanford CS348K, Spring 2025

7x7 box blur
Original

Blurred

Stanford CS348K, Spring 2025

Gaussian blur
Obtain filter coefficients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

▪ Produces weighted sum of neighboring pixels (contribution falls off with
distance)
- In practice: truncate filter beyond certain distance for efficiency

Note: this is a 5x5 truncated Gaussian filter

Stanford CS348K, Spring 2025

7x7 gaussian blur
Original

Blurred

Stanford CS348K, Spring 2025

Median filter

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 output[j*WIDTH + i] =
 // compute median of pixels
 // in surrounding 5x5 pixel window
 }
}

▪ Replace pixel with median of its neighbors
- Useful noise reduction filter: unlike gaussian blur, one bright pixel

doesn’t drag up the average for entire region

▪ Not linear: filter weights are 1 or 0 (depending on image content)

▪ Basic algorithm for NxN support region:
- Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel
- Can you think of an O(N2) algorithm? What about O(N)?

Stanford CS348K, Spring 2025

Bilateral filter

Example use of bilateral filter: removing noise while preserving image edges

Original Processed

Stanford CS348K, Spring 2025

Bilateral filter

The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels on the “other side” of strong edges. f

(x) defines what “strong edge means”

Spatial distance weight term f (x) could itself be a gaussian

- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference. (non-linear filter: like the
median filter, the filter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on difference
in input image pixel values

For all pixels in support region
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Wp =
X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Normalization

Stanford CS348K, Spring 2025

Bilateral filter
Visualization of bilateral filter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Stanford CS348K, Spring 2025

Bilateral filter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Stanford CS348K, Spring 2025

Better denoising idea: merge sequence of captures

Long exposure: reduces noise (acquires more light), but introduces blur (camera shake or scene
movement)
Short exposure: sharper image, but lower signal/noise ratio
Idea: take sequence of short full-resolution exposures, but align images in software, then
merge them into a single sharp image with high signal to noise ratio

Algorithm used in Google Pixel Phones [Hasinoff 16]

Stanford CS348K, Spring 2025

Google’s align-and-merge algorithm
For each image in burst, align to reference frame (use sharpest photo as reference
frame)
-Compute optical flow field aligning image pair

Simple merge algorithm: warp images according to flow, and sum
More sophisticated techniques only merge pixels where confidence in alignment is
high (tolerate noisy reference pixels when alignment fails)

Image pair

Reference

Frame to align

Visualization of flow

[Image credit: Hasinoff 16]

Stanford CS348K, Spring 2025

Results of align and merge [Hasinoff 16]

[Image credit: Hasinoff 16]

Reference frame Temporal mean of
images in burst

(blurry)

Temporal mean
with alignment

Robust merge with
alignment

Fu
ll i

m
ag

e
Su

cc
es

sfu
l a

lig
nm

en
t

Al
ig

nm
en

t f
ai

lu
re

Stanford CS348K, Spring 2025

Saturated
pixels

Stanford CS348K, Spring 2025

Saturated pixels

Credit: P. Debevec

Stanford CS348K, Spring 2025

Global tone mapping
Measured image values (by camera’s sensor): 10-12 bits / pixel, but common image formats are 8-bits/pixel
How to convert 12 bit number to 8 bit number?

0

255

212

Allow many pixels to “blow
out” (detail in dark regions)

0

255

212

Allow many pixels to
clamp to black (detail

in bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Green

(a) (b)

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Blue

−5 −4 −3 −2 −1 0 1 2
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red (dashed), Green (solid), and Blue (dash−dotted) curves

(c) (d)

Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

7

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Green

(a) (b)

−10 −5 0 5
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Blue

−5 −4 −3 −2 −1 0 1 2
0

50

100

150

200

250

log exposure X

pi
xe

l v
al

ue
 Z

Red (dashed), Green (solid), and Blue (dash−dotted) curves

(c) (d)

Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.

7

input value
ou

tp
ut

 va
lu

e

input value

ou
tp

ut
 va

lu
e

Stanford CS348K, Spring 2025

High dynamic range image (HDR)
Detail in dark and light images

Image credit: Wikipedia

Stanford CS348K, Spring 2025

Local tone adjustment

Improve picture’s aesthetics by locally adjusting contrast,
boosting dark regions, decreasing bright regions
(no physical basis for this)

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

Weights

Combined image
(unique weights per pixel)

Image credit: Mertens 2007

Pixel values

Short Exposure Medium Exposure Long Exposure

Stanford CS348K, Spring 2025

Challenge of merging images

Four exposures (weights not shown)

Merged result (based on weight masks)
Notice heavy “banding” since absolute intensity

of different exposures is different

Merged result
(after blurring weight mask)

Notice “halos” near edges

Stanford CS348K, Spring 2025

Image blending
Consider a simple case where we want to blend two patterns:

Problem: not “smooth”

Slide credit: Efros

Stanford CS348K, Spring 2025

“Feather” the alpha mask
For a “smoother” look…

Iblend = ↵ Ileft + (1� ↵) Iright

<latexit sha1_base64="A/D9080pr+vxY/Nc4+grdPDr/MI=">AAACS3icbVA9SwNBFNyL3/ErammzGARFDXeiaCOINtpFMFHIhbC3eZcs7u0du+/EcNz/s7Gx80/YWChi4eajUOPAwjAzj/d2gkQKg6774hQmJqemZ2bnivMLi0vLpZXVuolTzaHGYxnr24AZkEJBDQVKuE00sCiQcBPcnff9m3vQRsTqGnsJNCPWUSIUnKGVWqXAjxh2dZRd5i0f4QEzO6naOT2hPpNJl1F/l45lJISY0x265e0NU9v/xrTodDFvlcpuxR2AjhNvRMpkhGqr9Oy3Y55GoJBLZkzDcxNsZkyj4BLyop8aSBi/Yx1oWKpYBKaZDbrI6aZV2jSMtX0K6UD9OZGxyJheFNhk/1zz1+uL/3mNFMPjZiZUkiIoPlwUppJiTPvF0rbQwFH2LGFcC3sr5V2mGUdbf9GW4P398jip71e8g8rh1UH59GxUxyxZJxtki3jkiJySC1IlNcLJI3kl7+TDeXLenE/naxgtOKOZNfILhalvN9C0Gw==</latexit>

Slide credit: Efros

Stanford CS348K, Spring 2025

Effect of feather window size

“Ghosting” visible if feather window (transition) is too large
Slide credit: Efros

Stanford CS348K, Spring 2025

Effect of feather window size

Seams visible if feather window (transition) is too small
Slide credit: Efros

Stanford CS348K, Spring 2025

What do we want
To avoid seams, transition window should be >= size of largest prominent feature

To avoid ghosting, transition window should be smaller than ~2X smallest prominent
feature

In other words, the largest and smallest features need to be within a factor of two for
feathering to generate good results

Intuition:
- Coarse structure of images (large features) should transition slowly between images
- Fine structure should blend quickly!

Slide credit: Efros, Guerzhoy

Stanford CS348K, Spring 2025

Gaussian pyramid

G0 = image

G1 = down(G0)

G2 = down(G1)

Each image in pyramid contains increasingly low-pass filtered signal
down() = image downsample operation

Stanford CS348K, Spring 2025

Downsample
Step 1: Remove high frequency detail (blur)
Step 2: Sparsely sample pixels (in this example: every other pixel)

Stanford CS348K, Spring 2025

Downsample
Step 1: Remove high frequencies (convolution)
Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];

float weights[] = {1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)
 3/64, 9/64, 9/64, 3/64,
 3/64, 9/64, 9/64, 3/64,
 1/64, 3/64, 3/64, 1/64};

for (int j=0; j<HEIGHT/2; j++) {
 for (int i=0; i<WIDTH/2; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<4; jj++)
 for (int ii=0; ii<4; ii++)
 tmp += input[(2*j+jj)*(WIDTH+2) + (2*i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH/2 + i] = tmp;
 }
}

Stanford CS348K, Spring 2025

Gaussian pyramid

G0

Stanford CS348K, Spring 2025

Gaussian pyramid

G1

Stanford CS348K, Spring 2025

G2

Gaussian pyramid

Stanford CS348K, Spring 2025

Gaussian pyramid

G3

Stanford CS348K, Spring 2025

Gaussian pyramid

G4

Stanford CS348K, Spring 2025

Gaussian pyramid

G5

Stanford CS348K, Spring 2025

Upsample
Via bilinear interpolation of samples from low resolution image

Stanford CS348K, Spring 2025

Upsample
Via bilinear interpolation of samples from low resolution image

float input[WIDTH * HEIGHT];
float output[2*WIDTH * 2*HEIGHT];

for (int j=0; j<2*HEIGHT; j++) {
 for (int i=0; i<2*WIDTH; i++) {
 int row = j/2;
 int col = i/2;
 float w1 = (i%2) ? .75f : .25f;
 float w2 = (j%2) ? .75f : .25f;

 output[j*2*WIDTH + i] = w1 * w2 * input[row*WIDTH + col] +
 (1.0-w1) * w2 * input[row*WIDTH + col+1] +
 w1 * (1-w2) * input[(row+1)*WIDTH + col] +
 (1.0-w1)*(1.0-w2) * input[(row+1)*WIDTH + col+1];
 }
}

Stanford CS348K, Spring 2025

Laplacian pyramid

G0

G1 = down(G0)

L0 = G0 - up(G1)
[Burt and Adelson 83]

Each (increasingly numbered) level in Laplacian pyramid
represents a band of (increasingly lower) frequency
information in the image

Stanford CS348K, Spring 2025

Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

Stanford CS348K, Spring 2025

Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

L2 = G2 - up(G3)

L3 = G3 - up(G4)
L4 = G4

Question: how do you reconstruct original image
from its Laplacian pyramid?

Stanford CS348K, Spring 2025

L0 = G0 - up(G1)

Laplacian pyramid

Stanford CS348K, Spring 2025

L1 = G1 - up(G2)

Laplacian pyramid

Stanford CS348K, Spring 2025

L2 = G2 - up(G3)

Laplacian pyramid

Stanford CS348K, Spring 2025

L3 = G3 - up(G4)

Laplacian pyramid

Stanford CS348K, Spring 2025

L4 = G4 - up(G5)

Laplacian pyramid

Stanford CS348K, Spring 2025

L5 = G5

Laplacian pyramid

Stanford CS348K, Spring 2025

Gaussian/Laplacian pyramid summary
Gaussian and Laplacian pyramids are image representations where each pixel maintains
information about frequency content in a region of the image

Gi(x,y) — frequencies up to limit given by i

Li(x,y) — frequencies added to Gi+1 to get Gi

Notice: to boost the band of frequencies in image around pixel (x,y), increase coefficient
Li(x,y) in Laplacian pyramid

Stanford CS348K, Spring 2025

Use of Laplacian pyramid in local tone mapping
Compute weights for all Laplacian pyramid levels
Merge pyramids (image features) not image pixels
Then “flatten” merged pyramid to get final image

Stanford CS348K, Spring 2025

Merging Laplacian pyramids

Four exposures (weights not shown)

Merged result
(based on multi-resolution pyramid merge)

Merged result
(after blurring weight mask)

Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?

Stanford CS348K, Spring 2025

Summary: simplified image processing pipeline

Correct pixel defects
Align and merge (to create high signal to noise ration RAW image)
Correct for sensor bias (using measurements of optically black pixels)
Vignetting compensation
White balance
Demosaic
Denoise
Gamma Correction (non-linear mapping)
Local tone mapping
Final adjustments sharpen, fix chromatic aberrations,

 hue adjust, etc.

(10-12 bits per pixel)
1 intensity value per pixel
Pixel values linear in energy

3x10 bits per pixel
RGB intensity per pixel
Pixel values linear in energy

3x8-bits per pixel
Pixel values perceptually linear

Stanford CS348K, Spring 2025

Acknowledgements
Thanks and credit for slides to Ren Ng and Marc Levoy

