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Theme of the next two lectures…
The pixels you see on screen are quite different than the values recorded by the sensor in a modern digital camera. 
Computation (computer graphics, image processing, and ML) is a fundamental aspect of producing high-quality 
photographs.

Computation

Sensor 
output 

(“RAW”)

Beautiful image that impresses 
your Instagram friends
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Part 1: image sensing hardware 

(how a digital camera measures light, 
and how physical limitations of these devices place challenges on software)
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Camera cross section

Image credit: Canon (EOS M)

Sensor

Canon 14 MP CMOS Sensor 
(14 bits per pixel)
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Camera cross section

Image credit: https://www.dpreview.com/news/3717128828/the-future-is-bright-technology-trends-in-mobile-photography

Sensor



Stanford CS348K, Spring 2025

The Sensor
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Photoelectric effect

Incident photons

Ejected electrons

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics, and especially for his 
discovery of the law of the photoelectric effect"

Albert Einstein

Slide credit: Ren Ng
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CMOS sensor

Row select 
Register

ADCAmplify
Bits

…

Active pixel sensor 
(2D array of photo-diodes)

“Optically black” region 
(shielded from light)

Exposed region
Photodiode 

(a pixel)

Column select register

CMOS = complementary metal-oxide semiconductor
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CMOS response functions are linear
Photoelectric effect in silicon: 

- Response function from photons to 
electrons is linear 

(Some nonlinearity close to 0 due to noise 
and when close to pixel saturation)

Slide credit: Ren Ng
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Quantum efficiency
Not all photons will produce an electron (depends on quantum efficiency of the device) 

- Human vision:                       ~15%

QE =
# electrons
# photons

Slide credit: Ren Ng

- Typical digital camera:      < 50% 

- Best back-thinned CCD:     > 90% 
(e.g., telescope)
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Sensing Color
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Electromagnetic spectrum
Describes distribution of power (energy/time) by wavelength

Figure credit:

Below: spectrum of various common light sources:
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Example: warm white vs. cool white

Image credit: (Oz Lighting: https://www.ozlighting.com.au/blog/what-is-warm-white-versus-cool-white/)
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Simple model of a light detector

Figure credit:  Steve Marschner
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Spectral response of cone cells in human eye
Three types of cells in eye responsible for color perception: S, M, and L cones (corresponding to peak 
response at short, medium, and long wavelengths) 

Implication: the space of human-perceivable colors is three dimensional 
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Response functions for S, M, and L cones
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Human eye cone cell mosaic

False color image: 
red = L cones 
green = M cones 
blue = R cones

Image Credit: Ramkumar Sabesan Lab
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Color filter array (Bayer mosaic)
Color filter array placed over sensor 
Result: different pixels have different spectral response (each pixel measures red, green, or blue light) 
50% of pixels are green pixels

Traditional Bayer mosaic
(other filter patterns exist: e.g., Sony’s RGBE)

Pixel response curve: Canon 40D/50D

Image credit: 
Wikipedia, Christian Buil (http://www.astrosurf.com/~buil/cameras.htm)

f(�)
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Light incident on camera
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What sensor measures
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What sensor measures 
(zoomed view)

Defective pixel
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CMOS Pixel Structure



Stanford CS348K, Spring 2025

Front-side-illuminated (FSI) CMOS
Building up the CMOS imager layers

Courtesy R. Motta, Pixim
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Pixel pitch: 
A few microns

Photodiodes 
~50% Fill Factor

Courtesy R. Motta, Pixim
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Polysilicon 
& Via 1

Courtesy R. Motta, Pixim
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Metal 1

Courtesy R. Motta, Pixim
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Metal 2

Courtesy R. Motta, Pixim
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Metal 3

Courtesy R. Motta, Pixim
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Metal 4

Courtesy R. Motta, Pixim
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Color filter array

Courtesy R. Motta, Pixim
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Pixel fill factor

Photodiode area Non photosensitive (circuitry)

Fraction of pixel area that integrates incoming light

Slide credit: Ren Ng
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CMOS sensor pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html) 

Color filter attenuates light  

Microlens (a.k.a. lenslet) steers light toward photo-
sensitive region (increases light-gathering capability) 

Advanced question: Microlens also serves to reduce 
aliasing signal. Why?
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Using micro lenses to improve fill factor

Leica M9

Shifted microlenses on M9 sensor.

Slide credit: Ren Ng
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Optical cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng
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Pixel optics for minimizing cross-talk

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html
Slide credit: Ren Ng
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Backside illumination sensor
▪ Traditional CMOS: electronics block light 
▪ Idea: move electronics underneath light gathering region 

- Increases fill factor 
- Reduces cross-talk due since photodiode closer to microns 
- Implication 1: better light sensitivity at fixed sensor size 
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Illustration credit: Sony
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Pixel saturation and noise
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Saturated 
pixels

Photon count for pixels has 
saturated (no detail in image)
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Saturated 
pixels

Photon count for pixels has 
saturated (no detail in image)
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Saturated pixels

Credit: P. Debevec
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Full-well capacity

Graph credit: clarkvision.com

Pixel saturates when photon capacity is exceeded

Saturated pixels
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Bigger sensors = bigger pixels (or more pixels?)
iPhone X (1.2 micron pixels, 12 MP) 

Nikon D7000 (APS-C) 
(4.8 micron pixels, 16 MP) 

Nikon D4 (full frame sensor) 
(7.3 micron pixels, 16 MP) 
Implication: very high pixel count sensors 
can be built with current CMOS technology  

-Full frame sensor with iPhone X pixel 
size ~ 600 MP sensor

24x16mm

36x24mm

Image credit: Wikipedia
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Measurement noise

We’ve all been frustrated by noise in low-light photographs 
(or in shadows in day time images)
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Measurement noise

Grand Teton National Park
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Measurement noise

Grand Teton National Park
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Sources of measurement noise
Photon shot noise: 
- Photon arrival rate takes on Poisson distribution 
- Standard deviation = sqrt(N)      (N = number of photon arrivals) 
- Signal-to-noise ratio (SNR) = N/sqrt(N) 
- Implication: brighter the signal, the higher the SNR 

Dark-shot noise 
- Due to leakage current in sensor 
- Electrons dislodged due to thermal activity (increases exponentially with sensor temperature) 

Non-uniformity of pixel sensitivity (due to manufacturing defects) 
Read noise 
- e.g., due to amplification / ADC
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Dark shot noise / read noise
Black image examples: Nikon D7000, High ISO

1 sec exposure 
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Read noise

Image credit: clarkvision.com

Read noise is largely independent of pixel size 
Large pixels + bright scene = large N  
So, noise determined largely by photon shot noise
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Maximize light gathering capability
Goal: increase signal-to-noise ratio 
- Dynamic range of a pixel (ratio of brightest light measurable to dimmest light measurable) is determined by the 

noise floor (minimum signal) and the pixel’s full-well capacity (maximum signal) 

Use big pixels 
- Nikon D4: 7.3 um 

- iPhone X: 1.2 um  

Manufacture sensitive pixels 
- Good materials 

- High fill factor



Stanford CS348K, Spring 2025

Artifacts arising from lenses
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Vignetting
This is a photograph of a white wall 
(Note: I contrast-enhanced the image to show effect more prominently) 
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Types of vignetting

Image credit: Mark Butterworth

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens 

Pixel vignetting: light reaching pixel at an oblique angle is less 
likely to hit photosensitive region than light incident from straight 
above (e.g., obscured by electronics) 

- Microlens reduces pixel vignetting
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Chromatic aberration

Image credit: Wikipedia

Different wavelengths of light are refracted by different amounts
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More challenges
Chromatic shifts over sensor 
- Pixel light sensitivity changes over sensor due to interaction with microlens 

(Index of refraction depends on wavelength, so some wavelengths are more likely to suffer from cross-talk or reflection. 
Ug!) 

Lens distortion

Pincushion distortion

Captured Image Corrected Image
Image credit: PCWorld
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The message so far
Physical constraints of image formation by a camera create artifacts in 
the recorded image 

We are going to rely on processing to reduce / correct for these artifacts
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A simple RAW image processing pipeline 

Given the physical reality of how a lens+sensor system works, now let’s look at how software 
transforms raw sensor output into a high-quality RGB image.

Adopting terminology from Texas Instruments OMAP Image Signal Processor pipeline 
(since public documentation exists) 

Assume: software pipeline receiving 12 bits/pixel Bayer mosaiced data from sensor 
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Optical clamp: remove sensor offset bias
output_pixel = input_pixel - [average of pixels from optically black region]

Remove bias due to sensor black level 
(from nearby sensor pixels at time of shot)
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Correct for defective pixels 
Store LUT with known defective pixels 
- e.g., determined on manufacturing line, during sensor calibration and test 

Example correction methods 
- Replace defective pixel with neighbor 

- Replace defective pixel with average of neighbors 

- Correct defect by subtracting known bias for the defect  

output_pixel = (isdefectpixel(current_pixel_xy)) ?  
                 average(previous_input_pixel, next_input_pixel) : 
                 input_pixel;
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“Hot pixel” suppression
float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

for (int j=0; j<HEIGHT; j++) { 
   for (int i=0; i<WIDTH; i++) { 
      float min_value = min( min(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]), 
                             min(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) ); 
      float max_value = max( max(input[(j-1)*WIDTH + i], input[(j+1)*WIDTH + i]), 
                             max(input[j*WIDTH + i-1], input[j*WIDTH + i+1]) ); 
      output[j*WIDTH + i] = clamp(min_value, max_value, input[j*WIDTH + i]); 
    } 
}

This filter clamps pixels to the min/max of its cardinal neighbors 
(e.g., hot-pixel suppression — no need for a lookup table) 
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Lens shading compensation
Correct for vignetting artifacts 
- Good implementations will consider wavelength-dependent vignetting 

(that creates chromatic shift over the image)  

Possible implementations: 
- Use “flat-field photo” stored in memory 

- e.g., lower resolution buffer, upsampled on-the-fly 

- Or use analytic function to model required correction   
gain = upsample_compensation_gain_buffer(current_pixel_xy); 
output_pixel = gain * input_pixel; 

Need to invert the 
vignetting effect
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Demosiac
Produce RGB image from mosaiced input image 
Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors) 
More advanced algorithms: 
- Bicubic interpolation (wider filter support region… may overblur) 
- Good implementations attempt to find and preserve edges in photo 

Image credit: Mark Levoy
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Demosaicing errors

What will demosaiced 
result look like if this black 
and white signal was 
captured by the sensor?
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Demosaicing errors

(Visualization of signal and 
Bayer pattern)
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Demosaicing errors

No red measured. 

Interpolation of green 
yields dark/light pattern.  
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Why color fringing? What will demosaiced result 
look like if this black and 
white signal was captured 
by the sensor?
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Why color fringing?

(Visualization of signal 
and Bayer pattern)
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Demosaicing errors
Common difficult case: fine diagonal black and white stripes 
Result: moire pattern color artifacts

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

RAW data 
from sensor

RGB result after 
demosaic
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Y’ = luma: perceived luminance 
Cb = blue-yellow deviation from gray 
Cr = red-cyan deviation from grayY’

Cb

Cr

Image credit: Wikipedia

Conversion matrix from R’G’B’ to Y’CbCr:

“Gamma corrected” RGB 
(primed notation indicates perceptual (non-linear) space) 
We’ll describe what this means this later in the lecture.

Y’CbCr color space
Colors are represented as point in 3-space 
RGB is just one possible basis for representing color 
Y’CbCr separates luminance from hue in representation



Stanford CS348K, Spring 2025

Example: compression in Y’CbCr

Original picture of Kayvon
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Contents of CbCr color channels downsampled by a factor of 20 in each dimension 
(400x reduction in number of samples)

Example: compression in Y’CbCr
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Full resolution sampling of luma (Y’)

Example: compression in Y’CbCr
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Reconstructed result 
(looks pretty good)

Example: compression in Y’CbCr
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Better demosaic
Convert demosaic’ed RGB value to YCbCr 
Low-pass filter (blur) or median filter CbCr channels 
Combine filtered CbCr with full resolution Y from sensor to get RGB 

Trades off spatial resolution of chroma information to avoid objectionable color fringing
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White balance
Adjust relative intensity of rgb values (goal: make neutral tones in scene appear neutral in image) 

The same “white” object will generate different sensor response when illuminated by different spectra.  Camera needs to 
infer what the lighting in the scene was.

output_pixel = white_balance_coeff * input_pixel 
// note: in this example, white_balance_coeff is vec3 
// (adjusts ratio of red-blue-green channels)

Image credit: basedigitalphotography.com
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White balance example
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White balance example
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White balance example



Stanford CS348K, Spring 2025

White balance algorithms
White balance coefficients depend on analysis of image contents 

- Calibration based: get value of pixel of “white” object: (rw, gw, bw) 
- Scale all pixels by (1/rw, 1/gw, 1/bw) 

- Heuristic based: camera must guesse which pixels correspond to white objects in scene  
- Gray world assumption: make average of all pixels in image gray 
- Brightest pixel assumption: find brightest region of image, make it white ([1,1,1])

▪ Modern white-balance algorithms are based on learning 
correct scaling from many “good photograph” examples 
- Create database of images for which good white balance 

settings are known (e.g., manually set by human) 
- Learn mapping from image features to white balance settings 
- When new photo is taken, use learned model to predict good 

white balance settings

Scale r,g,b values so 
these pixels are close 
to (1,1,1)
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Denoising

Denoised

Original



Stanford CS348K, Spring 2025Image credit: https://www.colorexpertsbd.com/blog/how-to-fix-blurry-photos-induced-by-camera-shake-in-photoshop

Low light conditions need long exposure… 
blur due to camera shake
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Low light photo: many regions underexposed 
(short exposure) to avoid blur + some regions 
overexposed 
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Brightened image to see detail in dark regions, 
notice noise in dark regions
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Attempt to denoise… splotchy effect remains
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Long exposure: walking people are blurred…
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Long exposure: walking people are blurred…
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Also: still significant noise in 
dark regions
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Reduce noise via image processing: denoising via downsampling

Downsample via point sampling 

(noise remains)

Downsample via averaging 

Noise reduced 

Like a smaller number of 
bigger pixels!



Stanford CS348K, Spring 2025

Averaging = discrete 2D convolution
(f ⇤ g)(x, y) =

1X

i,j=�1
f(i, j)I(x� i, y � j)

output image 
(the result of convolving f with input image I)

input imagefilter

Consider a                         that is nonzero only when:  (f ⇤ g)(x, y) =
1X

i,j=�1
f(i, j)I(x� i, y � j) �1  i, j  1

Then:
(f ⇤ g)(x, y) =

1X

i,j=�1

f(i, j)I(x� i, y � j)

And we can represent f(i,j) as a 3x3 matrix of values where:

f(i, j) = Fi,j (often called:  “filter weights”, “filter kernel”)
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Simple 3x3 box blur in C code
float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9}; 

for (int j=0; j<HEIGHT; j++) { 
   for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<3; jj++) 
         for (int ii=0; ii<3; ii++) 
            tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 
      output[j*WIDTH + i] = tmp; 
  } 
}

For now: ignore boundary pixels and assume output 
image is smaller than input (makes convolution loop 
bounds much simpler to write) 
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7x7 box blur
Original

Blurred
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Gaussian blur
Obtain filter coefficients from sampling 2D Gaussian

f(i, j) =
1

2⇡�2
e�

i2+j2

2�2

▪ Produces weighted sum of neighboring pixels (contribution falls off with 
distance) 
- In practice: truncate filter beyond certain distance for efficiency

Note: this is a 5x5 truncated Gaussian filter
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7x7 gaussian blur
Original

Blurred
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Median filter

uint8 input[(WIDTH+2) * (HEIGHT+2)]; 
uint8 output[WIDTH * HEIGHT]; 
for (int j=0; j<HEIGHT; j++) { 
   for (int i=0; i<WIDTH; i++) { 
      output[j*WIDTH + i] = 
           // compute median of pixels 
           // in surrounding 5x5 pixel window  
   } 
}

▪ Replace pixel with median of its neighbors 
- Useful noise reduction filter: unlike gaussian blur, one bright pixel 

doesn’t drag up the average for entire region 

▪ Not linear: filter weights are 1 or 0 (depending on image content)

▪ Basic algorithm for NxN support region: 
- Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel 
- Can you think of an O(N2) algorithm? What about O(N)?
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Bilateral filter

Example use of bilateral filter: removing noise while preserving image edges

Original Processed
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Bilateral filter

The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels on the “other side” of strong edges.  f 

(x) defines what “strong edge means” 

Spatial distance weight term f (x) could itself be a gaussian 

- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel 

But weight is combination of spatial distance and input image pixel intensity difference. (non-linear filter: like the 
median filter, the filter’s weights depend on input image content)

Gaussian blur kernel Input image

Re-weight based on difference 
in input image pixel values

For all pixels in support region 
of Gaussian kernel

BF[I](p) =
1

Wp

X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Wp =
X

i,j

f(|I(x� i, y � j)� I(x, y)|)G�(i, j)I(x� i, y � j)

Normalization
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Bilateral filter
Visualization of bilateral filter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with significantly different intensity 
as p contribute little to filtered result (they 
are “on the “other side of the edge”

Input image G(): gaussian about input pixel p

Input pixel p

f(): Influence of support region

G x f: filter weights for pixel p Filtered output image
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Bilateral filter: kernel depends on image content 

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter
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Better denoising idea: merge sequence of captures

Long exposure: reduces noise (acquires more light), but introduces blur (camera shake or scene 
movement) 
Short exposure: sharper image, but lower signal/noise ratio 
Idea: take sequence of short full-resolution exposures, but align images in software, then 
merge them into a single sharp image with high signal to noise ratio

Algorithm used in Google Pixel Phones [Hasinoff 16]
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Google’s align-and-merge algorithm
For each image in burst, align to reference frame (use sharpest photo as reference 
frame) 
-Compute optical flow field aligning image pair 

Simple merge algorithm: warp images according to flow, and sum 
More sophisticated techniques only merge pixels where confidence in alignment is 
high (tolerate noisy reference pixels when alignment fails) 

Image pair

Reference

Frame to align

Visualization of flow

[Image credit: Hasinoff 16] 
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Results of align and merge [Hasinoff 16] 

[Image credit: Hasinoff 16] 

Reference frame Temporal mean of 
images in burst 

(blurry)

Temporal mean 
with alignment

Robust merge with 
alignment

Fu
ll i

m
ag

e
Su

cc
es

sfu
l a

lig
nm

en
t

Al
ig

nm
en

t f
ai

lu
re



Stanford CS348K, Spring 2025

Saturated 
pixels
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Saturated pixels

Credit: P. Debevec
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Global tone mapping
Measured image values (by camera’s sensor): 10-12 bits / pixel, but common image formats are 8-bits/pixel 
How to convert 12 bit number to 8 bit number?

0

255

212

Allow many pixels to “blow 
out” (detail in dark regions)

0

255

212

Allow many pixels to 
clamp to black (detail 

in bright regions)

From the SIGGRAPH’97 Conference Proceedings, August 1997

Figure 6: Sixteen photographs of a church taken at 1-stop increments from 30 sec to sec. The sun is directly behind the rightmost stained
glass window, making it especially bright. The blue borders seen in some of the image margins are induced by the image registration process.
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Figure 7: Recovered response curves for the imaging system used in the church photographs in Fig. 8. (a-c) Response functions for the red,
green, and blue channels, plotted with the underlying data shown as light circles. (d) The response functions for red, green,
and blue plotted on the same axes. Note that while the red and green curves are very consistent, the blue curve rises significantly above the
others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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others for low exposure values. This indicates that dark regions in the images exhibit a slight blue cast. Since this artifact is recovered by the
response curves, it does not affect the relative radiance values.
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High dynamic range image (HDR) 
Detail in dark and light images

Image credit: Wikipedia
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Local tone adjustment

Improve picture’s aesthetics by locally adjusting contrast, 
boosting dark regions, decreasing bright regions 
(no physical basis for this)

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

(a) Input images with corresponding weight maps (b) Fused result

Figure 2. Exposure fusion is guided by weight maps for each input image. A high weight means that
a pixel should appear in the final image. These weights reflect desired image qualities, such as high
contrast and saturation. Image courtesy of Jacques Joffre.

physically-based, we do not need to worry about calibra-
tion of the camera response curve, and keeping track of
each photograph’s exposure time. We can even add a flash
image to the sequence to enrich the result with additional
detail. Our approach merely relies on simple quality mea-
sures, like saturation and contrast, which prove to be very
effective. Also, results can be computed at near-interactive
rates, as our technique mostly relies a pyramidal image de-
composition. On the downside, we cannot extend the dy-
namic range of the original pictures, but instead we directly
produce a well-exposed image for display purposes.

2. Related Work

High dynamic range (HDR) imaging assembles a high
dynamic range image from a set of low dynamic range im-
ages that were acquired with a normal camera [5, 17]. The
camera-specific response curve should be recovered in or-
der to linearize the intensities. This calibration step can be
computed from the input sequence and their exposure set-
tings.

Most display devices have a limited dynamic range and
cannot directly display HDR images. To this end, tone

mapping compresses the dynamic range to fit the dynamic
range of the display device [26]. Many different tone map-
ping operators have been suggested with different advan-
tages and disadvantages. Global operators apply a spa-
tially uniform remapping of intensity to compress the dy-
namic range [7, 14, 24]. Their main advantage is speed,
but sometimes fail to reproduce a pleasing image. Local
tone mapping operators apply a spatially varying remap-
ping [6, 8, 10, 15, 25, 29], i.e., the mapping changes for dif-
ferent regions in the image. This often yields more pleasing
images, even though the result may look unnatural some-
times. The operators employ very different techniques to

compress the dynamic range: from bilateral filtering [8],
which decomposes the image into edge-aware low and high
frequency components, to compression in the gradient do-
main [10]. The following two local operators are related
to our method. Reinhard et al. [25] compute a multi-scale
measure that is related to contrast and rescales the HDR
pixel values accordingly. This is in a way similar to our
measures. However, our measures are solely defined per
pixel. The method by Li et al. [15] uses a pyramidal im-
age decomposition, and attenuate the coefficients at each
level to compress the dynamic range. Our method is also
pyramid-based, but it works on the coefficients of the dif-
ferent exposures instead of those of an in-between HDR
image. Other tone mappers try to mimic the human visual
system, e.g., to simulate temporal adaptation [20]. Instead,
we aim at creating pleasing images and try to reproduce as
much detail and color as possible.

Image fusion techniques have been used for many years.
For example, for depth-of-field enhancement [19, 13], mul-
timodal imaging [4], and video enhancement [23]. We
will use image fusion for creating a high quality image
from bracketed exposures. In the early 90’s, Burt et al. [4]
have already proposed to use image fusion in this context.
However, our method is more flexible by incorporating ad-
justable image measures, such as contrast and saturation.
Goshtasby [11] also proposed a method to blend multiple
exposures, but it cannot deal well with object boundaries. A
more thorough discussion of these techniques is presented
in Sec. 3.3.

Grundland et al. [12] cross-dissolve between two images
using a pyramid decomposition [3]. We use a similar blend-
ing strategy, but employ different quality measures.

We demonstrate that our technique can be used as a sim-
ple way to fuse flash/no-flash images. Previous techniques
for this are much more elaborate [9, 2] and are specifi-

Weights

Combined image 
(unique weights per pixel) 

Image credit: Mertens 2007

Pixel values

Short Exposure Medium Exposure Long Exposure
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Challenge of merging images

Four exposures (weights not shown)

Merged result (based on weight masks) 
Notice heavy “banding” since absolute intensity 

of different exposures is different

Merged result 
(after blurring weight mask) 

Notice “halos” near edges
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Image blending
Consider a simple case where we want to blend two patterns:

Problem: not “smooth”

Slide credit: Efros
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“Feather” the alpha mask
For a “smoother” look…

Iblend = ↵ Ileft + (1� ↵) Iright

<latexit sha1_base64="A/D9080pr+vxY/Nc4+grdPDr/MI="></latexit>

Slide credit: Efros
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Effect of feather window size

“Ghosting” visible if feather window (transition) is too large
Slide credit: Efros
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Effect of feather window size

Seams visible if feather window (transition) is too small
Slide credit: Efros
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What do we want
To avoid seams, transition window should be >= size of largest prominent feature 

To avoid ghosting, transition window should be smaller than ~2X smallest prominent 
feature 

In other words, the largest and smallest features need to be within a factor of two for 
feathering to generate good results 

Intuition: 
- Coarse structure of images (large features) should transition slowly between images 
- Fine structure should blend quickly!

Slide credit: Efros, Guerzhoy
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Gaussian pyramid

G0 = image

G1 = down(G0)

G2 = down(G1)

Each image in pyramid contains increasingly low-pass filtered signal
down() = image downsample operation
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Downsample
Step 1: Remove high frequency detail (blur) 
Step 2: Sparsely sample pixels (in this example: every other pixel)
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Downsample
Step 1: Remove high frequencies (convolution) 
Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH/2 * HEIGHT/2]; 

float weights[] = {1/64, 3/64, 3/64, 1/64,    // 4x4 blur (approx Gaussian)  
                   3/64, 9/64, 9/64, 3/64, 
                   3/64, 9/64, 9/64, 3/64, 
                   1/64, 3/64, 3/64, 1/64}; 

for (int j=0; j<HEIGHT/2; j++) { 
   for (int i=0; i<WIDTH/2; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<4; jj++) 
         for (int ii=0; ii<4; ii++) 
            tmp += input[(2*j+jj)*(WIDTH+2) + (2*i+ii)] * weights[jj*3 + ii]; 
      output[j*WIDTH/2 + i] = tmp; 
  } 
}
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Gaussian pyramid

G0
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Gaussian pyramid

G1
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G2

Gaussian pyramid
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Gaussian pyramid

G3
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Gaussian pyramid

G4
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Gaussian pyramid

G5
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Upsample
Via bilinear interpolation of samples from low resolution image
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Upsample
Via bilinear interpolation of samples from low resolution image

float input[WIDTH * HEIGHT]; 
float output[2*WIDTH * 2*HEIGHT]; 

for (int j=0; j<2*HEIGHT; j++) { 
   for (int i=0; i<2*WIDTH; i++) { 
      int row = j/2; 
      int col = i/2; 
      float w1 = (i%2) ? .75f : .25f; 
      float w2 = (j%2) ? .75f : .25f; 

      output[j*2*WIDTH + i] = w1 * w2 * input[row*WIDTH + col] + 
                              (1.0-w1) * w2 * input[row*WIDTH + col+1] +  
                              w1 * (1-w2) * input[(row+1)*WIDTH + col] +  
                              (1.0-w1)*(1.0-w2) * input[(row+1)*WIDTH + col+1]; 
  } 
}
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Laplacian pyramid

G0

G1 = down(G0)

L0 = G0 - up(G1)
[Burt and Adelson 83]

Each (increasingly numbered) level in Laplacian pyramid 
represents a band of (increasingly lower) frequency 
information in the image
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Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)
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Laplacian pyramid

L0 = G0 - up(G1)

L1 = G1 - up(G2)

L2 = G2 - up(G3)

L3 = G3 - up(G4)
L4 = G4

Question: how do you reconstruct original image 
from its Laplacian pyramid?
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L0 = G0 - up(G1)

Laplacian pyramid
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L1 = G1 - up(G2)

Laplacian pyramid
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L2 = G2 - up(G3)

Laplacian pyramid
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L3 = G3 - up(G4)

Laplacian pyramid
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L4 = G4 - up(G5)

Laplacian pyramid
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L5 = G5

Laplacian pyramid
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Gaussian/Laplacian pyramid summary
Gaussian and Laplacian pyramids are image representations where each pixel maintains 
information about frequency content in a region of the image 

Gi(x,y) — frequencies up to limit given by i 

Li(x,y) — frequencies added to Gi+1 to get Gi 

Notice: to boost the band of frequencies in image around pixel (x,y), increase coefficient 
Li(x,y) in Laplacian pyramid
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Use of Laplacian pyramid in local tone mapping
Compute weights for all Laplacian pyramid levels 
Merge pyramids (image features) not image pixels 
Then “flatten” merged pyramid to get final image
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Merging Laplacian pyramids

Four exposures (weights not shown)

Merged result 
(based on multi-resolution pyramid merge)

Merged result 
(after blurring weight mask) 

Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?
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Summary: simplified image processing pipeline

Correct pixel defects 
Align and merge (to create high signal to noise ration RAW image)  
Correct for sensor bias (using measurements of optically black pixels) 
Vignetting compensation 
White balance  
Demosaic 
Denoise 
Gamma Correction (non-linear mapping) 
Local tone mapping 
Final adjustments sharpen, fix chromatic aberrations, 

       hue adjust, etc.

(10-12 bits per pixel) 
1 intensity value per pixel 
Pixel values linear in energy

3x10 bits per pixel 
RGB intensity per pixel 
Pixel values linear in energy

3x8-bits per pixel 
Pixel values perceptually linear
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