Lecture 2:

A [Simple] Camera Image
Processing Pipeline

Visual Computing Systems
Stanford C5348K, Spring 2025



Theme of the next two lectures...

The pixels you see on screen are quite different than the values recorded by the sensor in a modern digital camera.

Computation (computer graphics, image processing, and ML) is a fundamental aspect of producing high-quality
photographs.

Sensor
output

(“RAW”) : .
—| Computation ——

Beautiful image that impresses
your Instagram friends
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Part 1: image sensing hardware

(how a digital camera measures light,
and how physical limitations of these devices place challenges on software)
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Camera cross section

Sensor
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Canon 14 MP CMOS Sensor
(14 bits per pixel)

Image credit: Canon (EOS M) Stanford (5348K, Spring 2025



Camera cross section

Sensor

Image credit: https://www.dpreview.com/news/3717128828/the-future-is-bright-technology-trends-in-mobile-photography Stanford CS348K. Soring 2025
or , Spring



The Sensor
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Photoelectric effect

Einstein’s Nobel Prize in 1921 “for his services to Theoretical Physics, and especially for his
discovery of the law of the photoelectric effect”

Incident photons / /

(® Ejected electrons

Albert Einstein

Slide credit: Ren Ng Stanford CS348K, Spring 2025



CMOS sensor

Photodiode
(a pixel)

CMOS = complementary metal-oxide semiconductor

“Optically black” region
(shielded from light)

Exposed region

Active pixel sensor

(2D array of photo-diodes)

ADC

Bits
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CMOS response functions are linear

Photoelectric effect in silicon:

- Response function from photons to
electrons is linear

w
-
o

(Some nonlinearity close to 0 due to noise
and when close to pixel saturation)

\®
-
-

Response (1073 Electrons)
o
o

O 20 40 60 80 100

[llumination level (arbitrary)

(Epperson, P.M. et al. Electro-optical characterization
of the Tektronix TK5 ..., Opt Eng., 25, 1987)

Slide credit: Ren Ng Stanford (S348K, Spring 2025



Quantum efficiency

m Not all photons will produce an electron (depends on quantum efficiency of the device)

#electrons
OF = ———
# photons
- Human vision: ~15%

- Typical digital camera: < 50%

- Best back-thinned CCD: > 90%
(e.q., telescope)

Slide credit: Ren Ng Stanford (S348K, Spring 2025



Sensing Color
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Electromagnetic spectrum

Describes distribution of power (energy/time) by wavelength
Below: spectrum of various common light sources:
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Figure credit:
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Example: warm white vs. cool white

Image credit: (0z Lighting: https://www.ozlighting.com.au/blog/what-is-warm-white-versus-cool-white/) Stanford (348K, Spring 2025



Simple model of a light detector

photons

® 9

Figure credit: Steve Marschner
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Spectral response of cone cells in human eye

Three types of cells in eye responsible for color perception: S, M, and L cones (corresponding to peak
response at short, medium, and long wavelengths)

Implication: the space of human-perceivable colors is three dimensional

Response functions for S, M, and L cones
S-Cone M-Cone L-Cone
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False colorimage:
red =L cones
green = M cones
blue =R cones

Image Credit: Ramkumar Sabesan Lab Stanford CS348K, Spring 2025



Color filter array (Bayer mosaic)

m Color filter array placed over sensor
m Result: different pixels have different spectral response (each pixel measures red, green, or blue light)
m 50% of pixels are green pixels

Pixel response curve: Canon 40D/50D

: Canon 50D

— —— : Canon 40D :

i ks .............. oo ........ : } ............ .............. 2

Pixel Quantum Efficiency

o
Y
By
'
-~

T B CE— ............ ool S ............ e _
0.05 ..... /'9. ........... ..... - . N
. ; : : ' \
Y ° A : ‘.-‘-—-‘-'1 - - M— \
D : | | e S B e emen  Br—ga
Traditional Bayer mosaic 4000 4500 5000 5500 5000 5500 7000

Wavelength (A)

(other filter patterns exist: e.g., Sony’s RGBE)

Image credit: f (>‘)
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CMOS Pixel Structure
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Front-side-illuminated (FSI) CMOS

Building up the C(MOS imager layers

Courtesy R. Motta, Pixim Stanford (S348K, Spring 2025



Pixel pitch:
’ A few microns
Photodiodes
~50% Fill Factor \‘

%%

4

Courtesy R. Motta, Pixim Stanford (S348K, Spring 2025



Polysilicon
&\Via1

Courtesy R. Motta, Pixim Stanford (S348K, Spring 2025
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Courtesy R. Motta, Pixim



Metal 2

Courtesy R. Motta, Pixim Stanford (5348K, Spring 2025



Courtesy R. Motta, Pixim Stanford (5348K, Spring 2025



Metal 4

Courtesy R. Motta, Pixim Stanford (S348K, Spring 2025



Color filter array

Courtesy R. Motta, Pixim Stanford (S348K, Spring 2025



Pixel fill factor

Fraction of pixel area that integrates incoming light

LLLLLLLL
LLLLLLLL
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LLLLLLLL

Photodiode area I Non photosensitive (circuitry)

Slide credit: Ren Ng Stanford (S348K, Spring 2025



CMOS sensor pixel

Microlens

Transistor

Red
Color
Filter
- Reset
Amplifier SR Transistor
Transistor——,%n.. S Row
CoBIumn - "4 SgLe:t
us ,

Photodiode

Silicon
Substrate
Potential
2 Well
Figure 3

Color filter attenuates light

Microlens (a.k.a. lenslet) steers light toward photo-
sensitive region (increases light-gathering capability)

Advanced question: Microlens also serves to reduce

aliasing signal. Why?

lllustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)
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Using micro lenses to improve fill factor

MICRO-LENS LAYOUT

1 Fuel diagram
2 Centrrad micro lens n the middle of tha sansor

3 Laterally displaced micro lens at the adge of the senscr

Shifted microlenses on M9 sensor.

Slide credit: Ren Ng

Leica M9

Stanford (5348K, Spring 2025



Optical cross-talk

Sensor architecture
of a standard ‘
CMOS sensor : Lerolon)
ferh lira !
ey | XN\ V) /|
1 Microlens design 2

with normal radms ‘k
2 Relatively large

distance between

color filter and

photodiode

With some CMOS sensors, rays of incoming kght at farge angles of incidence can fail to reach the photodiode of the
corresponding pixel and reach only the adsacent pixel. Or they are shadowed or reflected on the way 10 the pxel with the
effect that the overall amount of kgt receved by the pixels is less than the amount arrhang through the microlenses.

Slide credit: Ren Ng
http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html Stanford CS348K, Spring 2025



Pixel optics for minimizing cross-talk

Slide credit: Ren Ng

Sensor architecture
of the Leica
Max 24 MP sensor

(schematic diagram)

1 Microlens design
with varying radius

2 Relatively short
distance between
color filter and
photodiode

Incoming ight

0

- - - -

- — -

1

Inthe case of the Leica Max 24 MP sonsor, and in contrast to standard CMOS sonsors, even light rays with Lape angles
of incidence, e.g. fromwide-angie lenses o large apertures, are caplured precisely by the photodiodes of the sensor. This
5 enabled by the special microlens desgn and the smalier dstance betwoen the colour filter and photodiode, which allows
more Iight 1o enter the system, and ensures that it falls more drectly on the respective photodiodes.

http://gmpphoto.blogspot.com/2012/09/the-new-leica-max-24mp-cmos-sensor.html

Stanford C5348K, Spring 2025



Backside illumination sensor

® Traditional CMOS: electronics block light
B |dea: move electronics underneath light gathering region
- Increases fill factor
- Reduces cross-talk due since photodiode closer to microns
- Implication 1: better light sensitivity at fixed sensor size
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Incidental lght Incidental light
On-chip le T k. \d@te .
Color f..Q::,, ............................................................. =K e
N |
vetalwiing )0 000 | DO b sureat

Light receiving |
surface —L—D— ................. S —— ront Sld?—

.............................................................

...............................................................

i W Sesssuuns I Ressns: hetal wiring
substrate  [foo o b H L j0 000 000 O

s R e 1 B B b

Front-illuminated structure Back-illuminated structure

lllustration credit: Sony Stanford (S348K, Spring 2025



Pixel saturation and noise

Stanford C5348K, Spring 2025
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Saturated pixels

Credit: P. Debevec



Full-well capacity Saratedpek

Pixel saturates when photon capacity is exceeded Ry, -
110000 — - P
Digital Cameras: Sensor Full Well / X ;O
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Graph credit: clarkvision.com

Pixel Pitch (microns)
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Bigger sensors = bigger pixels (or more pixels?)

m iPhone X (1.2 micron pixels, 12 MP)

m Nikon D7000 (APS-()
(4.8 micron pixels, 16 MP)

m Nikon D4 (full frame sensor)
(7.3 micron pixels, 16 MP)

m Implication: very high pixel count sensors
can be built with current C(M0OS technology

— Full frame sensor with iPhone X pixel

size ~ 600 MP sensor

Image credit: Wikipedia

Crop
CF,_aCCtO" Medium format (Kodak KAF 39000 sensor)
o0 35 mm "full frame a4
. APS-H (Canon) P
o | APS-C (Nikon DX,
if(ssg ] Pentax, Sony)
>hn o APS-C (Canon)
= Foveon (Sigma)

2.70 | - Four Thirds System
3.93 -« ‘ CX (Nikon)
583 |‘ 2/3

<«—12.3" | ‘ ‘
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Measurement noise

We've all been frustrated by noise in low-light photographs

(or in shadows in day time images)

Stanford (5348K, Spring 2025



Measurement noise
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Sources of measurement noise

m Photon shot noise:

- Photon arrival rate takes on Poisson distribution

- Standard deviation =sqrt(N) (N =number of photon arrivals)

- Signal-to-noise ratio (SNR) = N/sqrt(N)

- Implication: brighter the signal, the higher the SNR
m Dark-shot noise

- Due to leakage current in sensor

- Electrons dislodged due to thermal activity (increases exponentially with sensor temperature)
m Non-uniformity of pixel sensitivity (due to manufacturing defects)
m Read noise

- e.g., due to amplification / ADC

Stanford (5348K, Spring 2025



Dark shot noise / read noise

Black image examples: Nikon D7000, High 1S0

1 sec exposure



Read IlOiSe Digital Cameras:

30 Sensor Read Noise
- (electrons)
c
© 25
..3 ¢ Camera CMOS
o ¢ Camera CCD
% 20 ¢ Sensor CMOS o -3170R
» m Sensor CCD
2
= 19
©
§ non ¢
10 @ 2"9@' 72 M ’Canon 10D
Nik D300 ¢
9 . @4 Cangn 350D o ®Nikon D3
@ Canon 7% fanon 40D Canor®oD g ‘é:aa':\()o’:];g Mark |l
Canon & Canon 5D Marklll
0 50D anon, Mark Il
1D IV
0 1 2 3 4 9) 6 4 8 9 10
Read noise is largely independent of pixel size Pixel Pitch (microns)

Large pixels + bright scene = large N
50, noise determined largely by photon shot noise

Image credit: clarkvision.com Stanford (5348K, Spring 2025



Maximize light gathering capability
m Goal: increase signal-to-noise ratio

- Dynamicrange of a pixel (ratio of brightest light measurable to dimmest light measurable) is determined by the
noise floor (minimum signal) and the pixel’s full-well capacity (maximum signal)

m Use big pixels
- Nikon D4:7.3 um

- iPhoneX: 1.2 um

m Manufacture sensitive pixels

- Good materials
- High fill factor

Stanford (5348K, Spring 2025



Artifacts arising from lenses

Stanford C5348K, Spring 2025



Vignetting
This is a photograph of a white wall
(Note: | contrast-enhanced the image to show effect more prominently)

Stanford C5348K, Spring 2025



Types of vignetting

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens

Pixel vignetting: light reaching pixel at an oblique angle is less
likely to hit photosensitive region than light incident from straight
abhove (e.g., obscured by electronics)

— Microlens reduces pixel vignetting

Image credit: Mark Butterworth

Microlens 7-/ ‘ ———
’( Red

Color
Filter

Reset

Amplifier S &7, Transistor
Transistor e Y Wy — 0w
: : : -- elec
c%':’,';""_“:" ' ‘d Bus

Transistor

Silicon
Substrate ——

Potential
. Well
Figure 3
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Chromatic aberration

Different wavelengths of light are refracted by different amounts

7 Chromatic aberration

Image credit: Wikipedia Stanford (5348K, Spring 2025



More challenges

m Chromaticshifts over sensor

- Pixel light sensitivity changes over sensor due to interaction with microlens
(Index of refraction depends on wavelength, so some wavelengths are more likely to suffer from cross-talk or reflection.

Ug!)

m Lensdistortion

Image credit: PCWorld

1

Pincushion distortion

~ 5
2

R -
‘‘‘‘
e

. aptured Image

.......
. -~y

Corrected Image
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The message so far

m Physical constraints of image formation by a camera create artifacts in
the recorded image

m We are going to rely on processing to reduce / correct for these artifacts

Stanford (5348K, Spring 2025



A simple RAW image processing pipeline

Given the physical reality of how a lens+sensor system works, now let’s look at how software
transforms raw sensor output into a high-quality RGB image.

Adopting terminology from Texas Instruments OMAP Image Signal Processor pipeline

(since public documentation exists)

Assume: software pipeline receiving 12 bits/pixel Bayer mosaiced data from sensor

Stanford (5348K, Spring 2025



Optical clamp: remove sensor offset bias

output_pixel = input_pixel - [average of pixels from optically black region]

CCDC_CLAMP [30:28] OBSLEN
CCDC_CLAMP [24:10] OBST

PR R ———

Remove bias due to sensor black level

E CCDC_CLAMP [27:25] OBSLN . .
: (from nearby sensor pixels at time of shot)

‘x CCDC_CLAMP [4:0] OBGAIN
Computed offset used here

Masked pixels

Active pixels

Stanford (5348K, Spring 2025



Correct for defective pixels

m Store LUT with known defective pixels

- e.g., determined on manufacturing line, during sensor calibration and test

m Example correction methods

- Replace defective pixel with neighbor
- Replace defective pixel with average of neighbors

- Correct defect by subtracting known bias for the defect

output_pixel = (isdefectpixel(current_pixel xy)) ?
average(previous_input_pixel, next_input pixel) :
input_pixel;

Stanford (5348K, Spring 2025



“Hot pixel” suppression

float input[ (WIDTH+2) *x (HEIGHT+2)];
float output[WIDTH *x HEIGHT];

for (int j=0; j<HEIGHT; j++) {
for (int 1=0; 1<WIDTH; i++) {
float min_value = min( min(input[(j-1)*WIDTH + il, input[(j+1)*WIDTH + il),
min(input[j*WIDTH + 1-1], input[j*WIDTH + 1+1]) );
float max_value = max( max(input[(j-1)*WIDTH + 1], input[(j+1)*WIDTH + 1]),
max (1nput[j*WIDTH + 1-1], input[j*WIDTH + 1+1]) );
output[j*WIDTH + 1] = clamp(min_value, max_value, input[j*WIDTH + 1]);

This filter clamps pixels to the min/max of its cardinal neighbors
(e.g., hot-pixel suppression — no need for a lookup table)

Stanford (5348K, Spring 2025



Lens shading compensation

m Correct for vignetting artifacts

- Good implementations will consider wavelength-dependent vignetting
Need to invert the

(that creates chromatic shift over the image) vignetting effect

m Possible implementations:
- Use “flat-field photo” stored in memory

- e.g., lower resolution buffer, upsampled on-the-fly

- Or use analytic function to model required correction

gailn = upsample_compensation_gain buffer(current_pixel xy);
output pixel = gain x 1nput_pixel;

Stanford (5348K, Spring 2025



Demosiac

m Produce RGB image from mosaiced input image
m Basicalgorithm: bilinear interpolation of mosaiced values (need 4 neighbors)
m More advanced algorithms:

- Bicubicinterpolation (wider filter support region... may overblur)

- Good implementations attempt to find and preserve edges in photo

Image credit: Mark Levoy Stanford (5348K, Spring 2025



Demosaicing errors

What will demosaiced
result look like if this black

I

captured by the sensor?

Stanford (5348K, Spring 2025



Demosaicing errors

(Visualization of signal and
Bayer pattern)

Stanford C5348K, Spring 2025



Demosaicing errors

No red measured.

Interpolation of green
yields dark/light pattern.

Stanford C5348K, Spring 2025



Why COIOr f"nglng? What will demosaiced result
look like if this black and
. . .'- . white signal was captured

_ by the sensor?
I
r

Stanford (5348K, Spring 2025



Why color fringing?

(Visualization of signal
and Bayer pattern)

Stanford (5348K, Spring 2025



Demosaicing errors

m Common difficult case: fine diagonal black and white stripes
m Result: moire pattern color artifacts

RAW data
from sensor

RGB result after
demosaic

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html Stanford (5348K, Spring 2025



Image credit: Wikipedia

Y'ChCr color space

Colors are represented as point in 3-space
RGB is just one possible basis for representing color
Y'ChCr separates luminance from hue in representation

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Y’ = luma: perceived luminance
Cb = blue-yellow deviation from gray
Cr =red-cyan deviation from gray

“Gamma corrected” RGB

(primed notation indicates perceptual (non-linear) space)

Conversion matrix from R'G'B" to Y'Ch(r:

129.057 - G,

65.738 - R
! D
Y'= 16+ 556
~37.945 - R,
Cg= 128+ 556 —
112.439- R',
Cr= 128+ 556 -

256
74494 - G,

%6
04.154- G}

256

25.064 - B,

256
112.439- B,

256
18.285 - B,

256

/ We'll describe what this means this later in the lecture.

Stanford C5348K, Spring 2025



Example: compression in Y'Ch(Cr

Original picture of Kayvon

Stanford C5348K, Spring 2025



Example: compression in Y'Ch(Cr

Contents of ChCr color channels downsampled by a factor of 20 in each dimension

(400x reduction in number of samples)
Stanford C5348K, Spring 2025



Example: compression in Y'Ch(Cr

Full resolution sampling of luma (Y’)

Stanford (5348K, Spring 2025



Example: compression in Y'Ch(Cr

Reconstructed result
(looks pretty good)

Stanford C5348K, Spring 2025



Better demosaic

m Convert demosaic’ed RGB value to YChCr
m Low-pass filter (blur) or median filter CbCr channels
m Combine filtered CbCr with full resolution Y from sensor to get RGB

m Trades off spatial resolution of chroma information to avoid objectionable color fringing

Stanford (5348K, Spring 2025



White balance

m Adjust relative intensity of rgb values (goal: make neutral tones in scene appear neutral in image)

output_pixel = white _balance_coeff x input_pixel
// note: 1n this example, white balance coeff 1s vec3
// (adjusts ratio of red-blue-green channels)

m The same “white” object will generate different sensor response when illuminated by different spectra. Camera needs to
infer what the lighting in the scene was.

e~

Image credit: basedigitalphotography.com Stanford (S348K, Spring 2025



5,500
+ 10

White balance examg le

4"‘ WStanford (S348K, Spring 2025



3,800
+ 21

White balance example .

ere
.....

S tanford (S348K, Spring 2025



White balance example .

Stanford (S348K, Spring 2025



White balance algorithms

m White balance coefficients depend on analysis of image contents

- Calibration based: get value of pixel of “white” object: (rw, gw, bw)
- Scale all pixels by (1/rw, 1/gw, 1/bw)
- Heuristic based: camera must guesse which pixels correspond to white objects in scene

- Gray world assumption: make average of all pixels in image gray Scale r,g,b values so

- Brightest pixel assumption: find brightest region of image, make it white ([1,1,1]) these pixels are close
to(1,1,1)

B Modern white-balance algorithms are based on learning
correct scaling from many “good photograph” examples

- Create database of images for which good white balance
settings are known (e.g., manually set by human)

- Learn mapping from image features to white balance settings

- When new photo is taken, use learned model to predict good
white balance settings

Stanford (5348K, Spring 2025



Denoising

Denoised

Stanford (5348K, Spring 2025



Low light conditions need long exposure...
blur due to camera shake

Image credit: https://www.colorexpertshd.com/blog/how-to-fix-blurry-photos-induced-by-camera-shake-in-photoshop
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Attempt to denoise... splotchy effect remains
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Reduce noise via image processing: denoising via downsampling
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Downsample via point sampling Downsample via averaging

(noise remains) Noise reduced

Like a smaller number of
bigger pixels!
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Averaging = discrete 2D convolution

T

output image filter input image
(the result of convolving f with input image )

Consider a f(z, 9 ) that is nonzero onlywhen: —1 < 7,9 < 1
Then:

(fxg)(@y)= > [, 5)I(x—iy—j)

iaj =—1
And we can represent f(i,j) as a 3x3 matrix of values where:

f (ia 7 ) — Fi, 7 (often called: “filter weights”, “filter kernel”)

Stanford (5348K, Spring 2025



Simple 3x3 box blur in Ccode

float input[(WIDTH+2) x (HEIGHT+2)];
float output[WIDTH x HEIGHT];

For now: ignore boundary pixels and assume output
image is smaller than input (makes convolution loop
float weights[] = {1./9, 1./9, 1./9, bounds much simpler to write)

1./9, 1./9, 1./9,
1./9, 1./9, 1./9};

for (int j=0; jj<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
float tmp = 0.°T;
for (int jj=0; jj<3; jj++)
for (int 11=0; 1i<3; 1ii++)
tmp += input[(j+jj)*x(WIDTH+2) + (i+ii)] * weights[jjx3 + ii];
output[j*WIDTH + 1] = tmp;

Stanford (5348K, Spring 2025



7x7 hox blur

Original

Stanford C5348K, Spring 2025



Gaussian blur

m Obtain filter coefficients from sampling 2D Gaussian

1 i245°

f(Z7J) — 27_‘_0_26 202

m Produces weighted sum of neighboring pixels (contribution falls off with
distance)

— In practice: truncate filter beyond certain distance for efficiency

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6

4 16 24 16 4
1 4 6 4 1 Note: this is a 5x5 truncated Gaussian filter

256

Stanford (5348K, Spring 2025



7X7 gaussian blur

Original

=l

Blurred
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Median filter

B Replace pixel with median of its neighbors

—  Useful noise reduction filter: unlike gaussian blur, one bright pixel
doesn’t drag up the average for entire region

B Notlinear: filter weights are 1 or 0 (depending on image content)

1pX médian fiﬁer

uint8 input[ (WIDTH+2) x (HEIGHT+2)];
uint8 output[WIDTH *x HEIGHT];
for (int j=0; jJ<HEIGHT; j++) {
for (int 1=0; i<WIDTH; i++) {
output[j*WIDTH + 1] =
// compute median of pixels
// 1n surrounding 5x5 pixel window

3pX médian filter 10px median filter
m  Basicalgorithm for NxN support region:

— Sort N2 elements in support region, then pick median: O(N2log(N2)) work per pixel
— (Can you think of an O(N2) algorithm? What about O(N)?

Stanford (5348K, Spring 2025



Bilateral filter
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Example use of bilateral filter: removing noise while preserving image edges
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Bi Iate I'd I ﬁ Ite I Gaussian blur kernel Input image

N,

Zf Iz —i,y—j) — 1(z,y)])Go(i,j)I(x — i,y — )

W
Normalization / f <

Re-weight based on difference

For all pixels in support region
P PP | in input image pixel values

of Gaussian kernel

Wy = Zf(\l(:v — i,y —4) — I(z,y)])Go (i, j)

m The bilateral filter is an “edge preserving” filter: down-weight contribution of pixels on the “other side” of strong edges. f
(x) defines what “stronqg edge means”

m Spatial distance weight term f(x) could itself be a gaussian

= Orverysimple: f(x) =0 if x > threshold, 1 otherwise

Value of output pixel (x,y) is the weighted sum of all pixels in the support region of a truncated gaussian kernel

But weight is combination of spatial distance and input image pixel intensity difference. (non-linear filter: like the
median filter, the filter’s weights depend on input image content)

Stanford (5348K, Spring 2025



Bilateral filter

m Visualization of bilateral filter

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input pixel p

Input image G(): gaussian about input pixelp  f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002 Stanford CS348K, Spring 2025



Bilateral filter: kernel depends on image content

k B

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. Stanford (S348K, Spring 2025




Better denoising idea: merge sequence of captures

Algorithm used in Google Pixel Phones [Hasinoff 16]
m Long exposure: reduces noise (acquires more light), but introduces blur (camera shake or scene
movement)
m Short exposure: sharper image, but lower signal/noise ratio

m |dea: take sequence of short full-resolution exposures, but align images in software, then
merge them into a single sharp image with high signal to noise ratio

L g T =4
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shutter | "

full-resolution

burst of raw frames .
align & merge
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Google’s align-and-merge algorithm

Image pair

y # W=y

......

For each image in burst, align to reference frame (use sharpest photo as reference
frame)

— Compute optical flow field aligning image pair
Simple merge algorithm: warp images according to flow, and sum

More sophisticated techniques only merge pixels where confidence in alignment is
high (tolerate noisy reference pixels when alignment fails)

Reference

Visualization of flow

Stanford C5348K, Spring 2025

[Image credit: Hasinoff 16]



[Hasinoff 16]

Results of align and merge

Full image

Successful alignment

D
E
X
S
=
< -
: - ‘#”L - : ’ o, gl v
Reference frame Temporal mean of Temporal mean Robust merge with
images in burst with alignment alignment

(blurry)
[Image credit: Hasinoff 16] Stanford (348K, Spring 2025



Saturated
pixels
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Saturated pixels

Credit: P. Debevec



Global tone mapping

m Measured image values (by camera’s sensor): 10-12 bits / pixel, but common image formats are 8-bits/pixel

m How to convert 12 bit number to 8 bit number?

255 4
D
=
(4]
—
3 .
*3' Allow many pixels to “blow
© out” (detail in dark regions)
b J . >
0 input value 512
255 ¢
Allow many pixels to
§ clamp to black (detail
o in bright regions)
S
Q.
=
Q
. >
0 input value 12

Stanford (5348K, Spring 2025
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Local tone adjustment

Short Exposurg -

- MediumjExposure

A

-

B . o
; )

Pixel values

Weights

Improve picture’s aesthetics by locally adjusting contrast,
boosting dark regions, decreasing bright regions

(no physical basis for this)

Combined image
(unique weights per pixel) | o
Image credit: Mertens 2007 Stanford (S348K, Spring 2025




Challenge of merging images

o P 'J.h“‘ e ""”‘

)| -
\

. ",ml "i'i’“‘M
AL
‘. | &y

|’(,‘*}

Merged result (based on weight masks) Merged result
Notice heavy “banding” since absolute intensity (after blgrrmg "’Ne'9ht mask)
of different exposures is different Notice “halos” near edges
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Image blending

Consider a simple case where we want to blend two patterns:

Problem: not “smooth”

Slide credit: Efros Stanford CS348K, Spring 2025



“Feather” the alpha mask

For a “smoother” look...

Slide credit: Efros Stanford (5348K, Spring 2025



Effect of feather window size
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“Ghosting” visible if feather window (transition) is too large

Slide credit: Efros Stanford CS348K, Spring 2025




Effect of feather wmdow size

Seams visible if feather window (transition) is too small

Slide credit: Efros Stanford CS348K, Spring 2025



What do we want

m To avoid seams, transition window should be >= size of largest prominent feature

m To avoid ghosting, transition window should be smaller than ~2X smallest prominent
feature

m Inother words, the largest and smallest features need to be within a factor of two for
feathering to generate good results

m Intuition:
- Coarse structure of images (large features) should transition slowly between images
- Fine structure should blend quickly!

Slide credit: Efros, Guerzhoy Stanford CS348K, Spring 2025



Gaussian pyramid

N\

Go = image
Each image in pyramid contains increasingly low-pass filtered signal

down() = image downsample operation

Stanford C5348K, Spring 2025



Downsample

m Step 1: Remove high frequency detail (blur)
m Step 2: Sparsely sample pixels (in this example: every other pixel)
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Downsample

m Step 1: Remove high frequencies (convolution)
m Step 2: Sparsely sample pixels (in this example: every other pixel)

float input[(WIDTH+2) x (HEIGHT+2)];
float output[WIDTH/2 * HEIGHT/2];

float weights[] = {1/64, 3/64, 3/64, 1/64, // 4x4 blur (approx Gaussian)
3/64, 9/64, 9/64, 3/64,
3/64, 9/64, 9/64, 3/64,
1/64, 3/64, 3/64, 1/64};

for (int j=0; j<HEIGHT/2; j++) {
for (int i=0; i<WIDTH/2; i++) {
float tmp = 0.°;
for (int jj=0; jj<4; jj++)
for (int 11=0; 1i1<4; 1i++)
tmp += input[(2%j+jj)*(WIDTH+2) + (2xi+ii)] * weights[jj*3 + ii];
output[j*WIDTH/2 + 1] = tmp;

Stanford (5348K, Spring 2025



Gaussian pyramid

Stanford C5348K, Spring 2025



Gaussian py
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Gaussian pyramid

Stanford C5348K, Spring 2025



Gaussian pyramid

Stanford C5348K, Spring 2025



Gaussian pyramid

Stanford C5348K, Spring 2025



Gaussian pyramid

Stanford C5348K, Spring 2025



Upsample

Via bilinear interpolation of samples from low resolution image

Stanford C5348K, Spring 2025



Upsample
Via bilinear interpolation of samples from low resolution image

float 1nput[WIDTH * HEIGHT];
float output[2*xWIDTH * 2xHEIGHT];

for (int j=0; j<2xHEIGHT; j++) {
for (int i=0; 1<2*%WIDTH; i++) {
int row = j/2;
int col = 1/2;
float wl = (1%2) ? .75f : .25f;
float w2 = (j%2) ? .75f : .25f;

output[j*2*xWIDTH + 1] = wl % w2 % input[rowxWIDTH + col] +
(1.0-wl) *x w2 *x input[rowxWIDTH + col+l] +
wl *x (1-w2) *x input[(row+1l)*WIDTH + col] +
(1.0-wl)*(1.0-w2) x input[(row+l)*WIDTH + col+l];

Stanford (5348K, Spring 2025



Laplacian pyramid

Each (increasingly numbered) level in Laplacian pyrami
represents a band of (increasingly lower) frequency
information in the image

Lo= Go- up(G1)

[Burt and Adelson 83] Stanford CS348K, Spring 2025



Laplacian pyramid

Stanford (S348K, Spring 2025



Laplacian pyramid

Question: how do you reconstruct original image
from its Laplacian pyramid?

Stanford C5348K, Spring 2025



Laplacian pyramid

Lo= Go- up(G1)

Stanford C5348K, Spring 2025



Laplacian pyramid

L1= G- up(Gy)

Stanford C5348K, Spring 2025



Laplacian pyramid

L, = Gz - up(Gs)

Stanford C5348K, Spring 2025



Laplacian pyramid

Stanford C5348K, Spring 2025



Laplacian pyramid

Ls= G4- up(Gs)

Stanford C5348K, Spring 2025



Laplacian pyramid

Stanford C5348K, Spring 2025



Gaussian/Laplacian pyramid summary

m Gaussian and Laplacian pyramids are image representations where each pixel maintains
information about frequency content in a region of the image

m Gi(x,y) — frequencies up to limit given by /
m Li(x,y) — frequencies added to Gi.1 to get G;

m Notice: to boost the band of frequencies in image around pixel (x,y), increase coefficient
Li(x,y) in Laplacian pyramid

Stanford (5348K, Spring 2025



Use of Laplacian pyramid in local tone mapping

m Compute weights for all Laplacian pyramid levels
m Merge pyramids (image features) not image pixels
m Then“flatten” merged pyramid to get final image

Input Images Image - Laplacian Pyramid Weight Map - Gaussian Pyramid
T ,\ i K

Fused Pyramid Final Image

Stanford C5348K, Spring 2025



Merging Laplacian pyramids

Merged result Merged result

(after blurring weight mask) (based on multi-resolution pyramid merge)
Notice “halos” near edges

Why does merging Laplacian pyramids work better than merging image pixels?

Stanford C5348K, Spring 2025



Summary: simplified image processing pipeline

Correct pixel defects
Align and merge (to create high signal to noise ration RAW image)

Correct for sensor bias (using measurements of optically black pixels)

Vignetting compensation (10-12 bits per pixel)

1 intensity value per pixel
White balance Pixel values linear in energy
Demosaic 3x10 bits per pixel

RGB intensity per pixel

Denoise Pixel values linear in energy

Gamma Correction (non-linear mapping)

Local tone mapping 3x8-bits per pixel

Final adjustments sharpen, fix chromatic aberrations, Pixel values perceptually linear
hue adjust, etc.

Stanford (5348K, Spring 2025
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