
Visual Computing Systems
Stanford CS348K, Spring 2025

Lecture 3:

Finishing up the Camera Pipeline +
Frankencamera Discussion

Stanford CS348K, Spring 2025

Today
Finish up description of algorithms for HDR+ pipeline (using slides from last lecture)

Frankencamera discussion

Modern AI-based camera pipeline features

Stanford CS348K, Spring 2025

Picking up from last time…
Finishing up the HDR+ pipeline

Stanford CS348K, Spring 2025

Frankencamera
(Discussion)

Stanford CS348K, Spring 2025

Choosing the “right” representation for the job
Good representations are productive to use:
- They embody the natural way of thinking about a problem

Good representations enable the system to provide the application developer useful
services:
- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,

type checking)
- Performance optimizations (parallelization, vectorization, use of specialized hardware)
- Implementations of common, difficult-to-implement functionality (texture mapping and

rasterization in 3D graphics, auto-differentiation in ML frameworks)

Stanford CS348K, Spring 2025

Frankencamera: some 2010 context
Cameras were becoming increasingly cheap and ubiquitous
Cameras featured increasing processing capability
Significant graphics research focus on developing techniques for combining multiple
photos to overcome deficiencies of traditional camera systems

Stanford CS348K, Spring 2025

Multi-shot photography example:
high dynamic range (HDR) images

Source photographs: each photograph has different exposure Tone mapped HDR image

Credit: Debevec and Malik

Stanford CS348K, Spring 2025

More multi-shot photography examples

Flash-no-flash photography [Eisemann and Durand]
(use flash image for sharp, colored image, infer room lighting from no-flash image)

“Lucky” imaging

Take several photos in rapid succession:
likely to find one without camera shake

Stanford CS348K, Spring 2025

More multi-shot photography examples
Panorama capture

Stanford CS348K, Spring 2025

Frankencamera: some 2010 context
Cameras were becoming increasingly cheap and ubiquitous
Cameras featured increasing processing capability
Significant graphics research focus on developing techniques for combining multiple photos to
overcome deficiencies of traditional camera systems

Problem: the ability to implement multi-shot techniques on cameras was limited by camera
system programming abstractions
- Programmable interface to camera was very basic

- Echoed physical button interface to a point-and-shoot camera:
- take_photograph(parameters, output_jpg_buffer)

- Result: on most camera implementations, latency between two photos was high, mitigating utility of multi-shot
techniques (large scene movement or camera shake between shots)

Stanford CS348K, Spring 2025

Frankencamera (F-cam) goals
1. Create open, handheld computational camera platform for researchers

2. Define system architecture for computational photography applications
- Motivated by impact of OpenGL on graphics application and graphics hardware development (portable apps despite

highly optimized GPU implementations)
- Motivated by proliferation of smart-phone apps

Nokia N900 Smartphone ImplementationF2 Reference Implementation

[Adams et al. 2010]

Note: Apple was not involved in
Frankencamera’s industrial design. ;-)

Stanford CS348K, Spring 2025

F-cam scope
F-cam provides a set of abstractions that allow for manipulating configurable camera
components
- Timeline-based specification of actions

- Feed-forward system: no feedback loops

F-cam architecture performs image processing, but...
- This functionality as presented by the architecture is not programmable

- Hence, F-cam does not provide an image processing language (it’s like fixed-function OpenGL)

- Other than work performed by the image processing stage, F-cam applications perform their own image processing
(e.g., on smartphone/camera’s CPU or GPU resources)

Stanford CS348K, Spring 2025

Android Camera2 API
Take a look at the documentation of the Android Camera2 API, and you’ll see
influence of F-Cam.

Stanford CS348K, Spring 2025

Modern smartphone cameras perform
advanced image analysis functions

Image analysis examples from prior lectures:
auto white balance, auto exposure, image denoising

Stanford CS348K, Spring 2025

Auto Focus

Stanford CS348K, Spring 2025

Pinhole camera (no lens)

Sensor plane: (X,Y)

Pixel P1

Pixel P2

Pinhole

Scene object 2

Scene object 1

Pinhole

Stanford CS348K, Spring 2025

What does a lens do?

Scene
focal planeCamera’s

field of view

A lens refracts light.

Camera with lens: every pixel accumulates all
rays of light that pass through lens aperture and
refract toward that pixel

In-focus camera: all rays of light from a point in
the scene arrive at a point on sensor plane

Sensor plane: (X,Y)

Pixel P1

Pixel P2

Lens

Scene
object 2

Scene
object 1

Stanford CS348K, Spring 2025

Out of focus camera

Circle of
confusion

Previous sensor
plane location

Out of focus camera: rays of light from one point in
scene do not converge to the same point on the sensor

Sensor plane
(X,Y)

Lens

Scene
object 2

Scene
object 1

Stanford CS348K, Spring 2025

What does a lens do?

Sensor plane: (X,Y)
Pixel P1 Pixel P2

Pinhole

Scene object 2Scene object 1

Recall: pinhole camera you may have made in
science class
(every pixel measures ray of light passing through
pinhole and arriving at pixel)

Pinhole

Stanford CS348K, Spring 2025

Bokeh

Stanford CS348K, Spring 2025

Sharp foreground,
defocused background

Common technique to emphasize
subject in a photo

Stanford CS348K, Spring 2025

Cell phone camera lens(es)
(small aperture)

Stanford CS348K, Spring 2025

Synthetic Depth-of-Field with a Single-Camera Mobile Phone

NEALWADHWA, RAHULGARG, DAVID E. JACOBS, BRYAN E. FELDMAN, NORI KANAZAWA, ROBERT
CARROLL, YAIR MOVSHOVITZ-ATTIAS, JONATHAN T. BARRON, YAEL PRITCH, and MARC LEVOY,
Google Research

(a) Input image with detected face (d) Our output synthetic shallow depth-of-field image

(b) Person segmentation mask

(c) Mask + disparity from DP

Fig. 1. We present a system that uses a person segmentation mask (b) and a noisy depth map computed using the camera’s dual-pixel (DP) auto-focus
hardware (c) to produce a synthetic shallow depth-of-field image (d) with a depth-dependent blur on a mobile phone. Our system is marketed as “Portrait
Mode” on several Google-branded phones.

Shallow depth-of-�eld is commonly used by photographers to isolate a sub-
ject from a distracting background. However, standard cell phone cameras
cannot produce such images optically, as their short focal lengths and small
apertures capture nearly all-in-focus images. We present a system to com-
putationally synthesize shallow depth-of-�eld images with a single mobile
camera and a single button press. If the image is of a person, we use a person
segmentation network to separate the person and their accessories from the
background. If available, we also use dense dual-pixel auto-focus hardware,
e�ectively a 2-sample light �eld with an approximately 1millimeter baseline,
to compute a dense depth map. These two signals are combined and used to
render a defocused image. Our system can process a 5.4 megapixel image in
4 seconds on a mobile phone, is fully automatic, and is robust enough to be
used by non-experts. The modular nature of our system allows it to degrade
naturally in the absence of a dual-pixel sensor or a human subject.

CCS Concepts: • Computing methodologies → Computational pho-
tography; Image processing;

Additional Key Words and Phrases: depth-of-�eld, defocus, stereo, segmen-
tation

Authors’ address: Neal Wadhwa; Rahul Garg; David E. Jacobs; Bryan E. Feldman; Nori
Kanazawa; Robert Carroll; Yair Movshovitz-Attias; Jonathan T. Barron; Yael Pritch;
Marc Levoy Google Research, 1600 Amphitheater Parkway, Mountain View, CA, 94043.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2018 Copyright held by the owner/author(s).
0730-0301/2018/8-ART64
https://doi.org/10.1145/3197517.3201329

ACM Reference Format:
NealWadhwa, Rahul Garg, David E. Jacobs, Bryan E. Feldman, Nori Kanazawa,
Robert Carroll, Yair Movshovitz-Attias, Jonathan T. Barron, Yael Pritch,
and Marc Levoy. 2018. Synthetic Depth-of-Field with a Single-Camera Mo-
bile Phone. ACM Trans. Graph. 37, 4, Article 64 (August 2018), 13 pages.
https://doi.org/10.1145/3197517.3201329

1 INTRODUCTION
Depth-of-�eld is an important aesthetic quality of photographs. It
refers to the range of depths in a scene that are imaged sharply in
focus. This range is determined primarily by the aperture of the
capturing camera’s lens: a wide aperture produces a shallow (small)
depth-of-�eld, while a narrow aperture produces a wide (large)
depth-of-�eld. Professional photographers frequently use depth-of-
�eld as a compositional tool. In portraiture, for instance, a strong
background blur and shallow depth-of-�eld allows the photographer
to isolate a subject from a cluttered, distracting background. The
hardware used by DSLR-style cameras to accomplish this e�ect also
makes these cameras expensive, inconvenient, and often di�cult
to use. Therefore, the compelling images they produce are largely
limited to professionals. Mobile phone cameras are ubiquitous, but
their lenses have apertures too small to produce the same kinds of
images optically.

Recently, mobile phone manufacturers have started computation-
ally producing shallow depth-of-�eld images. The most common
technique is to include two cameras instead of one and to apply
stereo algorithms to captured image pairs to compute a depth map.
One of the images is then blurred according to this depthmap. How-
ever, adding a second camera raises manufacturing costs, increases

ACM Trans. Graph., Vol. 37, No. 4, Article 64. Publication date: August 2018.

ar
X

iv
:1

80
6.

04
17

1v
1

 [c
s.C

V
]

11
 Ju

n
20

18
Portrait mode in modern smartphones

Smart phone cameras have small apertures
- Good: thin, lightweight lenses, often fast focus
- Bad: cannot physically create aesthetically please photographs with nice bokeh, blurred background

Answer: simulate behavior of large aperture lens (hallucinate image formed by large aperture lens)

Input image /w detected face

Segmentation

Scene Depth
Estimate

Generated image
(note blurred background.
Blur increases with depth)

Image credit: [Wadha 2018]

Stanford CS348K, Spring 2025

What part of image should be in focus?

Image credit: DPReview:
https://www.dpreview.com/articles/9174241280/configuring-your-5d-mark-iii-af-for-fast-action

Consider possible heuristics:
Focus on closest scene region
Put center of image in focus
Detect faces and focus on closest/largest face

Stanford CS348K, Spring 2025

Split pixel sensor

Now two pixels under each microlens (not one)

Image credit: Nikon

When both pixels have the same response,
camera is in focus, why?

Stanford CS348K, Spring 2025

Estimating depth
Apple’s TrueDepth camera
(infrared dots projected by phone,
captured by infrared camera)

Multiple RGB cameras

Stanford CS348K, Spring 2025

Additional sensing modalities

iPhone Xr depth estimate
with lights ON in room

iPhone Xr depth estimate
with lights OFF in room

(No help from RGB)

Fuse information from all modalities to obtain best estimate of depth

Image credit: https://blog.halide.cam/iphone-xr-a-deep-dive-into-depth-47d36ae69a81

Stanford CS348K, Spring 2025

Magic eraser
(Feature in recent Google Pixel phones)

Stanford CS348K, Spring 2025

Summary

Stanford CS348K, Spring 2025

Summary

Computation
Sensor output

(“RAW”)

Beautiful image that
impresses your friends

on Instagram

Computation now a fundamental part of producing a pleasing photograph
Used to compensate for physical constraints (demosaic, denoise, lens corrections, portrait mode)
Used to analyze image to estimate system parameters (autofocus, autoexposure, white balance,
depth estimation)
Used to make non-physically plausible images that have aesthetic merit

Stanford CS348K, Spring 2025

Image processing workload characteristics
“Pointwise" operations
- output_pixel = f(input_pixel)

“Stencil” computations (e.g., convolution, demosaic, etc.)
- Output pixel (x,y) depends on fixed-size local region of input around (x,y)
Lookup tables
- e.g., contrast s-curve

Multi-resolution operations (upsampling/downsampling)
Fast-Fourier transforms
- We didn’t talk about Fourier domain techniques in class (but Hasinoff 16 reading has many examples)

Long pipelines of these operations

Next class: efficiently mapping these workloads to modern processors

Stanford CS348K, Spring 2025

Abstractions for authoring image processing pipelines

Stanford CS348K, Spring 2025

Choosing the “right” representation for the job (again)
This was the theme of our Frankencamera discussion

Good representations are productive to use:
- They embody the natural way of thinking about a problem

Good representations enable the system to provide the application developer useful
services:
- Validating/providing certain guarantees (correctness, resource bounds, conversation of quantities,

type checking)
- Performance optimizations (parallelization, vectorization, use of specialized hardware)
- Implementations of common, difficult-to-implement functionality (texture mapping and

rasterization in 3D graphics, auto-differentiation in ML frameworks)

Stanford CS348K, Spring 2025

Consider a single task: sharpen an image
Example: sharpen an image

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5F=

Input Output

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {0., -1., 0.,
 -1., 5, -1.,
 0., -1., 0.};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)]
 * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

Stanford CS348K, Spring 2025

Four different representations of sharpen

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5F=

Image input;
Image output = convolve(input, F);

Image input;
Image output;
output[i][j]
 = F[0][0] * input[i-1][j-1] +
 F[0][1] * input[i-1][j] +
 F[0][2] * input[i-1][j+1] +
 F[1][0] * input[i][j-1] +
 F[1][1] * input[i][j] +
 …

Image input;
Image output = sharpen(input);

1

2

3

4

Stanford CS348K, Spring 2025

Image processing tasks from previous lectures

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

Gx
2 +Gy

2

float f(image input) {
 float min_value = min(min(input[x-1][y], input[x+1][y]),
 min(input[x][y-1], input[x][y+1]));
 float max_value = max(max(input[x-1][y], input[x+1][y]),
 max(input[x][y-1], input[x][y+1]));
output[x][y] = clamp(min_value, max_value, input[x][y]);
output[x][y] = f(input);

Sobel Edge Detection

Local Pixel Clamp

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5F=

3x3 Gaussian blur

Gamma Correction
output[x][y] = pow(input[x][y], 0.5f);

Histogram
bin[input[x][y]]++;

2x2 downsample (via averaging)
output[x][y] = (input[2x][2y] + input[2x+1][2y] +
 input[2x][2y+1] + input[2x+1][2y+1]) / 4.f;

output[x][y] = lookup_table[input[x][y]];
LUT-based correction

Stanford CS348K, Spring 2025

New goals (setting up for next class)
Be expressive: facilitate intuitive expression of a broad class of image processing applications
- e.g., all the components of a modern camera RAW pipeline

Be high performance: want to generate code that efficiently utilizes the multi-core and SIMD
processing resources of modern CPUs and GPUs, and is memory bandwidth efficient

