
Visual Computing Systems
Stanford CS348K, Spring 2025

Lecture 17:

Basic video conf +
Differentiable rendering to reconstruct 3D scenes

Stanford CS348K, Spring 2025

Anticipated project “results” thinking activity

Step 1: In 2-3 sentences… what is your project’s goal, and what is your definition of success? I want
you to be as specific as possible.
- Key phrases for the speaker: “I hope to show that…”, “I hope to make…”
- A key phrase for the listener: “What do you mean by ________? Did you mean ___ or ___?

Stanford CS348K, Spring 2025

Anticipated project “results” thinking activity

Step 2:
What is the primary technical challenge / design challenge / hurdle that you have to overcome or
learn? OR… What is the primary technical question you are trying to answer?

- Phrases for the speaker: The primary challenge of the whole project is _____… The reason
why it’s hard is ______.. The think my partners and I figuring out is _____…

- Phrases for the listener: “What do you mean by ________? Did you mean ___ or ___?

Stanford CS348K, Spring 2025

Project “results” thinking activity

Step 3: To show I was successful I am going to show this result/demo/graph. My prediction is that I
will see this _____________________. But if I see ____________ that’s a sign I was not
successful.
- Listener: do you agree that it would convince you success would be achieved? If not, what would

you prefer to see instead?

Stanford CS348K, Spring 2025

Part I:
Videoconferencing systems

(Very quickly)

Stanford CS348K, Spring 2025

As you can imagine, a lot of interest in video conferencing

Stanford CS348K, Spring 2025

Let’s design a video conferencing system
We want to deliver a visually rich experience similar to features of modern platforms

Stanford CS348K, Spring 2025

Deliver to wide range of clients and network settings

Stanford CS348K, Spring 2025

Let’s design a video conferencing system
Large gallery views: companies raced to provide 7x7 gallery in 2020 *

* it was quickly determined this was not particularly great feature

Stanford CS348K, Spring 2025

Setup…

Cloud

West Coast
Servers

East Coast
Servers

Icon credits: person by mim studio from the Noun Project, avatar by Soremba from the Noun Project

Personal
computer

Consider issues like latency…

Personal
computer

Stanford CS348K, Spring 2025

Q. Should we transcode/process video on our cloud servers?
What are advantages (to users? To the service provider)?
What are disadvantages?

Stanford CS348K, Spring 2025

Implementing gallery view

…

Cloud routes compressed
video bitstreams to users

(Does not manipulate bits)

Receiving client “renders” all streams
into the appropriate display

Clients transmit
individually compressed
bitstreams

Zoom calls this
“multimedia routing”

Stanford CS348K, Spring 2025

One drawback of this design
If each client is providing a single compressed video stream, that means each person on the
video call must receive the same bits right? (What if they are on different network connections?)

Stanford CS348K, Spring 2025

Scalable video codec (SVC)
“Scalable” compressed video bitstream: subsets of the bitstream encode valid video streams for a decoder
- Implication: if packets get lost, the remaining packets form a valid H.264 bitstream, albeit at lower

resolution or quality

SVC is an extension of H.264 standard

Example: temporal scalability

Layer 0: (T0) defines valid video at frame rate R
Layer 1 (T1) defines bumps frame rate to 2R
…

Note that layer 0 information is used to predict higher layer information (see arrows)

Stanford CS348K, Spring 2025

Scalable video codec (SVC) SVC is an extension of H.264 standard

Example: spatial scalability

Layer 0: defines valid video at low resolution (and low frame rate)
Layer 1: provides additional information for higher resolution (and higher frame rate) video

Layer 0:
(Low res)

Layer 1:
(Higher res)

Again, note how layer 0 information is used to predict higher layer information
(Higher efficiency than independently encoding two video streams)

Stanford CS348K, Spring 2025

Scalable video codec (SVC) encoder

Costs: higher encoding/decoding costs
(But possible on modern clients as SVC is supported in hardware)

Stanford CS348K, Spring 2025

Part II:
The value of differentiable rendering

(Applications of reconstructing
3D scene representations from images)

Stanford CS348K, Spring 2025

Last time: rendering volumes

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

Volume density and color at all points in space.
c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

r(t) = o+ t!

<latexit sha1_base64="cMwn0bqImWG/ylQ/hlEPaBXI3M8=">AAACFnicbVDLSgMxFM3UV62vqks3wSJUxDIjFd0IRTcuK9gHtKVk0kwbmpkMyR2hDPMVbvwVNy4UcSvu/BszfYC2Hgice8695N7jhoJrsO1vK7O0vLK6ll3PbWxube/kd/fqWkaKshqVQqqmSzQTPGA14CBYM1SM+K5gDXd4k/qNB6Y0l8E9jELW8Uk/4B6nBIzUzZ+2fQID14tVUoRjfIVntUzwCYZZ1ZY+65Okmy/YJXsMvEicKSmgKard/Fe7J2nkswCoIFq3HDuETkwUcCpYkmtHmoWEDkmftQwNiM90Jx6fleAjo/SwJ5V5AeCx+nsiJr7WI981nemaet5Lxf+8VgTeZSfmQRgBC+jkIy8SGCROM8I9rhgFMTKEUMXNrpgOiCIUTJI5E4Izf/IiqZ+VnHLp/K5cqFxP48iiA3SIishBF6iCblEV1RBFj+gZvaI368l6sd6tj0lrxprO7KM/sD5/AM+bny4=</latexit>

Given “camera ray” from point o in direction w….

And continuous volume with density and directional radiance.

Step through the volume to compute radiance along the ray.

r(t)

Color, opacity of the volume at the current point
(More precisely: radiance along r at point r(s) due to in-scattering or emission)

Attenuation of radiance along r between r(s) and
“camera” due to out scattering or absorbion

r(s)

Stanford CS348K, Spring 2025

Recovering a volume that yields acquired images

Compute radiance along
ray through volume

Compare to
actual image

Idea: find volume parameters (opacity and color at each (i,j,k)
To make C(r) match the corresponding pixel in the photos.

For many rays…. trace through volume… see if the result matches the photo… use
error to update volume’s opacity/color values

Given a set of images of a subject with known camera positions…

Stanford CS348K, Spring 2025

Sparse voxel node representation

Stanford CS348K, Spring 2025

Learning neural radiance fields (NeRF)

Key idea: differentiable volume renderer to compute dC/d(color)d(opacity)

Stanford CS348K, Spring 2025

Great visual results!

Credit: Mildenhall 2023

Stanford CS348K, Spring 2025

Rendering point clouds

Stanford CS348K, Spring 2025

Anti-aliasing point clouds
Treat surface as a collection of “3D Gaussian blobs” (convolve points with Gaussian filter)

3D Gaussians turn into oriented 2D gaussians
when projected onto the 2D screen

Can render the blobs by rasterizing them back
to front (this requires alpha compositing)

[Zwicker 2001]

Stanford CS348K, Spring 2025

Visualization of 3D Gaussians
Visualization of 3D GaussiansRendered Result

[Credit: Kerbl 2023]

Stanford CS348K, Spring 2025

“Gaussing splatting”

[Credit: Kerbl 2023]

Stanford CS348K, Spring 2025

What about more advanced representations?
But in graphics we have much richer
models of the visual world than just
density at a point, or a set of colored
gaussians.

For example, surfaces with complex
material properties.

Parameters describing surfaces
(triangles), lines, curves:

Stanford CS348K, Spring 2025

Example: texture as an efficient way to represent detail
Sample texture map at specified location in texture coordinate space to

determine the surface’s color at the corresponding point on surface.

u

v

Stanford CS348K, Spring 2025

Every point on surface has a corresponding point in
texture space

u

v

(x1, y1, z1, u1=0.4, v1=0.7)

(x2, y2, z2, u2=0.2, v2=0.15)

(0,0)

(1,1)

Visualization of location of triangle vertices
in texture space

Visualization of texture coordinate value on mesh
(texture coordinate = color)

Mesh inputs: for each triangle
- Per-vertex positions in 3D [x,y,z]
- Per-vertex texture coordinates in 2D texture space [u,v]

Stanford CS348K, Spring 2025

A full texture sampling operation to
compute surface color
1. Compute u and v from screen sample x,y (via evaluation of attribute equations)

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from screen-adjacent samples.

3. Compute mip map level d

4. Convert normalized [0,1] texture coordinate (u,v) to texture coordinates U,V in [W,H]

5. Compute required texels in window of filter

6. Load required texels from memory (need eight texels for trilinear)

7. Perform tri-linear interpolation according to (U, V, d)

Takeaway: a texture sampling operation is not just an image pixel lookup! It involves a significant
amount of math. Of which a gradient needs to be computed.

Stanford CS348K, Spring 2025

Neural texture compression
Recall last week: learned compression schemes
Learning parameters of the texture map… but encode as a DNN

Stanford CS348K, Spring 2025

Gradients for textured triangle meshes?
What are the parameters of a mesh? (Vertex positions,
number of vertices, connectivity, etc.)
Computing the gradient of a rendering subject to these
parameters is challenging.
- Consider simple case of fixed vertex count and fixed

topology: the change in rendering output at a single
sample point is discontinuous at object silhouettes as
a function of vertex position changes (might see
object A, then see object B if object A moves!)

- But integral of radiance (aka color) over a pixel (post
resolve output) is not discontinuous… (fraction of
pixel covered)

Stanford CS348K, Spring 2025

Consider rendering two surfaces

This example: green triangle occludes yellow triangle

Stanford CS348K, Spring 2025

Color buffer contents (4 samples per pixel)

Stanford CS348K, Spring 2025

Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples.

Stanford CS348K, Spring 2025

Extracting meshes / materials / texture / lighting

Marching Tetrahedra algorithm to extract mesh

Stanford CS348K, Spring 2025

Example uses of differential rasterizers/ray tracers
Optimize parameters of SVG file
to get a certain look

Optimize “bold” parameter of SVG text to match
image to right…

Optimize curve control points to match images of numbers.

[Li et al. 2020 Differentiable Vector Graphics Rasterization for Editing and Learning]

Stanford CS348K, Spring 2025

Example uses of differential rasterizers/ray tracers
Optimize vertex positions (at fixed vertex count) and also texture map pixels (alpha matte) to make the
best low-poly representation of a mesh (when compared to renderings of a reference high poly mesh)

[Hasselgren et al. 2021 Appearance Driven automatic 3D Model Simplification]

Example alpha
texture for a leaf

Stanford CS348K, Spring 2025

Example uses of differential rasterizers/ray tracers
“caustics” occur when refraction causes light to focus
- Use differential renderer to optimize vertex positions so surface refracts light to make given

image on a receiving plane.

[Nimier-David et al. 2019 - Mitsuba 2: A Retargetable Forward and Inverse Renderer]

Starting result
(flat plane) Final result

Steps of optimization
(Adjust vertex positions of glass plane)

Stanford CS348K, Spring 2025

Takeaways
Diverse set of methods, data structures and functions used to represent scenes
- Significant interest in estimating the parameters of these representations

But now computing gradients is more than just differentiating a fixed-set of PyTorch
primitives
- Differentiating through a user’s custom shader functions in a renderer
- Differentiating through rasterization/ray tracing of complex scenes (such as triangle

meshes)

Need a general purpose language for writing GPU renderer code, and leveraging the
compiler to generate gradients…

