
Visual Computing Systems 
Stanford CS348K, Spring 2025

Lecture 17:

Basic video conf + 
Differentiable rendering to reconstruct 3D scenes
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Anticipated project “results” thinking activity

Step 1: In 2-3 sentences… what is your project’s goal, and what is your definition of success? I want 
you to be as specific as possible. 
- Key phrases for the speaker: “I hope to show that…”, “I hope to make…” 
- A key phrase for the listener: “What do you mean by ________? Did you mean ___ or ___?
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Anticipated project “results” thinking activity

Step 2:  
What is the primary technical challenge / design challenge / hurdle that you have to overcome or 
learn? OR… What is the primary technical question you are trying to answer?   

- Phrases for the speaker: The primary challenge of the whole project is _____… The reason 
why it’s hard is ______.. The think my partners and I figuring out is _____… 

- Phrases for the listener: “What do you mean by ________? Did you mean ___ or ___?
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Project “results” thinking activity

Step 3: To show I was successful I am going to show this result/demo/graph. My prediction is that I 
will see this _____________________.  But if I see ____________ that’s a sign I was not 
successful. 
- Listener: do you agree that it would convince you success would be achieved? If not, what would 

you prefer to see instead? 
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Part I: 
Videoconferencing systems 

(Very quickly)
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As you can imagine, a lot of interest in video conferencing
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Let’s design a video conferencing system
We want to deliver a visually rich experience similar to features of modern platforms



Stanford CS348K, Spring 2025

Deliver to wide range of clients and network settings



Stanford CS348K, Spring 2025

Let’s design a video conferencing system
Large gallery views: companies raced to provide 7x7 gallery in 2020 *

* it was quickly determined this was not particularly great feature
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Setup…

Cloud

West Coast 
Servers

East Coast 
Servers

Icon credits:  person by mim studio from the Noun Project, avatar by Soremba from the Noun Project

Personal 
computer

Consider issues like latency…

Personal 
computer
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Q. Should we transcode/process video on our cloud servers?
What are advantages (to users? To the service provider)? 
What are disadvantages?
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Implementing gallery view

…

Cloud routes compressed 
video bitstreams to users 

(Does not manipulate bits)

Receiving client “renders” all streams 
into the appropriate display

Clients transmit 
individually compressed 
bitstreams

Zoom calls this 
“multimedia routing”
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One drawback of this design
If each client is providing a single compressed video stream, that means each person on the 
video call must receive the same bits right? (What if they are on different network connections?)
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Scalable video codec (SVC)
“Scalable” compressed video bitstream: subsets of the bitstream encode valid video streams for a decoder 
- Implication: if packets get lost, the remaining packets form a valid H.264 bitstream, albeit at lower 

resolution or quality 

SVC is an extension of H.264 standard

Example: temporal scalability 

Layer 0: (T0) defines valid video at frame rate R 
Layer 1 (T1) defines bumps frame rate to 2R 
…

Note that layer 0 information is used to predict higher layer information (see arrows)
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Scalable video codec (SVC) SVC is an extension of H.264 standard

Example: spatial scalability 

Layer 0: defines valid video at low resolution (and low frame rate) 
Layer 1: provides additional information for higher resolution (and higher frame rate) video

Layer 0: 
(Low res)

Layer 1: 
(Higher res)

Again, note how layer 0 information is used to predict higher layer information 
(Higher efficiency than independently encoding two video streams)
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Scalable video codec (SVC) encoder

Costs: higher encoding/decoding costs 
(But possible on modern clients as SVC is supported in hardware) 
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Part II: 
The value of differentiable rendering 

(Applications of reconstructing 
3D scene representations from images)
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Last time: rendering volumes

�(p)

<latexit sha1_base64="pxcJWXi5tbrsuRnU3gqSlICpwzk=">AAAB+3icbVDLSsNAFL3xWesr1qWbwSLUTUmkosuiG5cV7AOaUCbTSTt0JgkzE7GE/oobF4q49Ufc+TdO2iy09cDA4Zx7uWdOkHCmtON8W2vrG5tb26Wd8u7e/sGhfVTpqDiVhLZJzGPZC7CinEW0rZnmtJdIikXAaTeY3OZ+95FKxeLoQU8T6gs8iljICNZGGtgVT7GRwDVPYD2WIktm5wO76tSdOdAqcQtShQKtgf3lDWOSChppwrFSfddJtJ9hqRnhdFb2UkUTTCZ4RPuGRlhQ5Wfz7DN0ZpQhCmNpXqTRXP29kWGh1FQEZjKPqJa9XPzP66c6vPYzFiWpphFZHApTjnSM8iLQkElKNJ8agolkJisiYywx0aausinBXf7yKulc1N1G/fK+UW3eFHWU4AROoQYuXEET7qAFbSDwBM/wCm/WzHqx3q2PxeiaVewcwx9Ynz8IZJRy</latexit>

Volume density and color at all points in space.
c(p,!) = c(x, y, z,�, ✓)

<latexit sha1_base64="j/5vIbUDxLPXyWQTYj4RaG/FI0g=">AAACE3icbVA9SwNBEN2LXzF+RS1tFoMQ5Qh3EtFGCNpYKhgVciHsbSbJkt27Y3dOjEf+g41/xcZCEVsbO/+Nm5jCrwcDj/dmmJkXJlIY9LwPJzc1PTM7l58vLCwuLa8UV9cuTJxqDnUey1hfhcyAFBHUUaCEq0QDU6GEy7B/PPIvr0EbEUfnOEigqVg3Eh3BGVqpVdzh5UAx7GmVJUM3iBV02fYhL9+4A/fWDZKecGmAPUC23SqWvIo3Bv1L/AkpkQlOW8X3oB3zVEGEXDJjGr6XYDNjGgWXMCwEqYGE8T7rQsPSiCkwzWz805BuWaVNO7G2FSEdq98nMqaMGajQdo7uN7+9kfif10ixc9DMRJSkCBH/WtRJJcWYjgKibaGBoxxYwrgW9lbKe0wzjjbGgg3B//3yX3KxW/Grlb2zaql2NIkjTzbIJikTn+yTGjkhp6ROOLkjD+SJPDv3zqPz4rx+teacycw6+QHn7RNGRZ0k</latexit>

r(t) = o+ t!

<latexit sha1_base64="cMwn0bqImWG/ylQ/hlEPaBXI3M8=">AAACFnicbVDLSgMxFM3UV62vqks3wSJUxDIjFd0IRTcuK9gHtKVk0kwbmpkMyR2hDPMVbvwVNy4UcSvu/BszfYC2Hgice8695N7jhoJrsO1vK7O0vLK6ll3PbWxube/kd/fqWkaKshqVQqqmSzQTPGA14CBYM1SM+K5gDXd4k/qNB6Y0l8E9jELW8Uk/4B6nBIzUzZ+2fQID14tVUoRjfIVntUzwCYZZ1ZY+65Okmy/YJXsMvEicKSmgKard/Fe7J2nkswCoIFq3HDuETkwUcCpYkmtHmoWEDkmftQwNiM90Jx6fleAjo/SwJ5V5AeCx+nsiJr7WI981nemaet5Lxf+8VgTeZSfmQRgBC+jkIy8SGCROM8I9rhgFMTKEUMXNrpgOiCIUTJI5E4Izf/IiqZ+VnHLp/K5cqFxP48iiA3SIishBF6iCblEV1RBFj+gZvaI368l6sd6tj0lrxprO7KM/sD5/AM+bny4=</latexit>

Given “camera ray” from point o in direction w….

And continuous volume with density and directional radiance.

Step through the volume to compute radiance along the ray.

r(t)

Color, opacity of the volume at the current point 
(More precisely: radiance along r at point r(s) due to in-scattering or emission) 

Attenuation of radiance along r between r(s) and 
“camera” due to out scattering or absorbion 



r(s)
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Recovering a volume that yields acquired images

Compute radiance along 
ray through volume

Compare to 
actual image

Idea: find volume parameters (opacity and color at each (i,j,k) 
To make C(r) match the corresponding pixel in the photos. 

For many rays…. trace through volume… see if the result matches the photo… use 
error to update volume’s opacity/color values

Given a set of images of a subject with known camera positions…
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Sparse voxel node representation
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Learning neural radiance fields (NeRF)

Key idea: differentiable volume renderer to compute dC/d(color)d(opacity)
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Great visual results!

Credit: Mildenhall 2023
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Rendering point clouds
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Anti-aliasing point clouds
Treat surface as a collection of “3D Gaussian blobs” (convolve points with Gaussian filter)

3D Gaussians turn into oriented 2D gaussians 
when projected onto the 2D screen 

Can render the blobs by rasterizing them back 
to front (this requires alpha compositing)

[Zwicker 2001]
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Visualization of 3D Gaussians
Visualization of 3D GaussiansRendered Result

[Credit: Kerbl 2023]
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“Gaussing splatting”

[Credit: Kerbl 2023]
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What about more advanced representations?
But in graphics we have much richer 
models of the visual world than just 
density at a point, or a set of colored 
gaussians. 

For example, surfaces with complex 
material properties. 

Parameters describing surfaces 
(triangles), lines, curves: 
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Example: texture as an efficient way to represent detail
Sample texture map at specified location in texture coordinate space to 

determine the surface’s color at the corresponding point on surface.

u

v
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Every point on surface has a corresponding point in 
texture space

u

v

(x1, y1, z1, u1=0.4, v1=0.7)

(x2, y2, z2, u2=0.2, v2=0.15)

(0,0)

(1,1)

Visualization of location of triangle vertices 
in texture space

Visualization of texture coordinate value on mesh 
(texture coordinate = color)

Mesh inputs: for each triangle 
- Per-vertex positions in 3D [x,y,z] 
- Per-vertex texture coordinates in 2D texture space [u,v]
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A full texture sampling operation to 
compute surface color
1. Compute u and v from screen sample x,y (via evaluation of attribute equations) 

2. Compute du/dx, du/dy, dv/dx, dv/dy differentials from screen-adjacent samples. 

3. Compute mip map level d 

4. Convert normalized [0,1] texture coordinate (u,v) to texture coordinates U,V in [W,H] 

5. Compute required texels in window of filter 

6. Load required texels from memory (need eight texels for trilinear) 

7. Perform tri-linear interpolation according to (U, V, d)

Takeaway: a texture sampling operation is not just an image pixel lookup!  It involves a significant 
amount of math. Of which a gradient needs to be computed.
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Neural texture compression
Recall last week: learned compression schemes 
Learning parameters of the texture map… but encode as a DNN
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Gradients for textured triangle meshes?
What are the parameters of a mesh? (Vertex positions, 
number of vertices, connectivity,  etc.) 
Computing the gradient of a rendering subject to these 
parameters is challenging. 
- Consider simple case of fixed vertex count and fixed 

topology: the change in rendering output at a single 
sample point is discontinuous at object silhouettes as 
a function of vertex position changes (might see 
object A, then see object B if object A moves!) 

- But integral of radiance (aka color) over a pixel (post 
resolve output) is not discontinuous… (fraction of 
pixel covered)  
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Consider rendering two surfaces

This example: green triangle occludes yellow triangle
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Color buffer contents (4 samples per pixel)
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Final resampled result

Note anti-aliasing of edge due to filtering of green and yellow samples.
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Extracting meshes / materials / texture / lighting

Marching Tetrahedra algorithm to extract mesh
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Example uses of differential rasterizers/ray tracers
Optimize parameters of SVG file 
to get a certain look

Optimize “bold” parameter of SVG text to match 
image to right… 

Optimize curve control points to match images of numbers.

[Li et al. 2020 Differentiable Vector Graphics Rasterization for Editing and Learning]
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Example uses of differential rasterizers/ray tracers
Optimize vertex positions (at fixed vertex count) and also texture map pixels (alpha matte) to make the 
best low-poly representation of a mesh (when compared to renderings of a reference high poly mesh)

[Hasselgren et al. 2021 Appearance Driven automatic 3D Model Simplification]

Example alpha 
texture for a leaf
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Example uses of differential rasterizers/ray tracers
“caustics” occur when refraction causes light to focus  
- Use differential renderer to optimize vertex positions so surface refracts light to make given 

image on a receiving plane.

[Nimier-David et al. 2019 - Mitsuba 2: A Retargetable Forward and Inverse Renderer]

Starting result 
(flat plane) Final result

Steps of optimization 
(Adjust vertex positions of glass plane)
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Takeaways
Diverse set of methods, data structures and functions used to represent scenes 
- Significant interest in estimating the parameters of these representations  

But now computing gradients is more than just differentiating a fixed-set of PyTorch 
primitives 
- Differentiating through a user’s custom shader functions in a renderer 
- Differentiating through rasterization/ray tracing of complex scenes (such as triangle 

meshes) 

Need a general purpose language for writing GPU renderer code, and leveraging the 
compiler to generate gradients…


