Lecture 11:

High-Throughput World Simulation
for Agent Training

Visual Computing Systems
Stanford C5348K, Spring 2025



Tons of engineering knowledge and effort needed to build
new GPU-accelerated batch simulator from scratch!

Task Knowledge

GPU Programming Skill

SM-0

SM-1

SM-(N-1)

Global Memory (DRAM, 40 GB in A1

00)

Engineering Time




Running example: Simulating OpenAl's
3D "Hide and Seek" learning environment













Parallel Systems Programming
Requirements
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1. Nested Parallelism: Task logic for each object in each world
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2. Irregular Nested Parallelism & Irregular Collection Sizes:
Worlds with varying numbers of objects
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3. Dynamic GPU-controlled memory allocation & parallelism:
Physics contacts, sparse events
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4. Complex Spatial Joins: Ray casting, 3D collisions




Usability: Easy scripting of task-specific logic

def process_action(agent_position, action):
if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:
hit_obj = raycastForward(agent_position)
iIf hit_ob;:
lockObject(hit_obj)



Usability: Easy scripting of task-specific logic
def process_action(agent_position, action):
if action.type == MOVE_CHARACTER:
force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:
hit_obj = raycastForward(agent_position)
iIf hit_ob;:
lockObject(hit_obj)

5. Implicit Parallelism: Logic written in terms of 1 environment,
automatically batched : ErpaaEaa
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Usability: Easy scripting of task-specific logic

def process_action(agent_position, action):
if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:
hit_obj = raycastForward(agent_position)
iIf hit_ob;:
lockObject(hit_obj)

6. Convenience of standard SPMD control flow
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Madrona research project claim.

We need to create a 'game engine’ for building
patch simulators that meets these requirements!

Nested Parallelism

Irregular Parallelism & Collection Sizes
Dynamic GPU-Controlled Allocation
Complex Spatial Joins

Implicit Parallelism

SPMD-Style Control Flow

A L i i e




What About Using Existing Systems /
Frameworks to Help to Build Complex
Batch Simulators?




Lowest-level option: Where does CUDA C++ fall short
for our needs?

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)

{

int 1 = threadIdx.x;
Cl[i] = Al[i] + B[i];
h

int main()

{

// Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);



Writing a batch simulator in raw CUDA requires
custom parallel memory management & scheduling

CUDA C++

SPMD-style control flow v



Higher-level GPU kernel languages:
friendlier syntax, but same abstraction as CUDA C++

NVIDIA Warp 9 Numba

import warp as wp

@wp .kernel

def integrate(p: wp.array(dtype=wp.vec3),
v: wp.array(dtype=wp.vec3),
f: wp.array(dtype=wp.vec3),
m: wp.array(dtype=float)):

# thread id
tid = wp.tid()

# Semi-implicit Euler step
vitid] = v[tid] + (f[tid] * m[tid] + wp.vec3(©0.0, -9.8, 0.0)) * dt
x[tid] = x[tid] + v[tid] * dt

# kernel launch
wp.launch(integrate, dim=1024, inputs=[x, v, f, ..], device="cuda:0")



Array-based programming: Describe simulation in
terms of bulk operations on fixed-size tensors
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Array-based programming: Variable environment
structures, procedural generation are challenging

OPyTorch a4l

-y ww

Nested Parallelism v v

Irregular Parallelism & Collection Sizes .~ X
Dynamic GPU-Controlled Allocation X X
Complex Spatial Joins x X
implicit Parallelism . v

................................................................................................................................................................................................................................................................................................................................................................................................................................................

SPMD-style control flow X X



What about building batch simulators by reusing
existing GPU simulation libraries?

; NVIDIA Isaac Sim 5o
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NVIDIA.

PHYSX
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Existing GPU simulation libraries (PhysX) are
designed to accelerate a CPU-controlled simulation

GPU PhysX
Nested Parallelism
Imegular Parallelism & Collection Sizes o~
Dynamic GPU-Controlled Allocation X
ComplexSpatial Joins

............................................................................................................................................................................................................................................................................................................................................................................................................................

SPMD-style control flow



Existing Systems Do Not Meet the Requirements!

PyTorch ~ JAX  CUDAC++ Warp/NUMBA  GPU PhysX

.........................................................................................................................................................................................................................................................................................................................................................................................................................................

.........................................................................................................................................................................................................................................................................................................................................................................................................................................

Irregular Parallelism &
Collection Sizes X X

.........................................................................................................................................................................................................................................................................................................................................................................................................................................

Dynamic GPU-Controlled
Allocation
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SPMD-style control flow



Madrona simulation engine project

e .‘Q' Q)
m Madrona engine project (Stanford project) H

m Aframework for building GPU batch simulators using entity component system (ECS)
design patterns

Stanford C5348K, Spring 2025



|dea #1

m The well-known Entity Components System* design pattern is a good solution for
structuring data and communication in a batch simulator

ECS for Unity [ f;‘

ECS (Entity Component System) is a data-oriented frame-\ydrk compatible with GameObjects. It
scales processing performance, enabling experienced creators to build more ambitious games

with an unprecedented level of control and determinism.

GET ECS FOR UNITY =

Stanford C5348K, Spring 2025



Tutorial:
Entity Component System (ECS)
Design Patterns on the GPU
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Concept 2: Components (ECS)

Pos Bbox P l ’
Act1on
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Concept 2: Components (ECS)

Agents Obstacles

Pos Bbox | Action EnvID Pos Bbox

[@,@,05] {M'il‘l... LEFT ¢ o0 [@05,@,05] {m-in’°'

[2,1,0] | {min... FWD : y [0,1,3] | {min...

[105,0,1] {m'in... FWD ° ¢ [1,1,2] {m.inooo




Batch simulation ECS: Store data across all
environments in unified tables in GPU memory

Agents Obstacles

Pos Bbox | Action| Reward EnvID Pos Bbox

[@,0,05] {m-inooo LEFT ¢ e [605,@,.5] {m-inooo

[2,1,0] {m'in... FWD 0 cee [@,1,3] {m.in°°'

[105,@,1] {m'in... FWD o c e [1,1,2] {m-inooo

[1.5,0.5,1]

[_@05,0,@]

[1.5,0,2.5]

[2.5,0.5,2]

[1.5,0.5,2]




Unified table storage also enables throughput-
oriented dynamic memory allocation

Agents Obstacles

Pos Bbox | Action| Reward EnvID Pos Bbox

[@,0,05] {m-inooo LEFT ¢ e [605,@,.5] {m-inooo

[2,1,@] {m'in... FWD 0 cee [@,1,3] {m-in°°'

{min...

[1.5,0.5,1]
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Concept 3: Systems (ECS)

Agents

Pos Bbox

Action | Reward

[0,0,.5] [ {min...

LEFT

~ o N
ProcessActions

Pos, Action

o J

Obstacles

EnvID Pos

Bbox

[0.5,0,.5]

{min...
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ComputeRewards
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Concept 3: Systems (ECS)
Agents

Pos Bbox

Action | Reward

[0,0,.5] [ {min...

LEFT

~ o ™
ProcessActions

Pos, Action

\_ o

Obstacles

EnvID Pos

Bbox

[0.5,0,.5]

{min...
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Collisions
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Systems written as straight-line, per-entity logic

def process_action(agent_position, action):

Age N t S if action.type == MOVE:
Id | EnvID Pos Bbox | Action | Reward force = computeMovementForce(action.dir)
12 0 10,0,.5] | {min... LEET 0.1 if action.type == LOCK:

hit_obj = raycastForward(agent_position)
: FWD -
32 1 [2,1,0] {min... 0.1 f hit_obj:
51 2 [1.5,0,1] | {min... FWD 2.5 lockODbject(hit_obj)
22 2 [205,@,105] {M'in... RIGHT 101
- .
ProcessActions

Pos, Action

o /




each table row

Agents

Id | EnvID Pos Bbox | Action | Reward
GPU Threa> 0 [0,0,.5] {min... LEFT 0.1
GPU Thread 1 [2,1,0] | {min... FWD -0.1
GPU Thread 2 [1.5,0,1] | {min... FWD 2.5

GPU Thread 2 [2.5,0,1,5] | {min... | RIGHT 1.1

A\ 4

S I S s S E—

~ o ™
ProcessActions

Pos, Action

o /

Parallel GPU threads execute system logic over

def process_action(agent_position, action):
if action.type == MOVE:

force = computeMovementForce(action.dir)
if action.type == LOCK:
hit_obj = raycastForward(agent_position)
if hit_obj:
lockObiject(hit_obj)



ECS systems combined into task graph and
executed in parallel on the GPU

|

[ GenerateEnv J [ VelSolve ]L——
[ProcessActionsJ [ PosSolve ]

v {

{ BVHRef1t ] [ NarrowPhase ]

v i

[ FindOverlaps J [

| 1

Integrate }<#;

Y

[ BVHRef1it

Y%

[ CheckVisible J

Vv

[ Observations ]L__

\

[>[ MaskOutput J

V
[ComputeRewardsJ

|




Scheduling batch of worlds onto GPU
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What about spatial queries?

def process_action(agent_position, action):
if action.type == MOVE:

force = computeMovementForce(action.dir)
if action.type == LOCK:
hit_obj = raycastForward(agent_position)
if hit_obj:
lockODbject(hit_obj)

Agents

Pos

Bbox

Action

Reward

[0,0,.5]

[1.5,0,1]

{min...

LEFT

0.1

[2.5,0,1.5]




Madrona standard library provides high-performance
per-world 3D acceleration structure (BVH) as an index
to make queries fast

World 1 BVH World 2 BVH World N BVH

v N v N




BVH Standard Library Calls Allow ECS Systems to
Make Spatial Queries

|

[ GenerateEnv J [ VelSolve

def find_overlaps(world, my_id, position, bbox):
for bvh_node in world.bvh.find_overlapping(bbox)

@ ﬁ vxiorld .createEntity(CollisionPairny_id, bvh_node.id))
[ProcessActions} [ PosSolve
[ BVHRefit ]

World BVH

Il

[ Findozerlaps J

[

Integrate

i




Madrona needs a straightforward imperative language for
authoring ECS systems

def process_action(world, void process_action(World &world,

- Position &position,
agent_position, AgentAction &action) {

| action): if (action.type == MOVE) {
iIf action.type == MOVE: v 3
ector3 force =
force = computeMovementForce(action.dir)

if action.type == LOCK:

computeMovementForce(action.dir);

}
hit_obj = if (action.type == LOCK) {
raycastForward(world, agent_position) Entity hit_obj =
iIf hit_obj: raycastForward(world, agent_position);
lockObiject(hit_obj) f (hit_obj) {
lockObject(hit_obj);
}
}



Madrona Framework Summary

ECS Storage

Agents
Id | EnvID Pos Bbox |Action | Reward
12 0 [0,0,.5] | {min... | LEFT 0.1
32 1 [2,1,0] {min... FWD -0.1
51 2 [1.5,0,1] | {min... FWD 2.5
22 2 [2.5,0,1.5] | {min... RIGHT 1.1

Parallel ECS
Scheduler for GPU
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| Ge v | [ velsotve |
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@ ﬁ

[ BVHRef1it ] [ NarrowP ]
v ﬁ

[F ndOverlaps ] [ Integrate ]
| i

H

ﬁ

BVHRef1it

[Ch ckVisible M
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MaskOutput
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Summary: Madrona meets core requirements for
building wide range of batch simulators

Madrona

Irregularly Sized Collections v
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Multi-World ECS Tables
Dynamic GPU-Controlled Allocation v
Irregular Nested Parallelism v
''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' ECS Systems&
Dynamic GPU-Controlled Parallelism

____________________________________________________________________________________________________________________________________________________________________________________________ ParallelGPUTaskGraphScheduImg‘/
Implicit Parallelism v
Complex Spatial Joins v

SPMD-Style Control Flow Programmlng Language (CUDA C'H') V/



Case Studies:
(Not in the paper)

Fnd-To-End Reinforcement Learning
Experiments Using Madrona



Case Study Questions:

1. Can ML researchers / engineers actually use the system?

2. |Is Madrona helpful for speeding up end-to-end training loops, not
just simulation speed?

3. What are the implications & use cases for very large simulation
batches in end-to-end training?

4. Are agents trained in Madrona useful beyond Madrona (Sim-to-
Sim, Sim-to-Real)?



Case Studies Overview
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Autonomous vehicle Human-compatible Assessing 3D
planning & coordination cooperative agents

Pixels to actions Learning competitive
training with Mujoco MJX strategies in 6v6 video game



GPUDrive: Multi-Agent High-Level
Autonomous Driving Batch Simulator

GPUDrive: Data-Driven, Multi-Agent Driving Simulation at T Million FPS

Saman Kazemkhani, Aarav Pandya, Daphne Cornelisse,
Brennan Shacklett, Eugene Vinitsky

CLR 2025



Irregular parallelism: Waymo Open Dataset contains
wide range of agents counts per scene

120 —

Mean

# of Scenes 60 -

0— | | |
20 40 60

# of Agents

Kazemkhani et al, ICLR 2025



Overallocation in JAX-based Baseline (Waymax)
Severely Limits Peak Parallelism Relative to GPUDrive

107 -
2.3M
2 106-
= O :
3 7
£
g @ —o— \Waymax
_g = 10° - GPUDrive
o _ ® 65K
- é ‘/
< ) “
0/
104—_ ./
16 worlds
] | | T ] | | T ] | | 1 ]
100 101 102 103

Kazemkhani et al, ICLR 2025 Simulation Batch Size



GPUDrive training reaches >95% Success in
<5 minutes, vs >10 hours with CPU baseline

100%— 100% —

e //\f“’

200x End-to-End Speedup

50% —

Goal Reaching Success Rate

— - 4
Nocturne (CPU) —— Nocturne (CPU)
GPUDrive (Madrona) GPUDrive (Madrona)
0% | | | | 0% — | — | — | —
10000 20000 102 108 104 105
Wall Clock Time Wall Clock Time

Kazemkhani et al, ICLR 2025 (seconds) (log scale)



Learning Human-Compatible Agents in Overcooked-Al

Diverse Convent
Bidipta Sarkar, Andy S
NeurlPS 2023

Nih, Dorsa Sac

ions for Human-Al Collaboration

Igh



Batch simulator throughput scales with number of
parallel environments

42M =

21TM =

Throughput
(Environment Steps Per Second)

100 AK 256K
Simulation Batch Size

Sarkar et al, NeurlPS 2023



Training sample efficiency hits diminishing returns far
below peak simulation throughput

42M =

21TM =

Peak RL Sample Efficiency

Throughput
(Environment Steps Per Second)

100 AK 256K
Simulation Batch Size

Sarkar et al, NeurlPS 2023



ldea: Use extra simulation throughput to train robust
agents that can cooperate with other policies

- Standard Self Play

| | |
2 3 4

Algorithm

Average Dishes Served
Sarkar et al, NeurlPS 2023



Learning Large Population of Agents with Varying Skill
Levels to Assess Difficulty in Obstacle Course Games

Modeling Human Limitations in RL Agents For

Difficulty Assessment in Obstacle Course Games

Zander Majercik, Sharon Zhang, Will Wang, Brennan Shacklett,
Maneesh Agrawala, Kayvon Fatahalian

Jnder Submission SIGGRAPH 2025



26 years of game-play experience in 13 hours allows
training many agents with wide range of skill levels

10% Sticky Actions 25% Sticky Actions

50% Sticky Actions

) ..--‘

10% Random Actions 25% Random Actions 50% Random Actions

H Il W ‘ B B W - A I

Majercik et al, Under submission



Lightweight policy network + optimized PPO
implementation: Simulator still dominant cost

Batch Simulation

1.2M FPS end-to-end
training speed
(RTX 4090)

12.5% Policy Inference

. Policy Optimization




Sim-to-Sim: Policies trained in Madrona can transfer
directly to unseen obstacles in Roblox

Maiercik et al.



Integrating Madrona Batch Renderer with Mujoco MJX

World States

—

Observations

Policy

Inference
(DNN forward pass)

Agent Actions

Policy
Optimization

(DNN forward & backward)

\_

J

Policy
Weights



Simple sim-to-real transfer with domain randomization
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Learning competitive strategies in 6 vs 6 video game

Controls

0 Current World ID
* Control Current View
ree Camera ¥ Current View
ree Camera ¥ Input Control
imulation Settings

5 Tick Rate (Hz)

ree Camera Config

Top Left Right Bottom
Perspective Orthographic Projection

60 I;::L- “.'

(. /
s

»

¥ Controls

0 Current World ID
+" Control Current View
Free Camera ¥ Current View
Free Camera ¥ Input Control
Simulation Settings

30 Tick Rate (Hz)
Free Camera Config

Top Left Right Bottom
Perspective Orthographic Projection
60 FOV




12 independently controlled agents makes policy
inference & optimization majority of end-to-end time

‘ - Batch Simulation
\ 34% Policy Inference

Policy Optimization




Population-based training: multiple policy DNNs
learning & competing simultaneously on one GPU

* Training with population of 16 DNNs

 JAX-based training codebase supports
training multiple policies on single GPU

- Training opponents chosen dynamically
based on skill level




Tonight’s reading topic:
An alternative approach to simulating worlds:
Generative Al as a means to generate
world simulation output



-! |mage tran

Ours

Stanford C5348K, Spring 2025
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Genie

m Keyidea: learn a world simulator from videos of video game play

- Fromvideo, learn latent user actions, and dynamics model that steps work given (current state, action)

Video

tokenizer

(

\_

model

\

Latent action

—

_/

Latent actions @

Video tokens 2

- Then at “test time” given a novel world state (perhaps one generated from a prompt), and given user input,
time step the novel world forward in time

Text-to-
Image

Hand-drawn
sketch

l Prompt I

.'. o '_.. '_- -........ p—
N .
)

s P = ,0'.

Ploy: M8 {a, B, X, ¥}

Stanford C5348K, Spring 2025



Other recent world model examples

Oasis Diamond

*All videos generated with a human playing in DIAMOND's diffusion world model*

-

T Y N Y YN SRANASS
~ LI L LWL W

jump under bridge

Stanford C5348K, Spring 2025



Next class we'll have a “debate”

m After reading the required reading and skimming through suggested readings for
lectures 11 and 12, | want you to make a bet:

m Ifin 10 years you were to bet on a simulator implementation approach for producing the

virtual environments for agent training, do you think that implementation will look more
like:

- Game engines today, where aspects of the world situation (physics/rendering/
programmable logic) continue to me explicitly modeled

- Emerging “world models” where a learned network is responsible for producing the
next state of the world given the agent’s agent.

Stanford C5348K, Spring 2025



