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Lecture 11:

High-Throughput World Simulation 
for Agent Training



Tons of engineering knowledge and effort needed to build 
new GPU-accelerated batch simulator from scratch!

(c) Unity

Task Knowledge GPU Programming Skill

+

Engineering Time

+



Running example: Simulating OpenAI's 
3D "Hide and Seek" learning environment 









Parallel Systems Programming 
Requirements



1. Nested Parallelism: Task logic for each object in each world



2. Irregular Nested Parallelism & Irregular Collection Sizes: 
Worlds with varying numbers of objects 



3. Dynamic GPU-controlled memory allocation & parallelism: 
Physics contacts, sparse events



4. Complex Spatial Joins: Ray casting, 3D collisions



Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
  if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
  lockObject(hit_obj)

 ...



Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
  if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
  lockObject(hit_obj)

 ...

5. Implicit Parallelism: Logic written in terms of 1 environment, 
automatically batched



Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
  if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
  lockObject(hit_obj)

 ...

6. Convenience of standard SPMD control flow 



Madrona research project claim: 
We need to create a "game engine" for building 

batch simulators that meets these requirements!

1. Nested Parallelism 
2. Irregular Parallelism & Collection Sizes 
3. Dynamic GPU-Controlled Allocation 
4. Complex Spatial Joins 
5. Implicit Parallelism 
6. SPMD-Style Control Flow



What About Using Existing Systems / 
Frameworks to Help to Build Complex 

Batch Simulators?



Lowest-level option: Where does CUDA C++ fall short 
for our needs?



Writing a batch simulator in raw CUDA requires 
custom parallel memory management & scheduling

CUDA C++

Nested Parallelism ✓
Irregular Parallelism & Collection Sizes X
Dynamic GPU-Controlled Allocation X
Complex Spatial Joins X
Implicit Parallelism X
SPMD-style control flow ✓



Higher-level GPU kernel languages: 
friendlier syntax, but same abstraction as CUDA C++



Array-based programming: Describe simulation in 
terms of bulk operations on fixed-size tensors

Mujoco MJX Craftax

Matthews et al, ICML 2024 Zakka et al, 2025 



Array-based programming: Variable environment 
structures, procedural generation are challenging

Nested Parallelism ✓ ✓
Irregular Parallelism & Collection Sizes ~ X
Dynamic GPU-Controlled Allocation X X
Complex Spatial Joins X X
Implicit Parallelism ~ ✓
SPMD-style control flow X X



What about building batch simulators by reusing 
existing GPU simulation libraries?

NVIDIA Isaac Sim

Makoviychuk et al, NeurIPS 2021 

Gu et al, ICLR  2023 



Existing GPU simulation libraries (PhysX) are 
designed to accelerate a CPU-controlled simulation

GPU PhysX

Nested Parallelism ✓
Irregular Parallelism & Collection Sizes ~
Dynamic GPU-Controlled Allocation X
Complex Spatial Joins ✓
Implicit Parallelism X
SPMD-style control flow X



Existing Systems Do Not Meet the Requirements!

PyTorch JAX CUDA C++ Warp / NUMBA GPU PhysX

Nested Parallelism ✓ ✓ ✓ ✓ ✓
Irregular Parallelism & 
Collection Sizes ~ X X X ~
Dynamic GPU-Controlled 
Allocation X X X X X
Complex Spatial Joins X X X X ✓
Implicit Parallelism ~ ✓ X X X
SPMD-style control flow X X ✓ ✓ X
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Madrona simulation engine project

Madrona engine project (Stanford project) 

A framework for building GPU batch simulators using entity component system (ECS) 
design patterns



Stanford CS348K, Spring 2025

Idea #1
The well-known Entity Components System* design pattern is a good solution for 
structuring data and communication in a batch simulator



Tutorial: 
Entity Component System (ECS) 

Design Patterns on the GPU



Concept 1: Entities (ECS)



Concept 2: Components (ECS)
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Concept 2: Components (ECS)
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Batch simulation ECS: Store data across all 
environments in unified tables in GPU memory
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Unified table storage also enables throughput-
oriented dynamic memory allocation
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Concept 3: Systems (ECS)
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Concept 3: Systems (ECS)
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Systems written as straight-line, per-entity logic

def process_action(agent_position, action): 
  if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

  lockObject(hit_obj)

  ...
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Parallel GPU threads execute system logic over 
each table row

GPU Thread

GPU Thread

GPU Thread

GPU Thread

def process_action(agent_position, action): 
  if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

  lockObject(hit_obj)

  ...



ECS systems combined into task graph and 
executed in parallel on the GPU

ProcessActions
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BVHRefit
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time (7.9 ms)
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Scheduling batch of worlds onto GPU
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def process_action(agent_position, action): 
  if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

  lockObject(hit_obj)

  ...
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What about spatial queries?



Madrona standard library provides high-performance 
per-world 3D acceleration structure (BVH) as an index 
to make queries fast

World 1 BVH World 2 BVH

...

World N BVH



BVH Standard Library Calls Allow ECS Systems to 
Make Spatial Queries

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

def find_overlaps(world, my_id, position, bbox):
  for bvh_node in world.bvh.find_overlapping(bbox)
    world.createEntity(CollisionPair(my_id, bvh_node.id))

World BVH



Madrona needs a straightforward imperative language for 
authoring ECS systems

def process_action(world,
                   agent_position,
                   action): 
  if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj =

  raycastForward(world, agent_position)

if hit_obj:

  lockObject(hit_obj)

  ...

void process_action(World &world,
                    Position &position,
                    AgentAction &action) { 
  if (action.type == MOVE) {

Vector3 force =

computeMovementForce(action.dir);

}

if (action.type == LOCK) {

Entity hit_obj =

   raycastForward(world, agent_position);

if (hit_obj) {

  lockObject(hit_obj);

}

}

  ...
}



Madrona Framework Summary
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Summary: Madrona meets core requirements for 
building wide range of batch simulators

Multi-World ECS Tables}
} ECS Systems & 

Parallel GPU Task Graph Scheduling

} Built on General-Purpose 
Programming Language (CUDA C++)

Madrona

Irregularly Sized Collections ✓
Dynamic GPU-Controlled Allocation ✓
Irregular Nested Parallelism ✓
Dynamic GPU-Controlled Parallelism ✓
Implicit Parallelism ✓
Complex Spatial Joins ✓
SPMD-Style Control Flow ✓



Case Studies: 
(Not in the paper) 

 End-To-End Reinforcement Learning  
Experiments Using Madrona 



1. Can ML researchers / engineers actually use the system? 

2. Is Madrona helpful for speeding up end-to-end training loops, not 
just simulation speed? 

3. What are the implications & use cases for very large simulation 
batches in end-to-end training? 

4. Are agents trained in Madrona useful beyond Madrona (Sim-to-
Sim, Sim-to-Real)?

Case Study Questions:



Case Studies Overview

Autonomous vehicle 
planning & coordination 

Human-compatible 
cooperative agents

Assessing 3D 
game difficulty

Pixels to actions 
training with Mujoco MJX

Learning competitive 
strategies in 6v6 video game



GPUDrive: Multi-Agent High-Level 
Autonomous Driving Batch Simulator

GPUDrive: Data-Driven, Multi-Agent Driving Simulation at 1 Million FPS 
Saman Kazemkhani, Aarav Pandya, Daphne Cornelisse, 
Brennan Shacklett, Eugene Vinitsky 

ICLR 2025



Irregular parallelism: Waymo Open Dataset contains 
wide range of agents counts per scene 
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Kazemkhani et al, ICLR 2025



Overallocation in JAX-based Baseline (Waymax) 
Severely Limits Peak Parallelism Relative to GPUDrive
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16 worlds



GPUDrive training reaches >95% Success in 
<5 minutes, vs >10 hours with CPU baseline
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Learning Human-Compatible Agents in Overcooked-AI

Diverse Conventions for Human-AI Collaboration 
Bidipta Sarkar, Andy Shih, Dorsa Sadigh 

NeurIPS 2023



Batch simulator throughput scales with number of 
parallel environments
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Training sample efficiency hits diminishing returns far 
below peak simulation throughput
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Idea: Use extra simulation throughput to train robust 
agents that can cooperate with other policies 

Standard Self Play
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Learning Large Population of Agents with Varying Skill 
Levels to Assess Difficulty in Obstacle Course Games

Modeling Human Limitations in RL Agents For 
Difficulty Assessment in Obstacle Course Games 
Zander Majercik, Sharon Zhang, Will Wang, Brennan Shacklett, 
Maneesh Agrawala, Kayvon Fatahalian 

Under Submission SIGGRAPH 2025



26 years of game-play experience in 13 hours allows 
training many agents with wide range of skill levels

Majercik et al, Under submission

50% Random Actions

10% Sticky Actions

10% Random Actions 25% Random Actions

25% Sticky Actions 50% Sticky Actions



Lightweight policy network + optimized PPO 
implementation: Simulator still dominant cost

62%

12.5%

24%

Batch Simulation

Policy Inference

Policy Optimization

1.2M FPS end-to-end 
training speed  

(RTX 4090)



Sim-to-Sim: Policies trained in Madrona can transfer 
directly to unseen obstacles in Roblox

Majercik et al,



Integrating Madrona Batch Renderer with Mujoco MJX

Mujoco MJX Madrona 
Batch Renderer Policy 

Inference 
(DNN forward pass)

World States Observations

Agent Actions 

Policy 
Optimization 

(DNN forward & backward)

Policy 
Weights

Zakka et al, 2025 



Simple sim-to-real transfer with domain randomization



Learning competitive strategies in 6 vs 6 video game



12 independently controlled agents makes policy 
inference & optimization majority of end-to-end time
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Batch Simulation

Policy Inference
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Population-based training: multiple policy DNNs 
learning & competing simultaneously on one GPU

• Training with population of 16 DNNs  

• JAX-based training codebase supports 
training multiple policies on single GPU 
- Training opponents chosen dynamically 

based on skill level
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Tonight’s reading topic: 
An alternative approach to simulating worlds: 

Generative AI as a means to generate 
world simulation output 
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Enhancing CG images to look like real-world images using 
image-to-image transfer
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Modifying real-world images to create novel situations

Remove or 
move this car.
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Genie
Key idea: learn a world simulator from videos of video game play 
- From video, learn latent user actions, and dynamics model that steps work given (current state, action)

- Then at “test time” given a novel world state (perhaps one generated from a prompt), and given user input, 
time step the novel world forward in time
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Other recent world model examples

Oasis Diamond
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Next class we’ll have a “debate”
After reading the required reading and skimming through suggested readings for 
lectures 11 and 12, I want you to make a bet: 

If in 10 years you were to bet on a simulator implementation approach for producing the 
virtual environments for agent training, do you think that implementation will look more 
like: 
- Game engines today, where aspects of the world situation (physics/rendering/

programmable logic) continue to me explicitly modeled  
- Emerging “world models” where a learned network is responsible for producing the 

next state of the world given the agent’s agent.


