
Visual Computing Systems
Stanford CS348K, Spring 2025

Lecture 11:

High-Throughput World Simulation
for Agent Training

Tons of engineering knowledge and effort needed to build
new GPU-accelerated batch simulator from scratch!

(c) Unity

Task Knowledge GPU Programming Skill

+

Engineering Time

+

Running example: Simulating OpenAI's
3D "Hide and Seek" learning environment

Parallel Systems Programming
Requirements

1. Nested Parallelism: Task logic for each object in each world

2. Irregular Nested Parallelism & Irregular Collection Sizes:
Worlds with varying numbers of objects

3. Dynamic GPU-controlled memory allocation & parallelism:
Physics contacts, sparse events

4. Complex Spatial Joins: Ray casting, 3D collisions

Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
 if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
 lockObject(hit_obj)

 ...

Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
 if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
 lockObject(hit_obj)

 ...

5. Implicit Parallelism: Logic written in terms of 1 environment,
automatically batched

Usability: Easy scripting of task-specific logic
def process_action(agent_position, action): 
 if action.type == MOVE_CHARACTER:

force = computeMovementForce(action.dir)
if action.type == LOCK_OBJECT_IN_PLACE:

hit_obj = raycastForward(agent_position)
if hit_obj:
 lockObject(hit_obj)

 ...

6. Convenience of standard SPMD control flow

Madrona research project claim:
We need to create a "game engine" for building

batch simulators that meets these requirements!

1. Nested Parallelism
2. Irregular Parallelism & Collection Sizes
3. Dynamic GPU-Controlled Allocation
4. Complex Spatial Joins
5. Implicit Parallelism
6. SPMD-Style Control Flow

What About Using Existing Systems /
Frameworks to Help to Build Complex

Batch Simulators?

Lowest-level option: Where does CUDA C++ fall short
for our needs?

Writing a batch simulator in raw CUDA requires
custom parallel memory management & scheduling

CUDA C++

Nested Parallelism ✓
Irregular Parallelism & Collection Sizes X
Dynamic GPU-Controlled Allocation X
Complex Spatial Joins X
Implicit Parallelism X
SPMD-style control flow ✓

Higher-level GPU kernel languages:
friendlier syntax, but same abstraction as CUDA C++

Array-based programming: Describe simulation in
terms of bulk operations on fixed-size tensors

Mujoco MJX Craftax

Matthews et al, ICML 2024 Zakka et al, 2025

Array-based programming: Variable environment
structures, procedural generation are challenging

Nested Parallelism ✓ ✓
Irregular Parallelism & Collection Sizes ~ X
Dynamic GPU-Controlled Allocation X X
Complex Spatial Joins X X
Implicit Parallelism ~ ✓
SPMD-style control flow X X

What about building batch simulators by reusing
existing GPU simulation libraries?

NVIDIA Isaac Sim

Makoviychuk et al, NeurIPS 2021

Gu et al, ICLR 2023

Existing GPU simulation libraries (PhysX) are
designed to accelerate a CPU-controlled simulation

GPU PhysX

Nested Parallelism ✓
Irregular Parallelism & Collection Sizes ~
Dynamic GPU-Controlled Allocation X
Complex Spatial Joins ✓
Implicit Parallelism X
SPMD-style control flow X

Existing Systems Do Not Meet the Requirements!

PyTorch JAX CUDA C++ Warp / NUMBA GPU PhysX

Nested Parallelism ✓ ✓ ✓ ✓ ✓
Irregular Parallelism &
Collection Sizes ~ X X X ~
Dynamic GPU-Controlled
Allocation X X X X X
Complex Spatial Joins X X X X ✓
Implicit Parallelism ~ ✓ X X X
SPMD-style control flow X X ✓ ✓ X

Stanford CS348K, Spring 2025

Madrona simulation engine project

Madrona engine project (Stanford project)

A framework for building GPU batch simulators using entity component system (ECS)
design patterns

Stanford CS348K, Spring 2025

Idea #1
The well-known Entity Components System* design pattern is a good solution for
structuring data and communication in a batch simulator

Tutorial:
Entity Component System (ECS)

Design Patterns on the GPU

Concept 1: Entities (ECS)

Concept 2: Components (ECS)

Pos Bbox

Action

Reward

Concept 2: Components (ECS)

EnvID PosId
12

32

51

0

0

0

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

Bbox Action
{min...

{min...

{min...

0.1

-0.1

-2.5

Agents
EnvID PosId

13

72

61

0

0

0

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

Bbox
{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

Batch simulation ECS: Store data across all
environments in unified tables in GPU memory

EnvID PosId
12

32

51

0

0

0

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

Bbox Action
{min...

{min...

{min...

0.1

-0.1

-2.5

Agents
EnvID PosId

13

72

61

0

0

0

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

Bbox
{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

49 1 [0.5,1,2] ...{min...

70 1 [-0.5,1,0] ...{min...

33 2 [1.5,0,2.5] ...{min...

81 3 [2.5,0.5,2] ...{min...

11 3 [1.5,0.5,2] ...{min...

62 1 [1.5,0.5,1] {min... 0.3RIGHT

65 1 [-0.5,0,0] {min... 0.5RIGHT

20 2 [0.5,1,1] {min... 1.5LEFT

23 2 [-1.5,0,0] {min... 10.5LEFT

41 2 [0.5,1,0] {min... -10BACK

...

...

...

...

...

Unified table storage also enables throughput-
oriented dynamic memory allocation

EnvID PosId
12

32

51

0

0

X

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

Bbox Action
{min...

{min...

{min...

0.1

-0.1

-2.5

Agents
EnvID PosId

13

72

61

0

0

0

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

Bbox
{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

49 X [0.5,1,2] ...{min...

70 1 [-0.5,1,0] ...{min...

33 2 [1.5,0,2.5] ...{min...

81 3 [2.5,0.5,2] ...{min...

11 X [1.5,0.5,2] ...{min...

62 1 [1.5,0.5,1] {min... 0.3RIGHT

65 1 [-0.5,0,0] {min... 0.5RIGHT

20 2 [0.5,1,1] {min... 1.5LEFT

23 2 [-1.5,0,0] {min... 10.5LEFT

41 2 [0.5,1,0] {min... -10BACK

...

...

...

...

...

51 1 [0.5,1,1] {min... -10BACK ... 15 2 [1.5,1.5,2] ...{min...

12 0 [2.5,0.5,3] ...{min...

Concept 3: Systems (ECS)

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

Concept 3: Systems (ECS)

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

Systems written as straight-line, per-entity logic

def process_action(agent_position, action): 
 if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

 lockObject(hit_obj)

 ...

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

Parallel GPU threads execute system logic over
each table row

GPU Thread

GPU Thread

GPU Thread

GPU Thread

def process_action(agent_position, action): 
 if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

 lockObject(hit_obj)

 ...

ECS systems combined into task graph and
executed in parallel on the GPU

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

time (7.9 ms)

1 2{{ 2{ 2{ 2{ 1 3{ 4

BVH & Broad Phase Physics Sub-Step LIDARAgent Observations & Rewards321 43

{ {

G
PU

 S
M

 0
G

PU
 S

M
 1

27
Scheduling batch of worlds onto GPU

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

def process_action(agent_position, action): 
 if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj = raycastForward(agent_position)

if hit_obj:

 lockObject(hit_obj)

 ...

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

What about spatial queries?

Madrona standard library provides high-performance
per-world 3D acceleration structure (BVH) as an index
to make queries fast

World 1 BVH World 2 BVH

...

World N BVH

BVH Standard Library Calls Allow ECS Systems to
Make Spatial Queries

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

def find_overlaps(world, my_id, position, bbox):
 for bvh_node in world.bvh.find_overlapping(bbox)
 world.createEntity(CollisionPair(my_id, bvh_node.id))

World BVH

Madrona needs a straightforward imperative language for
authoring ECS systems

def process_action(world,
 agent_position,
 action): 
 if action.type == MOVE:

force = computeMovementForce(action.dir)

if action.type == LOCK:

hit_obj =

 raycastForward(world, agent_position)

if hit_obj:

 lockObject(hit_obj)

 ...

void process_action(World &world,
 Position &position,
 AgentAction &action) { 
 if (action.type == MOVE) {

Vector3 force =

computeMovementForce(action.dir);

}

if (action.type == LOCK) {

Entity hit_obj =

 raycastForward(world, agent_position);

if (hit_obj) {

 lockObject(hit_obj);

}

}

 ...
}

Madrona Framework Summary

EnvID PosId
12

32

51

0

1

2

[0,0,.5]

[2,1,0]

[1.5,0,1]

...

...

...

22 2 [2.5,0,1.5] ...

Bbox Action
{min...

{min...

{min...

{min...

0.1

-0.1

2.5

1.1

Agents
EnvID PosId

13

72

61

0

1

1

[0.5,0,.5]

[0,1,3]

[1,1,2]

...

...

...

25 2 [1.5,1,2.5] ...

Bbox
{min...

{min...

{min...

{min...

Obstacles
Reward

LEFT

FWD

FWD

RIGHT

ComputeRewards
Pos, Reward

Collisions
Id, Pos, Bbox

ProcessActions
Pos, Action

World N BVH

ECS Storage

ProcessActions

GenerateEnv

BVHRefit

FindOverlaps

ComputeRewards

Integrate

NarrowPhase

PosSolve

VelSolve BVHRefit

CheckVisible Lidar

Observations

MaskOutput

Parallel ECS
Scheduler for GPU

ECS-Integrated
Standard Library

(BVH, Physics, etc)

Summary: Madrona meets core requirements for
building wide range of batch simulators

Multi-World ECS Tables}
} ECS Systems &

Parallel GPU Task Graph Scheduling

} Built on General-Purpose
Programming Language (CUDA C++)

Madrona

Irregularly Sized Collections ✓
Dynamic GPU-Controlled Allocation ✓
Irregular Nested Parallelism ✓
Dynamic GPU-Controlled Parallelism ✓
Implicit Parallelism ✓
Complex Spatial Joins ✓
SPMD-Style Control Flow ✓

Case Studies:
(Not in the paper)

 End-To-End Reinforcement Learning
Experiments Using Madrona

1. Can ML researchers / engineers actually use the system?

2. Is Madrona helpful for speeding up end-to-end training loops, not
just simulation speed?

3. What are the implications & use cases for very large simulation
batches in end-to-end training?

4. Are agents trained in Madrona useful beyond Madrona (Sim-to-
Sim, Sim-to-Real)?

Case Study Questions:

Case Studies Overview

Autonomous vehicle
planning & coordination

Human-compatible
cooperative agents

Assessing 3D
game difficulty

Pixels to actions
training with Mujoco MJX

Learning competitive
strategies in 6v6 video game

GPUDrive: Multi-Agent High-Level
Autonomous Driving Batch Simulator

GPUDrive: Data-Driven, Multi-Agent Driving Simulation at 1 Million FPS
Saman Kazemkhani, Aarav Pandya, Daphne Cornelisse,
Brennan Shacklett, Eugene Vinitsky

ICLR 2025

Irregular parallelism: Waymo Open Dataset contains
wide range of agents counts per scene

60

120

20 40 60
0

Mean

of Agents

of Scenes

Kazemkhani et al, ICLR 2025

Overallocation in JAX-based Baseline (Waymax)
Severely Limits Peak Parallelism Relative to GPUDrive

Waymax
GPUDrive

104

105

106

107

2.3M
Th

ro
ug

hp
ut

(A

ge
nt

 S
te

ps
 P

er
 S

ec
on

d)

Simulation Batch Size
100 101 102 103

65K

Kazemkhani et al, ICLR 2025

16 worlds

GPUDrive training reaches >95% Success in
<5 minutes, vs >10 hours with CPU baseline

Wall Clock Time
(seconds)

G
oa

l R
ea

ch
in

g
Su

cc
es

s
Ra

te

50%

0%

100%

10000 20000

Nocturne (CPU)
GPUDrive (Madrona)

50%

0%

100%

Wall Clock Time
(log scale)

102 103 104 105

Nocturne (CPU)
GPUDrive (Madrona)

200x End-to-End Speedup

Kazemkhani et al, ICLR 2025

Learning Human-Compatible Agents in Overcooked-AI

Diverse Conventions for Human-AI Collaboration
Bidipta Sarkar, Andy Shih, Dorsa Sadigh

NeurIPS 2023

Batch simulator throughput scales with number of
parallel environments

42M

21M

Th
ro

ug
hp

ut

(E
nv

iro
nm

en
t S

te
ps

 P
er

 S
ec

on
d)

100 4K 256K

Simulation Batch Size

Sarkar et al, NeurIPS 2023

Training sample efficiency hits diminishing returns far
below peak simulation throughput

42M

21M

Th
ro

ug
hp

ut

(E
nv

iro
nm

en
t S

te
ps

 P
er

 S
ec

on
d)

100 4K 256K

Simulation Batch Size

Peak RL Sample Efficiency

Sarkar et al, NeurIPS 2023

Idea: Use extra simulation throughput to train robust
agents that can cooperate with other policies

Standard Self Play

A
lg

or
ith

m

CoMeDi (Cross Play + Mixed Play)

2 3 4

Average Dishes Served
Sarkar et al, NeurIPS 2023

Learning Large Population of Agents with Varying Skill
Levels to Assess Difficulty in Obstacle Course Games

Modeling Human Limitations in RL Agents For
Difficulty Assessment in Obstacle Course Games
Zander Majercik, Sharon Zhang, Will Wang, Brennan Shacklett,
Maneesh Agrawala, Kayvon Fatahalian

Under Submission SIGGRAPH 2025

26 years of game-play experience in 13 hours allows
training many agents with wide range of skill levels

Majercik et al, Under submission

50% Random Actions

10% Sticky Actions

10% Random Actions 25% Random Actions

25% Sticky Actions 50% Sticky Actions

Lightweight policy network + optimized PPO
implementation: Simulator still dominant cost

62%

12.5%

24%

Batch Simulation

Policy Inference

Policy Optimization

1.2M FPS end-to-end
training speed

(RTX 4090)

Sim-to-Sim: Policies trained in Madrona can transfer
directly to unseen obstacles in Roblox

Majercik et al,

Integrating Madrona Batch Renderer with Mujoco MJX

Mujoco MJX Madrona
Batch Renderer Policy

Inference
(DNN forward pass)

World States Observations

Agent Actions

Policy
Optimization

(DNN forward & backward)

Policy
Weights

Zakka et al, 2025

Simple sim-to-real transfer with domain randomization

Learning competitive strategies in 6 vs 6 video game

12 independently controlled agents makes policy
inference & optimization majority of end-to-end time

22%

34%

41%

Batch Simulation

Policy Inference

Policy Optimization

Population-based training: multiple policy DNNs
learning & competing simultaneously on one GPU

• Training with population of 16 DNNs

• JAX-based training codebase supports
training multiple policies on single GPU
- Training opponents chosen dynamically

based on skill level

Stanford CS348K, Spring 2025

Tonight’s reading topic:
An alternative approach to simulating worlds:

Generative AI as a means to generate
world simulation output

Stanford CS348K, Spring 2025

Enhancing CG images to look like real-world images using
image-to-image transfer

Stanford CS348K, Spring 2025

Modifying real-world images to create novel situations

Remove or
move this car.

Stanford CS348K, Spring 2025

Genie
Key idea: learn a world simulator from videos of video game play
- From video, learn latent user actions, and dynamics model that steps work given (current state, action)

- Then at “test time” given a novel world state (perhaps one generated from a prompt), and given user input,
time step the novel world forward in time

Stanford CS348K, Spring 2025

Other recent world model examples

Oasis Diamond

Stanford CS348K, Spring 2025

Next class we’ll have a “debate”
After reading the required reading and skimming through suggested readings for
lectures 11 and 12, I want you to make a bet:

If in 10 years you were to bet on a simulator implementation approach for producing the
virtual environments for agent training, do you think that implementation will look more
like:
- Game engines today, where aspects of the world situation (physics/rendering/

programmable logic) continue to me explicitly modeled
- Emerging “world models” where a learned network is responsible for producing the

next state of the world given the agent’s agent.

