
Visual Computing Systems
Stanford CS348K, Spring 2025

Lecture 4:

Efficiently Scheduling Image
Processing Pipelines (in Halide)

Pre-class meet n’ greet topics for your table:

1. What are you doing this weekend?

2. What is the most interesting concept (to you) in the class so far?

Stanford CS348K, Spring 2025

Today’s themes
Techniques for efficiently mapping image processing applications (like those we’ve
discussed in the past two classes) to multi-core CPUs and GPUs

The design of programming abstractions that facilitate efficient image processing
applications

Stanford CS348K, Spring 2025

Reminder: key aspect in the design of any system
Choosing the “right” representations for the job

Good representations are productive to use:
- Embody the natural way of thinking about a problem

Good representations enable the system to provide useful services:
- Validating/providing certain guarantees (correctness, resource bounds, conversion of quantities,

type checking)

- Performance optimizations (parallelization, vectorization, use of specialized hardware)

- Implementations of common, difficult-to-implement functionality (complex array indexing code,
texture mapping in 3D graphics, auto-differentiation, etc.)

Stanford CS348K, Spring 2025

C++ code for a 3x3 “box blur”
int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];

float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9,

 1.f/9, 1.f/9, 1.f/9};

for (int j=0; j<HEIGHT; j++) {

 for (int i=0; i<WIDTH; i++) {

 float tmp = 0.f;

 for (int jj=0; jj<3; jj++)

 for (int ii=0; ii<3; ii++)

 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];

 output[j*WIDTH + i] = tmp;

 }

}

Stanford CS348K, Spring 2025

Consider a new task: sharpening an image

Input Output

Question: imagine you were asked to design a system for executing sharpen
as efficiently as possible on a variety of parallel processors (CPUs, GPUs, etc.)

What would the interface to your system be?

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {0., -1., 0.,
 -1., 5, -1.,
 0., -1., 0.};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)]
 * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

Stanford CS348K, Spring 2025

Four different representations of sharpen

2

4
0 �1 0
�1 5 �1
0 �1 0

3

5F=

Image input;
Image output = convolve(input, F);

Image input;
Image output;
output[i][j]
 = F[0][0] * input[i-1][j-1] +
 F[0][1] * input[i-1][j] +
 F[0][2] * input[i-1][j+1] +
 F[1][0] * input[i][j-1] +
 F[1][1] * input[i][j] +
 …

Image input;
Image output = sharpen(input);

1

2

3

4

Stanford CS348K, Spring 2025

Diversity of tasks: image processing tasks from previous lectures

Gx =

2

4
�1 0 1
�2 0 2
�1 0 1

3

5 ⇤ I

Gy =

2

4
�1 �2 �1
0 0 0
1 2 1

3

5 ⇤ I

G =
q

Gx
2 +Gy

2

float f(image input) {
 float min_value = min(min(input[x-1][y], input[x+1][y]),
 min(input[x][y-1], input[x][y+1]));
 float max_value = max(max(input[x-1][y], input[x+1][y]),
 max(input[x][y-1], input[x][y+1]));
output[x][y] = clamp(min_value, max_value, input[x][y]);
output[x][y] = f(input);

Sobel Edge Detection

Local Pixel Clamp

2

4
.075 .124 .075
.124 .204 .124
.075 .124 .075

3

5F=

3x3 Gaussian blur

Gamma Correction
output[x][y] = pow(input[x][y], 0.5f);

Histogram
bin[input[x][y]]++;

2x2 downsample (via averaging)
output[x][y] = (input[2x][2y] + input[2x+1][2y] +
 input[2x][2y+1] + input[2x+1][2y+1]) / 4.f;

output[x][y] = lookup_table[input[x][y]];
LUT-based correction

Stanford CS348K, Spring 2025

Image processing workload characteristics
Structure: sequences (more precisely: DAGs) of operations on images

Natural to think about algorithms in terms of their local, per-pixel behavior: e.g., output at pixel (x,y) is
function of input image pixels in the neighborhood around (x,y)

Common case: computing value of output pixel (x,y) depends on access to a bounded local “window” of input
image pixels around (x,y)… (e.g. convolution, but also true of median filter, bilateral filter, etc.)

Some algorithms require data-dependent data access (e.g., data-dependent access to lookup tables)

Upsampling/downsampling (e.g., to create image pyramids)

Computations that reduce information across many pixels (e.g., computing maximum brightness pixel in an
image, building a histogram)

FFTs on small patches of an image (to convert from pixel domain to frequency domain)

Stanford CS348K, Spring 2025

Halide language for image processing
[Ragan-Kelley / Adams 2012]

Stanford CS348K, Spring 2025

Halide goals

Expressive: facilitate intuitive expression of a broad class of image processing applications

- e.g., all the components of a modern camera RAW pipeline

High performance: want to generate code that efficiently utilizes the multi-core and SIMD
processing resources of modern CPUs and GPUs, and is memory bandwidth efficient

Stanford CS348K, Spring 2025

Halide used in practice
Halide used to implement camera processing pipelines on Google phones

- HDR+, aspects of portrait mode, etc…

Industry usage at Instagram, Adobe, etc.

Stanford CS348K, Spring 2025

C++ code for a 3x3 “box blur”
float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1./9, 1./9, 1./9,
 1./9, 1./9, 1./9,
 1./9, 1./9, 1./9};

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
 output[j*WIDTH + i] = tmp;
 }
}

For now: ignore boundary pixels and assume output
image is smaller than input (makes convolution loop
bounds much simpler to write)

Total work per output image =
 9 x WIDTH x HEIGHT

For NxN filter: N2 x WIDTH x HEIGHT

Stanford CS348K, Spring 2025

3x3 box blur in Halide

Var x, y;
Func blurx, out;
Image<uint8_t> in = load_image(“myimage.jpg”);

// expression for computing convolution result for one output pixel
out(x,y) = 1/9.f * (in(x-1,y-1) + in(x,y-1) + in(x+1,y-1) +
 in(x-1,y) + in(x,y) + in(x+1,y) +
 in(x-1,y+1) + in(x,y+1) + in(x+1,y+1));

// execute pipeline on domain of size 1024x1024
Image<uint8_t> result = out.realize(1024, 1024);

Total work per output image =
 9 x WIDTH x HEIGHT

For NxN filter: N2 x WIDTH x HEIGHT

Value of blurx at coordinate (x,y) is given by expression
that accesses three values of in

Functions map integer coordinates to values
(e.g., colors of corresponding pixels)

Halide function: an infinite (but discrete) set of values defined on N-D domain
Halide expression: a side-effect free expression that describes how to compute a
function’s value at a point in its domain in terms of the values of other functions.

Stanford CS348K, Spring 2025

An example application: two-pass blur

Input Horizontal Blur Vertical Blur

Note: I’ve exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

A 2D separable filter (such as a box filter) can be evaluated via two 1D filtering operations

Stanford CS348K, Spring 2025

Two-pass 3x3 blur in C++
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Total work per image = 6 x WIDTH x HEIGHT

For NxN filter: 2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage
2x lower arithmetic intensity than 2D blur. Why?

input
(W+2)x(H+2)

tmp_buf
W x (H+2)

output
W x H

Stanford CS348K, Spring 2025

Two pass blur in Halide

Var x, y;
Func blurx, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
out(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// execute pipeline on domain of size 800x600
Halide::Buffer<uint8_t> result = out.realize(800, 600);

Value of blurx at coordinate (x,y) is given by expression
that accesses three values of in

Functions map integer coordinates to values
(e.g., colors of corresponding pixels)

Halide function: an infinite (but discrete) set of values defined on N-D domain
Halide expression: a side-effect free expression that describes how to compute a
function’s value at a point in its domain in terms of the values of other functions.

Simple domain-specific language embedded in C++ for describing sequences of image processing operations

Stanford CS348K, Spring 2025

A more complicated Halide program
Simple domain-specific language embedded in C++ for describing sequences of image processing operations

Var x, y;
Func blurx, blury, bright, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);
Halide::Buffer<uint8_t> lookup = load_image(“s_curve.jpg”); // 255-pixel 1D image

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// brighten blurred result by 25%, then clamp
bright(x,y) = min(blury(x,y) * 1.25f, 255);

// access lookup table to contrast enhance
out(x,y) = lookup(bright(x,y));

// execute pipeline to materialize values of out in range (0:800,0:600)
Halide::Buffer<uint8_t> result = out.realize(800, 600);

Value of blurx at coordinate (x,y) is given by expression
accessing three values of in

Functions map integer coordinates to values
(e.g., colors of corresponding pixels)

Stanford CS348K, Spring 2025

Image processing as a DAG

blurx

blury

brighten

in lookup
myimage.jpg s_curve.jpg

out

Stanford CS348K, Spring 2025

Image processing pipelines feature complex DAGs of functions

Two-pass blur
Unsharp mask
Harris Corner detection
Camera RAW processing
Non-local means denoising
Max-brightness filter
Multi-scale interpolation
Local-laplacian filter
Synthetic depth-of-field
Bilateral filter
Histogram equalization
VGG-16 deep network eval

2
9
13
30
13
9
52
103
74
8
7
64

Benchmark Number of Halide functions

Real-world production applications may features hundreds to thousands of functions!
Google HDR+ pipeline: over 2000 Halide functions.

Stanford CS348K, Spring 2025

Key aspects of representation
Intuitive expression:
- Adopts local “point wise” view of expressing algorithms
- Halide language is declarative. It does not define order of iteration over elements in a domain, or even

what values in domain are stored!
- It only defines what operations are needed to compute these values.
- Iteration over domain points is implicit (no explicit loops)

Var x, y;
Func blurx, out;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f * (in(x-1,y) + in(x,y) + in(x+1,y));
out(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1));

// execute pipeline on domain of size 800x600
Halide::Buffer<uint8_t> result = out.realize(800, 600);

Stanford CS348K, Spring 2025

Efficiently executing Halide programs
(The interesting part!)

Stanford CS348K, Spring 2025

Two-pass 3x3 blur in C++
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<(HEIGHT+2); j++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j*WIDTH + i] = tmp;
 }

for (int j=0; j<HEIGHT; j++) {
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

Total work per image = 6 x WIDTH x HEIGHT

For NxN filter: 2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage
2x lower arithmetic intensity than 2D blur. Why?

input
(W+2)x(H+2)

tmp_buf
W x (H+2)

output
W x H

Stanford CS348K, Spring 2025

Two-pass image blur, “chunked” (version 1)
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * 3];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j++) {

 for (int j2=0; j2<3; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[jj*WIDTH + i] * weights[jj];
 output[j*WIDTH + i] = tmp;
 }
}

input
(W+2)x(H+2)

tmp_buf

output
W x H

(Wx3)

Produce 3 rows of tmp_buf
(only what’s needed for one
row of output)

Total work per row of output:
- step 1: 3 x 3 x WIDTH work
- step 2: 3 x WIDTH work

Total work per image = 12 x WIDTH x HEIGHT ????

Loads from tmp_buffer are cached
(assuming tmp_buffer fits in cache)

Combine them together to get one row of output

Only 3 rows of intermediate
buffer need to be allocated

Stanford CS348K, Spring 2025

Two-pass image blur, “chunked” (version 2)
int WIDTH = 1024;
int HEIGHT = 1024;
float input[(WIDTH+2) * (HEIGHT+2)];
float tmp_buf[WIDTH * (CHUNK_SIZE+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) {

 for (int j2=0; j2<CHUNK_SIZE+2; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int ii=0; ii<3; ii++)
 tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
 tmp_buf[j2*WIDTH + i] = tmp;

 for (int j2=0; j2<CHUNK_SIZE; j2++)
 for (int i=0; i<WIDTH; i++) {
 float tmp = 0.f;
 for (int jj=0; jj<3; jj++)
 tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj];
 output[(j+j2)*WIDTH + i] = tmp;
 }
}

input
(W+2)x(H+2)

tmp_buf

output
W x H

W x (CHUNK_SIZE+2)Produce enough rows of tmp_buf to
produce a CHUNK_SIZE number of rows
of output

Total work per chuck of output: (assume CHUNK_SIZE = 16)
- Step 1: 18 x 3 x WIDTH work
- Step 2: 16 x 3 x WIDTH work

Total work per image: (34/16) x 3 x WIDTH x HEIGHT
 = 6.4 x WIDTH x HEIGHT

Produce CHUNK_SIZE rows of output

Sized so entire buffer fits in cache
(capture all producer-consumer locality)

Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased!

Stanford CS348K, Spring 2025

Still not done
We have not parallelized loops for multi-core execution
We have not used SIMD vector instructions to execute loop bodies
Other common performance optimizations: loop unrolling, etc…

Stanford CS348K, Spring 2025

Optimized implementation of 3x3 box blur in x86 SSE intrinsics
Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

use of SIMD vector
intrinsics

Modified iteration order:
256x32 tiled iteration (to
maximize cache hit rate)

Multi-core execution
(partition image vertically)

two passes fused into one:
tmp data read from cache

Stanford CS348K, Spring 2025

One (serial) implementation of Halide
Func blurx, out;
Var x, y, xi, yi;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate blurx(1024,1024+2); // (width,height)
allocate out(1024,1024); // (width,height)

for y=0 to 1024:
 for x=0 to 1024+2:
 blurx(x,y) = … compute from in

for y=0 to 1024:
 for x=0 to 1024:
 out(x,y) = … compute from blurx

Equivalent “C-style” loop nest:

input
(W+2)x(H+2)

blurx
W x (H+2)

out
W x H

Stanford CS348K, Spring 2025

Key aspect in the design of any system:
Choosing the “right” representations for the job

▪ Good representations are productive to use:
- Embody the natural way of thinking about a problem

▪ Good representations enable the system to provide the application useful services:
- Validating/providing certain guarantees (correctness, resource bounds, type checking)

- Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but
generating an efficient implementation of a specific Halide program.

Stanford CS348K, Spring 2025

A second set of representations for “scheduling”

When evaluating out, use 2D tiling order
(loops named by x, y, xi, yi).
Use tile size 256 x 32.

Vectorize the xi loop (8-wide)

Use threads to parallelize the y loop

Produce elements blurx on demand for
each tile of output.
Vectorize the x (innermost) loop

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a
parallel machine, but leave the details of emitting the low-level platform-specific code to the Halide compiler

“Schedule”

Func blurx, out;
Var x, y, xi, yi;
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”);

// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

blurx.compute_at(x).vectorize(x, 8);

// execute pipeline on domain of size 1024x1024
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Stanford CS348K, Spring 2025

Primitives for iteration order
Specify both order and how to parallelize
(multi-thread, vectorize via SIMD instr)

2D blocked iteration order

t0
t1

(In diagram, numbers indicate sequential order of processing within a thread)

Stanford CS348K, Spring 2025

Ordering Halide loop nests

blurx_y_loop

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate blurx(1024,1024+2); // (width,height)
allocate out(1024,1024); // (width,height)

for y=0 to 1024:
 for x=0 to 1024+2:
 blurx(x,y) = … compute from in

for y=0 to 1024:
 for x=0 to 1024:
 out(x,y) = … compute from blurx

Loops for computing values of blurx

Loops for computing values of out

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide algorithm:

Loop nest diagram of implementation: C-code equivalent:

blurx_x_loop

out_y_loop

out_x_loop

<root>

blurx.compute_root();
Halide schedule:

Alloc in

Alloc out

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate out(1024,1024); // (width,height)

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:

 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi

 allocate blurx(1,3)

 // compute 3 elements of blurx needed for out(idx_x, idx_y) here
 for blurx_y=0 to 3:
 blurx(0, blurx_y) = … // compute blurx from in

 out(idx_x, idx_y) = … // compute out from blurx
Stanford CS348K, Spring 2025

Ordering Halide loop nests

Inner loops for computing values of out

Halide algorithm:

Another possible implementation:

Outer loops over tiles of out

Only allocate 3 elements of blurx

out_y_loop

out_x_loop

out_yi_loop

out_xi_loop

blurx_y_loop

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);
blurx.compute_at(out, xi);

Alloc blurx

Alloc in

Alloc out

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate out(1024,1024); // (width,height)

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:

 allocate blurx(256, 34)
 for yi=0 to 32+2:
 for xi=0 to 256:
 blurx(xi,yi) = // compute blurx from in

 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = // compute out from blurx

Stanford CS348K, Spring 2025

Ordering Halide loop nests

Loops for computing values of blurx

Inner loops for computing
values of out (loops over elements)

Halide algorithm:

Outer loops over tiles of out

Only allocate a tile of blurxout_y_loop

out_x_loop

blurx_yi_loop

blurx_xi_loop

out_yi_loop

out_xi_loop

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);
blurx.compute_at(out, x);

Alloc in

Alloc out

Alloc blurx

C-code equivalent:

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate out(1024,1024); // (width,height)

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:

 allocate blurx(256, 34)
 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi;

 // compute 3 elements of blurx needed for out(idx_x, idx_y) here
 for blurx_y=0 to 3:
 blurx(xi, yi + blurx_y) = … // compute blurx from in

 out(idx_x, idx_y) = … // compute out from blurx

Stanford CS348K, Spring 2025

An interesting Halide schedule

Loops for computing values of out

Halide algorithm:

Outer loops over tiles of out

Allocate a tile of blurx

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);
blurx.store_at(out, x);
blurx.compute_at(out, xi);

This recomputes values. Can compiler be smarter?

“Compute necessary elements of blurx within out’s xi loop nest,
but fill in tile-sized buffer allocated at x loop nest.”

C-code equivalent:

out_y_loop

out_x_loop

out_yi_loop

out_xi_loop

blurx_y_loop

Alloc blurx

Alloc in

Alloc out

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate out(1024,1024); // (width,height)

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:
 allocate blurx(256, 34)
 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi;

 if (yi=0) {
 // compute 3 elements of blurx needed for out(idx_x, idx_y) here
 for blurx_y=0 to 3:
 blurx(xi, yi + blurx_y) = … // compute blurx from in
 } else
 blurx(xi, yi + 2) = … // compute one additional element of blurx

 out(idx_x, idx_y) = … // compute out from blurx Stanford CS348K, Spring 2025

“Sliding optimization” (reduces redundant computation)

Loops for computing values of out

Halide algorithm:

Outer loops over tiles of out
Allocate a tile of blurx

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);
blurx.store_at(out, x);
blurx.compute_at(out, xi);

“Compute necessary elements of blurx within out’s xi loop nest,
but fill in tile-sized buffer allocated at x loop nest.”

C-code equivalent:

Steady state: only one new element of blurx
needs to be computed per output

out_y_loop

out_x_loop

out_yi_loop

out_xi_loop

blurx_y_loop (incremental)

Alloc blurx

Alloc in

Alloc out

allocate in(1024+2, 1024+2); // (width,height)… initialize from image
allocate out(1024,1024); // (width,height)

for y=0 to num_tiles_y:
 for x=0 to num_tiles_x:
 allocate blurx(256, 3)
 for yi=0 to 32:
 for xi=0 to 256:
 idx_x = x*256+xi;
 idx_y = y*32+yi;

 if (yi=0) {
 // compute 3 elements of blurx needed for out(idx_x, idx_y) here
 for blurx_y=0 to 3:
 blurx(xi, yi + blurx_y) = … // compute blurx from in
 } else
 blurx(xi, (yi + 2) % 3) = … // compute one additional element of
 // blurx
 out(idx_x, idx_y) = … // compute out from blurx Stanford CS348K, Spring 2025

“Folding optimization” (reduces intermediate storage)

Loops for computing values of out

Halide algorithm:

Outer loops over tiles of out
Allocate only 3 rows of blurx tile

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);
blurx.store_at(out, x);
blurx.compute_at(out, xi);

“Compute necessary elements of blurx within out’s xi loop nest,
but fill in tile-sized buffer allocated at x loop nest.”

C-code equivalent:

Steady state: only one new element of blurx
needs to be computed per output

out_y_loop

out_x_loop

out_yi_loop

out_xi_loop

blurx_y_loop (incremental)

Alloc blurx (folded)

Alloc in

Alloc out

Accesses to blurx modified to access appropriate row of circular buffer:

Stanford CS348K, Spring 2025

Summary of scheduling the 3x3 box blur
// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f;

// “the schedule” (how to do it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.compute_at(out, x).vectorize(x, 8);

for y=0 to num_tiles_y: // iters of this loop are parallelized using threads
 for x=0 to num_tiles_x:
 allocate blurx(256, 34)
 for yi=0 to 32+2:
 for xi=0 to 256+2 by 8:
 blurx(xi,yi) = … // compute blurx from in using 8-wide
 // SIMD instructions here
 // compiler generates boundary conditions
 // since 256+2 isn’t evenly divided by 8
 for yi=0 to 32:
 for xi=0 to 256 by 8:
 idx_x = x*256+xi;
 idx_y = y*32+yi
 out(idx_x, idx_y) = … // compute out from blurx using 8-wide
 // SIMD instructions here

Equivalent parallel loop nest:

Stanford CS348K, Spring 2025

What is the philosophy of Halide

Programmer is responsible for describing an image processing algorithm
Programmer has knowledge to schedule application efficiently on machine (but it’s slow and tedious),
so give programmer another language to express their high-level scheduling decisions

- Loop structure of code

- Unrolling / vectorization / multi-core parallelization

The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the nitty
gritty details of implementing the schedule using mechanisms available on the target machine
(pthreads, AVX intrinsics, CUDA code, etc.)

- There are deviations from this philosophy in Halide? What are they?

Stanford CS348K, Spring 2025

Constraints on language
(to enable compiler to provide desired services)

Application domain scope: computation on regular N-D domains

Only feed-forward pipelines (includes special support for reductions and fixed recursion depth)

All dependencies inferable by compiler

Stanford CS348K, Spring 2025

Initial academic Halide results
Application 1: camera RAW processing pipeline
(Convert RAW sensor data to RGB image)

- Original: 463 lines of hand-tuned ARM NEON assembly
- Halide: 2.75x less code, 5% faster

▪ Application 2: bilateral filter
(Common image filtering operation used in many applications)

- Original 122 lines of C++
- Halide: 34 lines algorithm + 6 lines schedule

- CPU implementation: 5.9x faster
- GPU implementation: 2x faster than hand-written CUDA

[Ragan-Kelley 2012]

Stanford CS348K, Spring 2025

Stepping back: what is Halide?

Halide is a DSL for helping expert developers optimize image processing code more rapidly
- Halide does not decide how to optimize a program for a novice programmer (ignoring the auto scheduler,

see tonight’s reading)

- Halide provides a small number of primitives for a programmer that has strong knowledge of code
optimization to rapidly express what optimizations the system should apply
- parallel, vector, unroll, split, reorder, store_at, compute_at...

- Halide compiler carries out the mapping of that strategy to a machine

Stanford CS348K, Spring 2025

Automatically generating Halide schedules
▪ Problem: it turned out that very few programmers have the technical ability to write

good Halide schedules
- Circa 2017… 80+ programmers at Google write Halide

- Very small number trusted to write schedules

▪ Recent work: Halide compiler analyzes the Halide program to automatically generate
efficient schedules for the programmer [Mullapudi 2016, Adams 2019]
- As of Adams 2019, you’d have to work hard to manually author a schedule that is better than the schedule

generated by the Halide autoscheduler for a complex image processing pipeline

Stanford CS348K, Spring 2025

Influence on code generation for ML applications
Example: Apache TVM

