
Visual Computing Systems 
Stanford CS348K, Spring 2025

Lecture 4:

Efficiently Scheduling Image 
Processing Pipelines (in Halide)

Pre-class meet n’ greet topics for your table:

1. What are you doing this weekend?


2. What is the most interesting concept (to you) in the class so far? 
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Today’s themes
Techniques for efficiently mapping image processing applications (like those we’ve 
discussed in the past two classes) to multi-core CPUs and GPUs 

The design of programming abstractions that facilitate efficient image processing 
applications 
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Reminder: key aspect in the design of any system 
Choosing the “right” representations for the job

Good representations are productive to use: 
- Embody the natural way of thinking about a problem 

Good representations enable the system to provide useful services: 
- Validating/providing certain guarantees (correctness, resource bounds, conversion of quantities, 

type checking) 

- Performance optimizations (parallelization, vectorization, use of specialized hardware) 

- Implementations of common, difficult-to-implement functionality  (complex array indexing code, 
texture mapping in 3D graphics, auto-differentiation, etc.) 
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C++ code for a 3x3 “box blur”
int WIDTH = 1024; 

int HEIGHT = 1024; 

float input[(WIDTH+2) * (HEIGHT+2)]; 

float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/9, 1.f/9, 1.f/9, 

                   1.f/9, 1.f/9, 1.f/9, 

                   1.f/9, 1.f/9, 1.f/9}; 

for (int j=0; j<HEIGHT; j++) { 

  for (int i=0; i<WIDTH; i++) { 

    float tmp = 0.f; 

    for (int jj=0; jj<3; jj++) 

      for (int ii=0; ii<3; ii++) 

        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 

    output[j*WIDTH + i] = tmp; 

  } 

}
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Consider a new task: sharpening an image

Input Output

Question:  imagine you were asked to design a system for executing sharpen 
as efficiently as possible on a variety of parallel processors (CPUs, GPUs, etc.) 

What would the interface to your system be?



float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {0., -1., 0., 
                   -1., 5, -1., 
                   0., -1., 0.}; 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      for (int ii=0; ii<3; ii++) 
        tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] 
             * weights[jj*3 + ii]; 
    output[j*WIDTH + i] = tmp; 
  } 
}
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Four different representations of sharpen
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Image input; 
Image output = convolve(input, F);

Image input; 
Image output; 
output[i][j] 
    = F[0][0] * input[i-1][j-1] + 
      F[0][1] * input[i-1][j]   + 
      F[0][2] * input[i-1][j+1] + 
      F[1][0] * input[i][j-1]   + 
      F[1][1] * input[i][j]     + 
      … 

Image input; 
Image output = sharpen(input);
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Diversity of tasks: image processing tasks from previous lectures 
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float f(image input) { 
   float min_value = min( min(input[x-1][y], input[x+1][y]), 
                     min(input[x][y-1], input[x][y+1]) ); 
   float max_value = max( max(input[x-1][y], input[x+1][y]), 
                     max(input[x][y-1], input[x][y+1]) ); 
output[x][y] = clamp(min_value, max_value, input[x][y]); 
output[x][y] = f(input);

Sobel Edge Detection

Local Pixel Clamp
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3x3 Gaussian blur

Gamma Correction
output[x][y] = pow(input[x][y], 0.5f);

Histogram
bin[input[x][y]]++;

2x2 downsample (via averaging)
output[x][y] = (input[2x][2y]   + input[2x+1][2y] + 
                input[2x][2y+1] + input[2x+1][2y+1]) / 4.f;

output[x][y] = lookup_table[input[x][y]];
LUT-based correction 
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Image processing workload characteristics
Structure: sequences (more precisely: DAGs) of operations on images 

Natural to think about algorithms in terms of their local, per-pixel behavior: e.g., output at pixel (x,y) is 
function of input image pixels in the neighborhood around (x,y)  

Common case: computing value of output pixel (x,y) depends on access to a bounded local “window” of input 
image pixels around (x,y)… (e.g. convolution, but also true of median filter, bilateral filter, etc.) 

Some algorithms require data-dependent data access (e.g., data-dependent access to lookup tables) 

Upsampling/downsampling (e.g., to create image pyramids) 

Computations that reduce information across many pixels (e.g., computing maximum brightness pixel in an 
image, building a histogram) 

FFTs on small patches of an image (to convert from pixel domain to frequency domain)
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Halide language for image processing
[Ragan-Kelley / Adams 2012]
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Halide goals

Expressive: facilitate intuitive expression of a broad class of image processing applications 

- e.g., all the components of a modern camera RAW pipeline 

High performance: want to generate code that efficiently utilizes the multi-core and SIMD 
processing resources of modern CPUs and GPUs, and is memory bandwidth efficient
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Halide used in practice
Halide used to implement camera processing pipelines on Google phones 

- HDR+, aspects of portrait mode, etc… 

Industry usage at Instagram, Adobe, etc.
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C++ code for a 3x3 “box blur”
float input[(WIDTH+2) * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9, 
                   1./9, 1./9, 1./9}; 

for (int j=0; j<HEIGHT; j++) { 
   for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<3; jj++) 
         for (int ii=0; ii<3; ii++) 
            tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii]; 
      output[j*WIDTH + i] = tmp; 
  } 
}

For now: ignore boundary pixels and assume output 
image is smaller than input (makes convolution loop 
bounds much simpler to write) 

Total work per output image =  
    9 x WIDTH x HEIGHT

For NxN filter:  N2 x WIDTH x HEIGHT
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3x3 box blur in Halide

Var x, y; 
Func blurx, out; 
Image<uint8_t> in = load_image(“myimage.jpg”); 

// expression for computing convolution result for one output pixel 
out(x,y) = 1/9.f * (in(x-1,y-1) + in(x,y-1) + in(x+1,y-1) + 
                    in(x-1,y)   + in(x,y)   + in(x+1,y) + 
                    in(x-1,y+1) + in(x,y+1) + in(x+1,y+1) ); 

// execute pipeline on domain of size 1024x1024 
Image<uint8_t> result = out.realize(1024, 1024);

Total work per output image =  
    9 x WIDTH x HEIGHT

For NxN filter:  N2 x WIDTH x HEIGHT

Value of blurx at coordinate (x,y) is given by expression 
that accesses three values of in

Functions map integer coordinates to values 
(e.g., colors of corresponding pixels)

Halide function: an infinite (but discrete) set of values defined on N-D domain 
Halide expression: a side-effect free expression that describes how to compute a 
function’s value at a point in its domain in terms of the values of other functions. 
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An example application: two-pass blur

Input Horizontal Blur Vertical Blur

Note: I’ve exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

A 2D separable filter (such as a box filter) can be evaluated via two 1D filtering operations 
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Two-pass 3x3 blur in C++
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<(HEIGHT+2); j++) 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int ii=0; ii<3; ii++) 
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; 
    tmp_buf[j*WIDTH + i] = tmp; 
  } 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

Total work per image = 6 x WIDTH x HEIGHT

For NxN filter:  2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage 
2x lower arithmetic intensity than 2D blur. Why?

input 
(W+2)x(H+2)

tmp_buf 
W x (H+2)

output 
W x H
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Two pass blur in Halide

Var x, y; 
Func blurx, out; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 

// perform 3x3 box blur in two-passes 
blurx(x,y) = 1/3.f * (in(x-1,y)    + in(x,y)      + in(x+1,y)); 
out(x,y) =   1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)); 

// execute pipeline on domain of size 800x600 
Halide::Buffer<uint8_t> result = out.realize(800, 600);

Value of blurx at coordinate (x,y) is given by expression 
that accesses three values of in

Functions map integer coordinates to values 
(e.g., colors of corresponding pixels)

Halide function: an infinite (but discrete) set of values defined on N-D domain 
Halide expression: a side-effect free expression that describes how to compute a 
function’s value at a point in its domain in terms of the values of other functions. 

Simple domain-specific language embedded in C++ for describing sequences of image processing operations
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A more complicated Halide program
Simple domain-specific language embedded in C++ for describing sequences of image processing operations

Var x, y; 
Func blurx, blury, bright, out; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 
Halide::Buffer<uint8_t> lookup = load_image(“s_curve.jpg”);  // 255-pixel 1D image 

// perform 3x3 box blur in two-passes 
blurx(x,y) = 1/3.f * (in(x-1,y)    + in(x,y)      + in(x+1,y)); 
blury(x,y) = 1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)); 

// brighten blurred result by 25%, then clamp 
bright(x,y) = min(blury(x,y) * 1.25f, 255);   

// access lookup table to contrast enhance 
out(x,y) = lookup(bright(x,y)); 

// execute pipeline to materialize values of out in range (0:800,0:600) 
Halide::Buffer<uint8_t> result = out.realize(800, 600);

Value of blurx at coordinate (x,y) is given by expression 
accessing three values of in

Functions map integer coordinates to values 
(e.g., colors of corresponding pixels)
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Image processing as a DAG

blurx

blury

brighten

in lookup
myimage.jpg s_curve.jpg

out
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Image processing pipelines feature complex DAGs of functions

Two-pass blur 
Unsharp mask 
Harris Corner detection 
Camera RAW processing 
Non-local means denoising 
Max-brightness filter 
Multi-scale interpolation 
Local-laplacian filter 
Synthetic depth-of-field 
Bilateral filter 
Histogram equalization 
VGG-16 deep network eval

2 
9 
13 
30 
13 
9 
52 
103 
74 
8 
7 
64

Benchmark Number of Halide functions

Real-world production applications may features hundreds to thousands of functions! 
Google HDR+ pipeline: over 2000 Halide functions.
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Key aspects of representation
Intuitive expression: 
- Adopts local “point wise” view of expressing algorithms 
- Halide language is declarative. It does not define order of iteration over elements in a domain, or even 

what values in domain are stored! 
- It only defines what operations are needed to compute these values. 
- Iteration over domain points is implicit (no explicit loops) 

Var x, y; 
Func blurx, out; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 

// perform 3x3 box blur in two-passes 
blurx(x,y) = 1/3.f * (in(x-1,y)    + in(x,y)      + in(x+1,y)); 
out(x,y) =   1/3.f * (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)); 

// execute pipeline on domain of size 800x600 
Halide::Buffer<uint8_t> result = out.realize(800, 600);
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Efficiently executing Halide programs 
(The interesting part!)
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Two-pass 3x3 blur in C++
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (HEIGHT+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<(HEIGHT+2); j++) 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int ii=0; ii<3; ii++) 
      tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; 
    tmp_buf[j*WIDTH + i] = tmp; 
  } 

for (int j=0; j<HEIGHT; j++) { 
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

Total work per image = 6 x WIDTH x HEIGHT

For NxN filter:  2N x WIDTH x HEIGHT

1D horizontal blur

1D vertical blur

WIDTH x HEIGHT extra storage 
2x lower arithmetic intensity than 2D blur. Why?

input 
(W+2)x(H+2)

tmp_buf 
W x (H+2)

output 
W x H
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Two-pass image blur, “chunked” (version 1)
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * 3]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<HEIGHT; j++) { 

  for (int j2=0; j2<3; j2++) 
    for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int ii=0; ii<3; ii++) 
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii]; 
      tmp_buf[j2*WIDTH + i] = tmp; 
   
  for (int i=0; i<WIDTH; i++) { 
    float tmp = 0.f; 
    for (int jj=0; jj<3; jj++) 
      tmp += tmp_buf[jj*WIDTH + i] * weights[jj]; 
    output[j*WIDTH + i] = tmp; 
  } 
}

input 
(W+2)x(H+2)

tmp_buf

output 
W x H

(Wx3)

Produce 3 rows of tmp_buf 
(only what’s needed for one 
row of output)

Total work per row of output: 
- step 1: 3 x 3 x WIDTH work 
- step 2: 3 x WIDTH work 

Total work per image = 12 x WIDTH x HEIGHT    ???? 

Loads from tmp_buffer are cached 
(assuming tmp_buffer fits in cache)

Combine them together to get one row of output

Only 3 rows of intermediate 
buffer need to be allocated
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Two-pass image blur, “chunked” (version 2)
int WIDTH = 1024; 
int HEIGHT = 1024; 
float input[(WIDTH+2) * (HEIGHT+2)]; 
float tmp_buf[WIDTH * (CHUNK_SIZE+2)]; 
float output[WIDTH * HEIGHT]; 

float weights[] = {1.f/3, 1.f/3, 1.f/3}; 

for (int j=0; j<HEIGHT; j+CHUNK_SIZE) { 

  for (int j2=0; j2<CHUNK_SIZE+2; j2++) 
    for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int ii=0; ii<3; ii++) 
        tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii]; 
      tmp_buf[j2*WIDTH + i] = tmp; 
   
  for (int j2=0; j2<CHUNK_SIZE; j2++) 
    for (int i=0; i<WIDTH; i++) { 
      float tmp = 0.f; 
      for (int jj=0; jj<3; jj++) 
        tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj]; 
      output[(j+j2)*WIDTH + i] = tmp; 
    } 
}

input 
(W+2)x(H+2)

tmp_buf

output 
W x H

W x (CHUNK_SIZE+2)Produce  enough rows of tmp_buf to 
produce a CHUNK_SIZE number of rows 
of output

Total work per chuck of output: (assume CHUNK_SIZE = 16) 
- Step 1: 18 x 3 x WIDTH work 
- Step 2: 16 x 3 x WIDTH work 

Total work per image: (34/16) x 3 x WIDTH x HEIGHT  
                                                 = 6.4 x WIDTH x HEIGHT

Produce CHUNK_SIZE rows of output

Sized so entire buffer fits in cache 
(capture all producer-consumer locality)

Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased! 
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Still not done
We have not parallelized loops for multi-core execution 
We have not used SIMD vector instructions to execute loop bodies 
Other common performance optimizations: loop unrolling, etc…



Stanford CS348K, Spring 2025

Optimized implementation of 3x3 box blur in x86 SSE intrinsics 
Good: ~10x faster on a quad-core CPU than my original two-pass code  
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

use of SIMD vector 
intrinsics

Modified iteration order: 
256x32 tiled iteration (to 
maximize cache hit rate)

Multi-core execution 
(partition image vertically)

two passes fused into one: 
tmp data read from cache
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One (serial) implementation of Halide
Func blurx, out; 
Var  x, y, xi, yi; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 

// the “algorithm description”  (declaration of what to do) 
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

// execute pipeline on domain of size 1024x1024 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate blurx(1024,1024+2);   // (width,height) 
allocate out(1024,1024);       // (width,height) 

for y=0 to 1024:   
   for x=0 to 1024+2: 
      blurx(x,y) = … compute from in 

for y=0 to 1024:   
   for x=0 to 1024: 
      out(x,y) = … compute from blurx

Equivalent “C-style” loop nest:

input 
(W+2)x(H+2)

blurx 
W x (H+2)

out 
W x H
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Key aspect in the design of any system: 
Choosing the “right” representations for the job

▪ Good representations are productive to use: 
- Embody the natural way of thinking about a problem 

▪ Good representations enable the system to provide the application useful services: 
- Validating/providing certain guarantees (correctness, resource bounds, type checking) 

- Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but 
generating an efficient implementation of a specific Halide program.
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A second set of representations for “scheduling”

When evaluating out, use 2D tiling order 
(loops named by x, y, xi, yi). 
Use tile size 256 x 32.

Vectorize the xi loop (8-wide) 

Use threads to parallelize the y loop

Produce elements  blurx on demand for 
each tile of output. 
Vectorize the x (innermost) loop

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a 
parallel machine, but leave the details of emitting the low-level platform-specific code to the Halide compiler

“Schedule”

Func blurx, out; 
Var  x, y, xi, yi; 
Halide::Buffer<uint8_t> in = load_image(“myimage.jpg”); 

// the “algorithm description” (declaration of what to do) 
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

// “the schedule” (how to do it) 
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y); 

blurx.compute_at(x).vectorize(x, 8); 

// execute pipeline on domain of size 1024x1024 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);
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Primitives for iteration order
Specify both order and how to parallelize 
(multi-thread, vectorize via SIMD instr)

2D blocked iteration order

t0
t1

(In diagram, numbers indicate sequential order of processing within a thread)
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Ordering Halide loop nests

blurx_y_loop

allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate blurx(1024,1024+2);   // (width,height) 
allocate out(1024,1024);       // (width,height) 

for y=0 to 1024:   
   for x=0 to 1024+2: 
      blurx(x,y) = … compute from in 

for y=0 to 1024:   
   for x=0 to 1024: 
      out(x,y) = … compute from blurx

Loops for computing values of blurx

Loops for computing values of out

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide algorithm:

Loop nest diagram of implementation: C-code equivalent:

blurx_x_loop

out_y_loop

out_x_loop

<root>

blurx.compute_root();
Halide schedule:

Alloc in

Alloc out



allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate out(1024,1024);       // (width,height) 

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
       
      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi 

            allocate blurx(1,3) 

            // compute 3 elements of blurx needed for out(idx_x, idx_y) here  
            for blurx_y=0 to 3: 
                blurx(0, blurx_y) = … // compute blurx from in              

            out(idx_x, idx_y) = … // compute out from blurx
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Ordering Halide loop nests

Inner loops for computing values of out 

Halide algorithm:

Another possible implementation:

Outer loops over tiles of out

Only allocate 3 elements of blurx

out_y_loop

out_x_loop

out_yi_loop

out_xi_loop

blurx_y_loop

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32); 
blurx.compute_at(out, xi);

Alloc blurx

Alloc in

Alloc out



allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate out(1024,1024);       // (width,height) 

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
       
      allocate blurx(256, 34) 
      for yi=0 to 32+2: 
         for xi=0 to 256: 
            blurx(xi,yi) = // compute blurx from in 

      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi 
            out(idx_x, idx_y) = // compute out from blurx
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Ordering Halide loop nests

Loops for computing values of blurx

Inner loops for computing 
values of out (loops over elements)

Halide algorithm:

Outer loops over tiles of out

Only allocate a tile of blurxout_y_loop

out_x_loop

blurx_yi_loop

blurx_xi_loop

out_yi_loop

out_xi_loop

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);  
blurx.compute_at(out, x);

Alloc in

Alloc out

Alloc blurx

C-code equivalent:



allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate out(1024,1024);       // (width,height) 

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
       
      allocate blurx(256, 34) 
      for yi=0 to 32: 
        for xi=0 to 256: 
           idx_x = x*256+xi; 
           idx_y = y*32+yi; 
             
            // compute 3 elements of blurx needed for out(idx_x, idx_y) here  
            for blurx_y=0 to 3: 
               blurx(xi, yi + blurx_y) = … // compute blurx from in 

           out(idx_x, idx_y) = … // compute out from blurx
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An interesting Halide schedule

Loops for computing values of out

Halide algorithm:

Outer loops over tiles of out

Allocate a tile of blurx

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);  
blurx.store_at(out, x); 
blurx.compute_at(out, xi);

This recomputes values. Can compiler be smarter?

“Compute necessary elements of blurx within out’s xi loop nest, 
but fill in tile-sized buffer allocated at x loop nest.”

C-code equivalent:

out_y_loop

out_x_loop

out_yi_loop

out_xi_loop

blurx_y_loop

Alloc blurx

Alloc in

Alloc out



allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate out(1024,1024);       // (width,height) 

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
      allocate blurx(256, 34) 
      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi; 
             
            if (yi=0) { 
               // compute 3 elements of blurx needed for out(idx_x, idx_y) here 
               for blurx_y=0 to 3: 
                  blurx(xi, yi + blurx_y) = … // compute blurx from in 
            } else 
                 blurx(xi, yi + 2) = … // compute one additional element of blurx 
           
            out(idx_x, idx_y) = … // compute out from blurx Stanford CS348K, Spring 2025

“Sliding optimization” (reduces redundant computation)

Loops for computing values of out

Halide algorithm:

Outer loops over tiles of out
Allocate a tile of blurx

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);  
blurx.store_at(out, x); 
blurx.compute_at(out, xi);

“Compute necessary elements of blurx within out’s xi loop nest, 
but fill in tile-sized buffer allocated at x loop nest.”

C-code equivalent:

Steady state: only one new element of blurx 
needs to be computed per output

out_y_loop

out_x_loop

out_yi_loop

out_xi_loop

blurx_y_loop (incremental)

Alloc blurx

Alloc in

Alloc out



allocate in(1024+2, 1024+2);   // (width,height)… initialize from image 
allocate out(1024,1024);       // (width,height) 

for y=0 to num_tiles_y: 
   for x=0 to num_tiles_x: 
      allocate blurx(256, 3) 
      for yi=0 to 32: 
         for xi=0 to 256: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi; 
             
            if (yi=0) { 
               // compute 3 elements of blurx needed for out(idx_x, idx_y) here 
               for blurx_y=0 to 3: 
                  blurx(xi, yi + blurx_y) = … // compute blurx from in 
            } else 
                 blurx(xi, (yi + 2) % 3) = … // compute one additional element of 
                                             // blurx 
            out(idx_x, idx_y) = … // compute out from blurx Stanford CS348K, Spring 2025

“Folding optimization” (reduces intermediate storage)

Loops for computing values of out

Halide algorithm:

Outer loops over tiles of out
Allocate only 3 rows of blurx tile

<root>
Loop nest diagram of implementation:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 
Halide::Buffer<uint8_t> result = out.realize(1024, 1024);

Halide schedule:
out.tile(x, y, xi, yi, 256, 32);  
blurx.store_at(out, x); 
blurx.compute_at(out, xi);

“Compute necessary elements of blurx within out’s xi loop nest, 
but fill in tile-sized buffer allocated at x loop nest.”

C-code equivalent:

Steady state: only one new element of blurx 
needs to be computed per output

out_y_loop

out_x_loop

out_yi_loop

out_xi_loop

blurx_y_loop (incremental)

Alloc blurx (folded)

Alloc in

Alloc out

Accesses to blurx modified to access appropriate row of circular buffer:
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Summary of scheduling the 3x3 box blur
// the “algorithm description”  (declaration of what to do) 
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; 
out(x,y)   = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1)) / 3.0f; 

// “the schedule” (how to do it) 
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y); 
blurx.compute_at(out, x).vectorize(x, 8);

for y=0 to num_tiles_y:   // iters of this loop are parallelized using threads 
   for x=0 to num_tiles_x: 
      allocate blurx(256, 34) 
      for yi=0 to 32+2: 
         for xi=0 to 256+2 by 8: 
            blurx(xi,yi) = … // compute blurx from in using 8-wide 
                                 // SIMD instructions here 
                                 // compiler generates boundary conditions 
                                 // since 256+2 isn’t evenly divided by 8 
      for yi=0 to 32: 
         for xi=0 to 256 by 8: 
            idx_x = x*256+xi; 
            idx_y = y*32+yi 
            out(idx_x, idx_y) = … // compute out from blurx using 8-wide 
                                  // SIMD instructions here

Equivalent parallel loop nest:
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What is the philosophy of Halide

Programmer is responsible for describing an image processing algorithm 
Programmer has knowledge to schedule application efficiently on machine (but it’s slow and tedious), 
so give programmer another language to express their high-level scheduling decisions 

- Loop structure of code  

- Unrolling / vectorization / multi-core parallelization 

The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the nitty 
gritty details of implementing the schedule using mechanisms available on the target machine 
(pthreads, AVX intrinsics, CUDA code, etc.) 

- There are deviations from this philosophy in Halide? What are they?
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Constraints on language 
(to enable compiler to provide desired services)

Application domain scope: computation on regular N-D domains 

Only feed-forward pipelines (includes special support for reductions and fixed recursion depth) 

All dependencies inferable by compiler
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Initial academic Halide results
Application 1: camera RAW processing pipeline 
(Convert RAW sensor data to RGB image) 

- Original: 463 lines of hand-tuned ARM NEON assembly 
- Halide: 2.75x less code, 5% faster

▪ Application 2: bilateral filter 
(Common image filtering operation used in many applications) 

- Original 122 lines of C++ 
- Halide: 34 lines algorithm + 6 lines schedule 

- CPU implementation: 5.9x faster 
- GPU implementation: 2x faster than hand-written CUDA

[Ragan-Kelley 2012]
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Stepping back: what is Halide?

Halide is a DSL for helping expert developers optimize image processing code more rapidly 
- Halide does not decide how to optimize a program for a novice programmer (ignoring the auto scheduler, 

see tonight’s reading) 

- Halide provides a small number of primitives for a programmer that has strong knowledge of code 
optimization to rapidly express what optimizations the system should apply 
- parallel, vector, unroll, split, reorder, store_at, compute_at... 

- Halide compiler carries out the mapping of that strategy to a machine
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Automatically generating Halide schedules
▪ Problem: it turned out that very few programmers have the technical ability to write 

good Halide schedules 
- Circa 2017… 80+ programmers at Google write Halide 

- Very small number trusted to write schedules 

▪ Recent work: Halide compiler analyzes the Halide program to automatically generate 
efficient schedules for the programmer [Mullapudi 2016, Adams 2019] 
- As of Adams 2019, you’d have to work hard to manually author a schedule that is better than the schedule 

generated by the Halide autoscheduler for a complex image processing pipeline 
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Influence on code generation for ML applications
Example: Apache TVM


