Pre-class meet n' greet topics for your table:
1. What are you doing this weekend?
2. What is the most interesting concept (to you) in the class so far?

Lecture 4:

Efficiently Scheduling Image
Processing Pipelines (in Halide)

Visual Computing Systems
Stanford C5348K, Spring 2025

Today’s themes

m Techniques for efficiently mapping image processing applications (like those we've
discussed in the past two classes) to multi-core CPUs and GPUs

m The design of programming abstractions that facilitate efficient image processing
applications

Stanford C5348K, Spring 2025

Reminder: key aspect in the design of any system

Choosing the “right” representations for the job

m Good representations are productive to use:

- Embody the natural way of thinking about a problem

m Good representations enable the system to provide useful services:

- Validating/providing certain quarantees (correctness, resource bounds, conversion of quantities,
type checking)

- Performance optimizations (parallelization, vectorization, use of specialized hardware)

- Implementations of common, difficult-to-implement functionality (complex array indexing code,
texture mapping in 3D graphics, auto-differentiation, etc.)

Stanford C5348K, Spring 2025

C++ code for a 3x3 “box blur”

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/9, 1.f¥/9, 1.f/9,
1.f/9, 1.f/9, 1.f/9,
1.¥/9, 1.f/9, 1.f/9};

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int jj=0; jj<3; jj++)

for (int ii=0; ii<3; ii++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + i] = tmp;

Stanford (5348K, Spring 2025

Consider a new task: sharpening an image

Question: imagine you were asked to design a system for executing sharpen
as efficiently as possible on a variety of parallel processors (CPUs, GPUs, etc.)

What would the interface to your system be?

Stanford C5348K, Spring 2025

Four different representations of sharpen

. float input[(WIDTH+2) x (HEIGHT+2)];
Image 1input;
Image output — sharpen(input); float output[WIDTH * HEIGHT];
float weights[] = {0., -1., 0.,
0 -1 0] @
0., -1., 0.};
F=|—1 5 —1

() ___]_ () for (int j=0; j<HEIGHT; j++) {
for (int i=0: i<WIDTH: i++) {
float tmp = 0.°f;
for (int jj=0; jj<3; jj++)

Image 1input;
Image output = convolve(input, F);
for (int 1i=0; 1i<3; 1ii++)

tmp += input[(j+jj)*x(WIDTH+2) + (i+ii)]

Image input: e *x welghts[jj*3 + 11i];
Image output; output[j*WIDTH + 1] = tmp;
output[1][]] }
= F[O0][0] * input[i-1]1[j-1]1 + }

FIOI[1] * input[i-1]1[j] +

F[O0]1[2] * input[i-1]1[j+1] +

FI11[0] * input[i]l[j-1] +

FI11[1] * input[i]l[j] +

Stanford C5348K, Spring 2025

Diversity of tasks: image processing tasks from previous lectures

Sobel Edge Detection

Ge=|—2 0 2| %1

Local Pixel Clamp

float f(image input) {

3x3 Gaussian blur

075
F= |.124

075

x I

124 .075
204 .124
124 .075

2x2 downsample (via averaging)

output[x]1[y] = (input[2x]1[2y] + input[2x+1]1[2y] +
input[2x]1[2y+1] + input[2x+1][2y+1l]) / 4.f;

Gamma Correction
output[x][y] = pow(input[x]l[y]l, 0.5f);

LUT-based correction
output[x][y] = lookup_ table[input[x][y]l];

float min_value = min(min(input[x-11[y]l, input[x+1]1[yl]),
min(input[x][y-1], input[x][y+1]));

float max_value = max(max(input[x-1]1[y]l, input[x+1]1[y]),
max(input[x][y-1], inputix][y+1l]1));

output[x]ly]
output[x]ly]

f(1input);

clamp(min_value, max_value, input[x]l[y]l);

Histogram
bin[input[x]1[y]]++;

Stanford C5348K, Spring 2(

Image processing workload characteristics

Structure: sequences (more precisely: DAGs) of operations on images

Natural to think about algorithms in terms of their local, per-pixel behavior: e.g., output at pixel (x,y) is

function of input image pixels in the neighborhood around (x,y)

Common case: computing value of output pixel (x,y) depends on access to a bounded local “window” of input

image pixels around (x,y). .. (e.g. convolution, but also true of median filter, bilateral filter, etc.)

Some algorithms require data-dependent data access (e.g., data-dependent access to lookup tables)

Upsampling/downsampling (e.g., to create image pyramids)

Computations that reduce information across many pixels (e.g., computing maximum brightness pixel in an

image, building a histogram)

FFTs on small patches of an image (to convert from pixel domain to frequency domain)

Stanford C5348K, Spring 2025

Halide language for image processing

[Ragan-Kelley / Adams 2012}

Stanford C5348K, Spring 2025

Halide goals

m Expressive: facilitate intuitive expression of a broad class of image processing applications
- e.g., all the components of a modern camera RAW pipeline

m High performance: want to generate code that efficiently utilizes the multi-core and SIMD
processing resources of modern CPUs and GPUs, and is memory bandwidth efficient

Stanford C5348K, Spring 2025

Halide used in practice =

‘October 4

TUESDAY, 2016

m Halide used to implement camera processing pipelines on Google phones
- HDR+, aspects of portrait mode, etc...

m Industry usage at Instagram, Adobe, etc.

www.GSMArena.com

Stanford (5348K, Spring 2025

C++ code for a 3x3 “box blur”

float input[(WIDTH+2) x (HEIGHT+2)];

Total work per output image =
float output[WIDTH * HEIGHT];

9 x WIDTH x HEIGHT
For NxN filter: N2x WIDTH x HEIGHT

float weights[] = {1./9, 1./9, 1./9,
1./9, 1./9, 1./9,
1./9, 1./9, 1./9};

For now: ignore boundary pixels and assume output
for (int j=0; j<HEIGHT; j++) { image is smaller than input (makes convolution loop
for (int 1=0; i<WIDTH; 1++) { bounds much simpler to write)
float tmp = 0.°T;

for (int jj=0; jj<3; jj++)
for (int 11=0; 11<3; 1i++)
tmp += input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*3 + ii];
output[j*WIDTH + 1] = tmp;

Stanford C5348K, Spring 2025

3x3 hox blur in Halide

Total work per output image =

Functions map integer coordinates to values 9x WIDTH x HEIGHT
Var x, Yy; / (e.g., colors of corresponding pixels)
Func blurx, out: For NxN filter: N2x WIDTH x HEIGHT
Image<uint8_t> 1in = load_image(“myimage.jpg”);

// expression for computing convolution result for one output pixel

out(x,y) = 1/9.f x (1in(x-1,y-1) + in(x,y-1) + in(x+l,y-1) +
in(x-1,y) + in(x,y) + in(x+l,y) +
in(x-1,y+1) + in(x,y+1l) + in(x+1l,y+1l));

Value of blurx at coordinate (x,y) is given by expression

// execute pipeline on domain of size 1024x1024 that accesses three values of in

Image<uint8_t> result = out.realize(1024, 1024);

Halide function: an infinite (but discrete) set of values defined on N-D domain

Halide expression: a side-effect free expression that describes how to compute a
function’s value at a point in its domain in terms of the values of other functions.

Stanford C5348K, Spring 2025

An example application: two-pass blur

A 2D separable filter (such as a box filter) can be evaluated via two 1D filtering operations

P - -

Input Horizontal Blur Vertical Blur

Note: I've exaggerated the blur for illustration (the end result is actually a 30x30 blur, not 3x3)

Stanford (5348K, Spring 2025

Two-pass 3x3 blur in (++

int WIDTH = 1024;

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)];
float tmp buf[WIDTH * (HEIGHT+2)];
float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; Jj<(HEIGHT+2); j++)
for (int i=0; i<WIDTH; i++) {
float tmp = 0.f;
for (int ii=0; ii<3; ii++)
tmp += input[j*(WIDTH+2) + i+ii] * weights[ii];
tmp_buf[j*WIDTH + 1] = tmp;
}

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
float tmp = O0.f;
for (int jj=0; jj<3; jj++)
tmp += tmp buf[(j+jj)*WIDTH + i] * weights[jj];
output[j*WIDTH + i] = tmp;
}
}

Total work perimage = 6 X WIDTH x HEIGHT
For NxN filter: 2N x WIDTH x HEIGHT

WIDTH x HEIGHT extra storage
2x lower arithmetic intensity than 2D blur. Why?

1D horizontal blur

1D vertical blur

input
(W+2)x(H+2)

}

tmp_ buf
W x (H+2)

Stanford C5348K, Spring 2025

Two pass blur in Halide

Simple domain-specificlanguage embedded in (++ for describing sequences of image processing operations

Functions map integer coordinates to values

Var x, Y; / (e.g., colors of corresponding pixels)
Func blurx, out;

Halide: :Buffer<uint8 t> in = load_image(“myimage.jpg”);

blurx(x,y) = 1/3.f x (in(x-1,y) + 1in(x,y) + 1n(x+1,y));
out(x,y) = 1/3.f *x (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l)); \

Value of blurx at coordinate (x,y) is given by expression

Halide: :Buffer<uint8 t> result = out.realize(800, 600); that accesses three values of in

Halide function: an infinite (but discrete) set of values defined on N-D domain

Halide expression: a side-effect free expression that describes how to compute a
function’s value at a point in its domain in terms of the values of other functions.

Stanford C5348K, Spring 2025

A more complicated Halide program

Simple domain-specificlanguage embedded in (++ for describing sequences of image processing operations

Functions map integer coordinates to values

Var x, Y; / (e.g., colors of corresponding pixels)
Func blurx, blury, bright, out;

Halide: :Buffer<uint8 _t> in = load_image(‘“myimage.jpg”);
Halide: :Buffer<uint8_t> lookup = load_image(“s_curve.jpg”); // 255-pixel 1D image

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f x (in(x-1,y) + 1in(x,y) + 1n(x+1,y));
blury(x,y) = 1/3.f % (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l));

// brighten blurred result by 25%, then clamp . o .
bright(x,y) = min(blury(x,y) * 1.25f, 255); Value of blurx at coordinate (x,y) is given by expression

accessing three values of in

// access lookup table to contrast enhance
out(x,y) = lookup(bright(x,y));

// execute pipeline to materialize values of out in range (0:800,0:600)
Halide: :Buffer<uint8 t> result = out.realize(800, 600);

Stanford (5348K, Spring 2025

Image processing as a DAG

myimage.jpg s_curve.jpg

blurx

!
blury

!
brighten

!

Stanford C5348K, Spring 2025

Image processing pipelines feature complex DAGs of functions

Benchmark Number of Halide functions
Two-pass blur 2
Unsharp mask

Harris Corner detection 13
Camera RAW processing 30
Non-local means denoising 13
Max-brightness filter 9
Multi-scale interpolation 52
Local-laplacian filter 103
Synthetic depth-of-field 74
Bilateral filter 8
Histogram equalization 7
VGG-16 deep network eval 64

Real-world production applications may features hundreds to thousands of functions!
Google HDR+ pipeline: over 2000 Halide functions.

Stanford C5348K, Spring 2025

Key aspects of representation

m Intuitive expression:
- Adopts local “point wise” view of expressing algorithms

- Halide language is declarative. It does not define order of iteration over elements in a domain, or even
what values in domain are stored!

- It only defines what operations are needed to compute these values.
- [teration over domain points is implicit (no explicit loops)

Var x, vy;
Func blurx, out;
Halide: :Buffer<uint8 t> in = load_image(“myimage.jpg”);

// perform 3x3 box blur in two-passes
blurx(x,y) = 1/3.f x (1n(x-1,y) + 1n(x,y) + in(x+1l,y));
out(x,y) = 1/3.f *x (blurx(x,y-1) + blurx(x,y) + blurx(x,y+l));

// execute pipeline on domain of size 800x600
Halide: :Buffer<uint8 t> result = out.realize(800, 600);

Stanford C5348K, Spring 2025

Efficiently executing Halide programs
(The Interesting part!)

TWO'PaSS 3X3 blur in c++ Total work perimage = 6 x WIDTH x HEIGHT

int WIDTH = 1024; For NxN filter: 2N x WIDTH x HEIGHT

int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)]; WIDTH x HEIGHT extra storage

float tmp_buf[WIDTH * (HEIGHT+2)]; 2x lower arithmetic intensity than 2D blur. Why?

float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3};

for (int j=0; Jj<(HEIGHT+2); j++) input

for (int 1=0; i<WIDTH; i++) { (W+2)x(H+2)
float tmp = 0.f;
for (int ii=@; ii<3; ii++) 1D horizontal blur

tmp += input[j*(WIDTH+2) + i+ii] * weights[ii]; ~l

tmp_buf[j*WIDTH + 1] = tmp;

} tmp_buf

W x (H+2)

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {

float tmp = 0.f; ,l
for (int jj=0; jj<3; jj++) o

tmp += tmp_buf[(j+jj)*WIDTH + i] * weights[jj]; 1D vertical blur R
output[j*WIDTH + i] = tmp; owu xpu|-|

}
}

Stanford C5348K, Spring 2025

Two-pass image blur, “chunked” (version 1)

int WIDTH = 1024; input
. . . W+2) X (H+2
int HEIGHT = 1024; Only 3 rows of intermediate | (**2)*(H+2)

float input[(WIDTH+2) * (HEIGHT+2)]; buffer need to be allocated
float tmp buf[WIDTH * 3]; l

float output[WIDTH * HEIGHT];
tmp _buf (Wx3)

float weights[] = {1.f/3, 1.f/3, 1.f/3}; ‘l
for (int j=0; jF<HEIGHT; j++) { Produce 3 rows of tmp_buf
(only what’s needed for one output
W x H
for (int j2=0; j2<3; j2++) row of output) X

for (int i=0; i<WIDTH; i++) {
float tmp = O0.f;
for (int ii=0; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii]; Combine them together to get one row of output
tmp_buf[j2*WIDTH + 1] = tmp;

Total work per row of output:

for (int i=0; i<WIDTH; i++) { - step 1: 3 x 3 x WIDTH work
float tmp = 0.F; - step 2: 3 x WIDTH work
for (int jj=0; jj<3; jj++) Total work perimage =12 x WIDTH x HEIGHT 2???
tmp += tmp buf[jj*WIDTH + 1] * weights[jjl;
output[J*WIDTH + i] = tmp; Loads from tmp_ buffer are cached
} } (assuming tmp_buffer fits in cache)

Stanford C5348K, Spring 2025

Two-pass image blur, “chunked” (version 2)

int WIDTH = 1024;
int HEIGHT = 1024;

float input[(WIDTH+2) * (HEIGHT+2)]; Sized so entire buffer fits in cache

* ; (capture all producer-consumer locality) input

float output[WIDTH * HEIGHT];

float weights[] = {1.f/3, 1.f/3, 1.f/3}; tmp_buf

for (int j=@; jJ<HEIGHT; j+CHUNK_SIZE) {

produce a CHUNK_SIZE number of rows
for (int j2=0; j2<CHUNK_SIZE+2; j2++) of output

for (int i=0; i<WIDTH; i++) { output
float tmp = 0.f; W x H

for (int ii=@; ii<3; ii++)
tmp += input[(j+j2)*(WIDTH+2) + i+ii] * weights[ii];
P Putl (3+32)™()] ghts[11]; Produce CHUNK_SIZE rows of output

tmp_buf[j2*WIDTH + i] = tmp;
/ Total work per chuck of output: (assume CHUNK_SIZE = 16)
for (int j2=0; j2<CHUNK_SIZE; j2++) - Step 1: 18 x 3 x WIDTH work

for (int i=@; i<WIDTH; i++) { - Step 2: 16 x 3 x WIDTH work
float tmp = 0.f; Total work per image: (34/16) x 3 x WIDTH x HEIGHT
for (int jj=0; jj<3; jj++) = 6.4 X WIDTH x HEIGHT
tmp += tmp_buf[(j2+jj)*WIDTH + i] * weights[jj]; 4
output[(j+j2)*WIDTH + i] = tmp;]
} E
} Trends to ideal value of 6 x WIDTH x HEIGHT as CHUNK_SIZE is increased!

Produce enough rows of tmp_buf to l W x (CHUNK_SIZE+2)

Stanford C5348K, Spring 2025

Still not done

m We have not parallelized loops for multi-core execution
m We have not used SIMD vector instructions to execute loop bodies
m Other common performance optimizations: loop unrolling, etc...

Stanford C5348K, Spring 2025

Optimized implementation of 3x3 box blur in x86 SSE intrinsics

Good: ~10x faster on a quad-core CPU than my original two-pass code
Bad: specific to SSE (not AVX2), CPU-code only, hard to tell what is going on at all!

void fast_blur (const Image &in, Image &blurred) { Multi-core execution
#pragma omp parallel for

for (int yTile = 0; yTile < in.height(); yTile += 32) {
-ml28i a, b, ¢, sum, avg;

- ml28i tmp[(256/8)*(32+2)];

for (int xTile = 0; xTile < in.

-ml28i *tmpPtr = tmp;

for (int y = =-1; y < 32+41; y++) {
const uintlé_t *inPtr = &(in(xTile,
for (int x = 0; x < 256; x += 8) {
a mm loadu _sil28((..ml28i%) (inPtr-1));
b mm_ loadu_sil28((..ml28i*) (inPtr+l));
c mm load sil28((..ml28ix) (inPtr));
sum _mm_add_epilé6(_mm add epil6é(a, b), c);

avg _mm mulhi epil6é(sum, one_third);
_mm_store_sil28 (tmpPtr++, avgqg);
inPtr += 8;

}}

tmpPtr = tmp;

for (int y = 0; y < 32; y++) {

idth(); xTile += 256) { *—— Modified iteration order:
256x32 tiled iteration (to

ilety)) ; maximize cache hit rate)

use of SIMD vector
intrinsics

~.ml28i xoutPtr = (_.ml28i *) (& (blurred(xTile, yTile+y))); two passesfused into one:
for (int x = 0; x < 256; x += 8) { tmp data read from cache
a = _mm load sil28 (tmpPtr+(2%x256)/8); P

b =_mm load sil28 (tmpPtr+256/8);

¢ = _mm load sil28 (tmpPtr++);

sum = mm_add epilé(_mm add epilé(a, b)), c);

avg = _mm mulhi epil6 (sum, one_third);

mm_store_sil28 (outPtr++, avqg);

133338

Stanford (5348K, Spring 2025

One (serial) implementation of Halide

Func blurx, out;
Var X, y, X1, yi;
Halide: :Buffer<uint8_t> in = load_image(‘“myimage.jpg”);

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f; input
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l)) / 3.0f; (W+2)x(H+2)
Halide: :Buffer<uint8_t> result = out.realize(1024, 1024); ‘l
* blurx
Equivalent “C-style” loop nest: W x (H+2)
allocate 1n(1024+2, 1024+2);
allocate blurx(1024,1024+2); l
allocate out(1024,1024);
for y=0 to 1024: WOUtH
for x=0 to 1024+2: X
blurx(x,y) = .. compute from in

for y=0 to 1024:
for x=0 to 1024:
out(x,y) = .. compute from blurx

Stanford C5348K, Spring 2025

Key aspect in the design of any system:

Choosing the “right” representations for the job

m Good representations are productive to use:
- Embody the natural way of thinking about a problem

m Good representations enable the system to provide the application useful services:
- Validating/providing certain guarantees (correctness, resource bounds, type checking)

- Performance (parallelization, vectorization, use of specialized hardware)

Now the job is not expressing an image processing computation, but
generating an efficient implementation of a specific Halide program.

Stanford C5348K, Spring 2025

A second set of representations for “scheduling”

Func blurx, out;
Var Xx, y, X1, yi;
Halide: :Buffer<uint8 t> in = load_image(“myimage.jpg”);

// the "“algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

// ‘“the schedule” (how to do 1it)
out.tile(x, y, xi, yi, 256, 32).vectorize(xi,8).parallel(y);

When evaluating out, use 2D tiling order
(loops named by x, y, xi, yi).
Use tile size 256 x 32.

blurx.compute_at(x).vectorize(x, 8);

T

Produce elements blurx on demand for

each tile of output.
Vectorize the x (innermost) loop Use threads to parallelize the y loop

“Schedule”

Vectorize the xi loop (8-wide)

// execute pipeline on domain of size 1024x1024
Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

Scheduling primitives allow the programmer to specify a high-level “sketch” of how to schedule the algorithm onto a
parallel machine, but leave the details of emitting the low-level platform-specific code to the Halide compiler

Stanford C5348K, Spring 2025

Primitives for iteration order

Specify both order and how to parallelize
(multi-thread, vectorize via SIMD instr)

serial x, serial y

to]| —+——>p2
]| —+—f>p2 34| 798 11 12
=
| et | | 15 16[19 20|23 24
nn 2D blocked iteration order
BEEREREAE 27 28|31 32|35 36
serial y parallel y split x into 2x_+x,,
vectorized x vectorized X splity into 2y +y,

serialy , X , Y, X

(In diagram, numbers indicate sequential order of processing within a thread)

Stanford C5348K, Spring 2025

Ordering Halide loop nests

Halide algorithm: Halide schedule:
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f; blurx.compute _root();
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

Loop nest diagram of implementation: C-code equivalent:

<root>
allocate 1n(1024+2, 1024+2):

gererers T allocate blurx(1024,1024+2);

— Allocin
Jll allocate out(1024,1024);
: Alloc out j
for y=0 to 1024:
blurx_y _loop for x=0 to 1024+2: | Loops for computing values of blurx
blurx(x,y) = .. compute from 1n
|_ for y=0 to 1024:
blurx x loo for x=0 to 1024: .
Ll out(x,y) = .. compute from blurx Loops for computing values of out

out_y loop

|— out_x_loop

Stanford C5348K, Spring 2025

Ordering Halide loop nests

Halide algorithm: Halide schedule:
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; out.tile(x, y, xi, yi, 256, 32);
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+l1l)) / 3.0f; blurx.compute_at(out, x1i);

Halide: :Buffer<uint8 t> result = out.realize(1024, 1024);

Loop nest diagram of implementation: Another possible implementation:
<root> allocate in(1024+2, 1024+2); // (width, height).. initialize from image
............... allocate out(1024,1024); // (width,height)
 Mocin 3
 Rilocout for y=0 to num_tiles_y: Outer loops over tiles of out
--------------- d for x=0 to num_tiles_x
out_y_loop .
—/ = for yi1=0 to 32: .
L T IInnerIoopsforcomputmgvaluesofout
out XA|00p 1dXx X = x*k256+Xx1;
d = yx32+
ldx_y =y yi / Only allocate 3 elements of blurx
out_yi_loop allocate blurx(1,3)
L__ out Xi|00p // compute 3 elements of blurx needed for out(idx x, 1dx_y) here
- for blurx_y=0 to 3:
"""""""" blurx(0, blurx y) = .. // compute blurx from in
blurx y |00p out(idx_x, 1dx_y) = .. // compute out from blurx

Stanford C5348K, Spring 2025

Ordering Halide loop nests

Halide algorithm:

blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f;
= (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l)) / 3.0f;
out.realize(1024, 1024);

out(x,y)

Halide: :Buffer<uint8 t> result

Loop nest diagram of implementation:
<root>

out_y_loop

'—

blurx_yi_loop

out_yi_loop

I— out_xi_loop

L blurx_xi_loop

C-code equivalent:

Halide schedule:

out.tile(x, y, xi, yi, 256, 32);
blurx.compute_at(out, x);

allocate in(1024+2, 1024+2):

allocate out(1024,

for y=0 to num_tiles y:
for x=0 to num_tiles x:

1024);

I Outer loops over tiles of out

allocate blurx(256, 34) E——————————— 0]y allocate a tile of blurx

for yi=0 to
for x1=0

32+2:
to 256:

blurx(xi,yl) =

for yi=0 to
for x1=0
1dx_x

1dx_y

32 :[Inner loops for computing

to 256:
= X*256+X1;
= y*32+yl

out(1dx_x, 1dx_y) =

I Loops for computing values of blurx

values of out (loops over elements)

Stanford C5348K, Spring 2025

o o o
A n I n te re St I n g H a I I d e S Ch e d u I e “Compute necessary elements of blurx within out’s xi loop nest,

but fill in tile-sized buffer allocated at x loop nest.”

Halide algorithm: Halide schedule:
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; out.tile(x, y, xi, yi, 256, 32);
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l)) / 3.0f; blurx.store _at(out, Xx);
Halide: :Buffer<uint8 t> result = out.realize(1024, 1024); blurx.compute_at(out, xi);

Loop nest diagram of implementation: C-code equivalent:

<root> allocate 1in(1024+2, 1024+2); // (width,height).. initialize from 1mage
allocate out(1024,1024); // (width, height)

Kﬂ ------- g for y=0 to num_tiles_y: .
..... ROTT for x=0 to num tiles X: Outer loops over tiles of out

out_y_ loop allocate blurx(256, 34)€—— Allocate a tile of blurx

for yi1=0 to 32: I Loops for computing values of out
L out_x_loop for x1=0 to 256: P P]

: Alloc blurx : 1dx_x = x*256+Xx1; This recomputes values. Can compiler be smarter?
lllllllllllllll idx_y — y*32+y1 .

out_yi_loop

L
b

lurx_y_loop

// compute 3 elements lurx needed for out(idx x, 1dx y) here
for blurx_y=0 to 3:
blurx(xi, yi1 + blurx y) = .. // compute blurx from in

out(idx x, 1dx_y) = .. // compute out from blurx

Stanford C5348K, Spring 2025

“S| Idlng optimization” (reduces redundant computation)

“Compute necessary elements of blurx within out’s xi loop nest,
but fill in tile-sized buffer allocated at x loop nest.”

Halide algorithm: Halide schedule:
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; out.tile(x, y, xi, yi, 256, 32);
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l)) / 3.0f; blurx.store _at(out, Xx);
Halide: :Buffer<uint8 t> result = out.realize(1024, 1024); blurx.compute_at(out, xi);

Loop nest diagram of implementation: C-code equivalent:

<root> allocate 1n(1024+2, 1024+2); // (width,height).. initialize from image
TR allocate out(1024,1024); // (width,height)

Fhilocout for y=0 to num_tiles_y: :
............... ; for x=0 to num tiles x: Outer loops over tiles of out

out_y loop
' for yi=0 to 32:
| out_x_loop for xi=0 to 256: Loops for computing values of out
............... }gx_x 3 X*__z,’geﬂ.(?; Steady state: only one new element of blurx
AIIocqurx 1AX_Y = Yy*3£+Yy1;
............... needs to be computed per output
out_yi_loop if (yi1=0) {

// compute 3 elements of blurx needed for out(idx x, idX _y) here

‘ . for blurx _y=0 to 3:
out_xi_loop blurx(xi, yi + blurx_y) = .. // compute blurx from in
. } else
b : :

lurx_y_loop (incremental) blurx(xi, yi + 2) = .. // compute one additional element of blurx

out(idx_x, idx_y) = .. // compute out from blurx

Stanford C5348K, Spring 2025

ul:olding optimization” (reduces intermediate storage)

“Compute necessary elements of blurx within out’s xi loop nest,
but fill in tile-sized buffer allocated at x loop nest.”

Halide algorithm: Halide schedule:
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1,y)) / 3.0f; out.tile(x, y, xi, yi, 256, 32);
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1l)) / 3.0f; blurx.store _at(out, Xx);
Halide: :Buffer<uint8 t> result = out.realize(1024, 1024); blurx.compute_at(out, xi);

Loop nest diagram of implementation: C-code equivalent:

<root> allocate 1n(1024+2, 1024+2); // (width,height).. initialize from image
TR allocate out(1024,1024); // (width,height)

Fhilocout for y=0 to num_tiles_y: :
............... ; for x=0 to num tiles x: Outer loops over tiles of out

allocate blurx(256, 3) € Allocate only 3 rows of blurx tile

out_y loop
' for yi=0 to 32:
| out_x_loop for xi=0 to 256: Loops for computing values of out
.............................. _ igi—; : ;I;gf;)l(l Steady state: only one new element of blurx
: Alloc blur (folded) " ' needs to be computed per output
out_yi_loop if (yi1=0) {

// compute 3 elements of blurx needed for out(idx x, idX _y) here

‘ . for blurx _y=0 to 3:
out_xi_loop blurx(xi, yi + blurx_y) = .. // compute blurx from in
. } else
b —

lurx_y_loop (incremental) blurx(xi, (yi + 2) % 3) = .. // compute one additional element of
Accesses to blurx modified to access appropriate row of circular buffer: —out (idx_x, idx y) = .. // compute out from blurx

Stanford C5348K, Spring 2025

Summary of scheduling the 3x3 box blur

// the “algorithm description” (declaration of what to do)
blurx(x,y) = (in(x-1, y) + in(x,y) + in(x+1l,y)) / 3.0f;
out(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+l)) / 3.0f;

// ‘“the schedule” (how to do 1t)
out.tile(x, y, x1i, yi, 256, 32).vectorize(xi,8).parallel(y);
blurx.compute_at(out, x).vectorize(x, 8);

Equivalent parallel loop nest:

for y=0 to num_tiles y: // 1ters of this loop are parallelized using threads
for x=0 to num_tiles x:
allocate blurx(256, 34)
for yi=0 to 32+2:
for x1=0 to 256+2 by 8:
blurx(xi,yi) = .. // compute blurx from in using 8-wide
// SIMD instructions here
// compliler generates boundary conditions
// since 256+2 1isn’t evenly divided by 8
for yi=0 to 32:
for x1=0 to 256 by 8:
1dXx_X = x*k256+Xx1;
1dx_y = yx32+yil
out(idx _x, 1dx y) = .. // compute out from blurx using 8-wide
// SIMD instructions here

Stanford C5348K, Spring 2025

What is the philosophy of Halide

m Programmer is responsible for describing an image processing algorithm

m Programmer has knowledge to schedule application efficiently on machine (but it’s slow and tedious),
so0 give programmer another lanqguage to express their high-level scheduling decisions

- Loop structure of code
- Unrolling / vectorization / multi-core parallelization

m The system (Halide compiler) is not smart, it provides the service of mechanically carrying out the nitty
gritty details of implementing the schedule using mechanisms available on the target machine
(pthreads, AVX intrinsics, CUDA code, etc.)

- There are deviations from this philosophy in Halide? What are they?

Stanford C5348K, Spring 2025

Constraints on language

(to enable compiler to provide desired services)

m Application domain scope: computation on reqular N-D domains
m Only feed-forward pipelines (includes special support for reductions and fixed recursion depth)

m All dependencies inferable by compiler

Stanford C5348K, Spring 2025

Initial academic Halide results

m Application 1: camera RAW processing pipeline
(Convert RAW sensor data to RGB image)

- Original: 463 lines of hand-tuned ARM NEON assembly
- Halide: 2.75x less code, 5% faster

[Ragan-Kelley 2012}

Denoise
Demosaic
Color correct

Tone curve

B Application 2: bilateral filter
(Common image filtering operation used in many applications)

- Original 122 lines of C++

- Halide: 34 lines algorithm + 6 lines schedule
- (PUimplementation: 5.9x faster

- GPUimplementation: 2x faster than hand-written CUDA

l‘ . ‘\
- : Grid .
: -~ A » . > =
2 B , % construction .« i > _ 2
"&l ‘\»I . " N . : - o "‘ , \ " , " > S -
- - TR 2 = t T TR F
T e 3 (reduction) et
o # ~ e & - 9 o
7
|

‘ Blurring
v
—>. Slicing
L

Stanford C5348K, Spring 2025

Stepping back: what is Halide?

m Halide is a DSL for helping expert developers optimize image processing code more rapidly

- Halide does not decide how to optimize a program for a novice programmer (ignoring the auto scheduler,
see tonight’s reading)

- Halide provides a small number of primitives for a programmer that has strong knowledge of code
optimization to rapidly express what optimizations the system should apply

- parallel, vector, unroll, split, reorder, store at, compute at...

- Halide compiler carries out the mapping of that strategy to a machine

Stanford C5348K, Spring 2025

Automatically generating Halide schedules

m Problem: it turned out that very few programmers have the technical ability to write

good Halide schedules
- Circa2017... 80+ programmers at Google write Halide

- Very small number trusted to write schedules

m Recent work: Halide compiler analyzes the Halide program to automatically generate
efficient schedules for the programmer [Mullapudi 2016, Adams 2019]

— As of Adams 2019, you'd have to work hard to manually author a schedule that is better than the schedule
generated by the Halide autoscheduler for a complex image processing pipeline

Stanford C5348K, Spring 2025

Influence on code generation for ML applications
Example: Apache TVM

Tuning Parameters of Thread Numbers

How to schedule the workload, say, 32x32 among the threads of one cuda block? Intuitively, it should be like 1

num_thread_y = 8
num_thread_x = 8
thread_y = tvm.thread_axis((@, num_thread_y), "threadIdx.y")
thread x = tvm.thread axis((®, num_thread x), "threadIdx.x")

ty, yi = s[Output].split(h_dim, nparts=num_thread_y)

An End to End Machine Learning Compiler Framework for tx, xi = s[Output].split(w_dim, nparts=num_thread_x)

s [Output].reorder(ty, tx, yi, xi)
CPUs, GPUs and accelerators i g e

s [Output].bind(tx, thread_x)

—J Schedule Primitives in TVM

There are two parameters in the schedule: num_thread_y and num_thread_x. How to determine the optimal

split Below is the result with Filter = [256, 1, 3, 3] and stride = [1, 1]:
tile
Case Input num_thread_y num_thread_x

fuse

1 [1,256,32,32] 8 32
reorder 2 [1, 256,32, 32] 4 32
bind 3 [1,256,32,32] 1 32
compute_at 4 (1,256, 32,32] 3 1

ComPUtE_Inllne Many interesting observations from above results:

compute_root

Summary
Reduction Stanford (5348K, Spring 2025

