
Visual Computing Systems 
Stanford CS348K, Spring 2025

Lecture 1:

Course Introduction + 
Review of Throughput HW Architecture



Stanford CS348K, Spring 2025

Hello from the course staff
Your instructor (me) Your CAs

Prof. Kayvon

VishnuPurvi
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Visual computing applications have always demanded 
some of the world’s most advanced computing systems
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Ivan Sutherland’s Sketchpad on MIT TX-2 (1962)
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The frame buffer
Shoup’s SuperPaint (PARC 1972-73)

16 2K shift registers (640 x 486 x 8 bits)
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The frame buffer 16 2K shift registers (640 x 486 x 8 bits)

Shoup’s SuperPaint (PARC 1972-73)
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Xerox Alto (1973)

TI 74181 ALU
Bravo (WYSIWYG)
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Goal: render everything you’ve ever seen
“Road to Pt. Reyes” 

LucasFilm (1983)
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Pixar’s Toy Story (1995)

“We take an average of three hours to draw a single frame on the fastest computer money can buy.” 
  - Steve Jobs
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Clark’s geometry engine (1982)

Figure 2: Photograph of the Geometry Engine. 

ASIC for geometric transforms 
used in real-time graphics
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NVIDIA Titan RTX 4090 GPU

~ 80 TFLOPs fp32 *
About the performance of the world’s top supercomputer in 2004 **
* doesn’t count texture filtering ops, ray tracing ops, and 1300 TFLOPS of DNN compute
** not apples-to-apples since BlueGene/L is double precision flops
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Modern smartphones utilize multiple processing units to quickly 
generate high-quality images

Image Credit: Anandtech / TechInsights Inc.

Apple A13 Bionic

Multi-core CPU (heterogeneous cores) 
Multi-core GPU 
Neural accelerator 
Sensor processing accelerator 
Video compression/decompression HW 
Etc…



Stanford CS348K, Spring 2025

Hardware acceleration of DNN inference/training

Google TPU3

Huawei Kirin NPU

Apple Neural Engine

GraphCore IPU

Ampere GPU with 
Tensor Cores

Intel Deep Learning 
Inference Accelerator

Cerebras Wafer Scale Engine

SambaNova 
Cardinal SN10
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Digital photography: major driver of compute capability 
of modern smartphones

High dynamic range (HDR) photography
Portrait mode 

(simulate effects of large aperture DSLR lens)
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Apple Vision Pro (2024)
~11.4M visible pixels per panel 
(28 Mpixel display)
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On every vehicle: analyzing images for transportation

https://bayareatelegraph.com/2024/08/21/what-its-really-like-to-ride-in-a-waymo-self-driving-car/
Credit: Smith Collection/Gado
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Datacenter-scale applications

Google TPU pods
Image Credit: TechInsights Inc.
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NVIDIA B200 DGX

36 PFLOPs (Tensor Core BF16 precision) 
600 TFLOPS (FP32 math)
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Scaling up (for training big models)
Example: GPT-3 language model

(Amount of training — note this is log scale)

Very big models + 
More training  
= 
Better accuracy

Power law effect: 
exponentially more compute to take 

constant step in accuracy
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Training image/video/text foundation models

Video generated by OpenAI’s Sora.



Stanford CS348K, Spring 2025

[ControlNet 2023]
AI generated visual content
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Youtube Transcode, stream, analyze…

Google VPU transcoding HW 
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What is this course about? 

Accelerator hardware architecture? 

Graphics/vision/digital photography algorithms? 

Programming systems?
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What we will be learning about

Visual Computing Workloads 
Algorithms for image/video processing, 

DNN evaluation, generative AI, etc.

Table 4. Results on NYUDv2. RGBD is early-fusion of the
RGB and depth channels at the input. HHA is the depth embed-
ding of [15] as horizontal disparity, height above ground, and
the angle of the local surface normal with the inferred gravity
direction. RGB-HHA is the jointly trained late fusion model
that sums RGB and HHA predictions.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

Gupta et al. [15] 60.3 - 28.6 47.0
FCN-32s RGB 60.0 42.2 29.2 43.9

FCN-32s RGBD 61.5 42.4 30.5 45.5
FCN-32s HHA 57.1 35.2 24.2 40.4

FCN-32s RGB-HHA 64.3 44.9 32.8 48.0
FCN-16s RGB-HHA 65.4 46.1 34.0 49.5

NYUDv2 [33] is an RGB-D dataset collected using the
Microsoft Kinect. It has 1449 RGB-D images, with pixel-
wise labels that have been coalesced into a 40 class seman-
tic segmentation task by Gupta et al. [14]. We report results
on the standard split of 795 training images and 654 testing
images. (Note: all model selection is performed on PAS-
CAL 2011 val.) Table 4 gives the performance of our model
in several variations. First we train our unmodified coarse
model (FCN-32s) on RGB images. To add depth informa-
tion, we train on a model upgraded to take four-channel
RGB-D input (early fusion). This provides little benefit,
perhaps due to the difficultly of propagating meaningful
gradients all the way through the model. Following the suc-
cess of Gupta et al. [15], we try the three-dimensional HHA
encoding of depth, training nets on just this information, as
well as a “late fusion” of RGB and HHA where the predic-
tions from both nets are summed at the final layer, and the
resulting two-stream net is learned end-to-end. Finally we
upgrade this late fusion net to a 16-stride version.

SIFT Flow is a dataset of 2,688 images with pixel labels
for 33 semantic categories (“bridge”, “mountain”, “sun”),
as well as three geometric categories (“horizontal”, “verti-
cal”, and “sky”). An FCN can naturally learn a joint repre-
sentation that simultaneously predicts both types of labels.
We learn a two-headed version of FCN-16s with seman-
tic and geometric prediction layers and losses. The learned
model performs as well on both tasks as two independently
trained models, while learning and inference are essentially
as fast as each independent model by itself. The results in
Table 5, computed on the standard split into 2,488 training
and 200 test images,9 show state-of-the-art performance on
both tasks.

9Three of the SIFT Flow categories are not present in the test set. We
made predictions across all 33 categories, but only included categories ac-
tually present in the test set in our evaluation. (An earlier version of this pa-
per reported a lower mean IU, which included all categories either present
or predicted in the evaluation.)

Table 5. Results on SIFT Flow9 with class segmentation
(center) and geometric segmentation (right). Tighe [36] is
a non-parametric transfer method. Tighe 1 is an exemplar
SVM while 2 is SVM + MRF. Farabet is a multi-scale con-
vnet trained on class-balanced samples (1) or natural frequency
samples (2). Pinheiro is a multi-scale, recurrent convnet, de-
noted RCNN3 (�3). The metric for geometry is pixel accuracy.

pixel
acc.

mean
acc.

mean
IU

f.w.
IU

geom.
acc.

Liu et al. [25] 76.7 - - - -
Tighe et al. [36] - - - - 90.8

Tighe et al. [37] 1 75.6 41.1 - - -
Tighe et al. [37] 2 78.6 39.2 - - -
Farabet et al. [9] 1 72.3 50.8 - - -
Farabet et al. [9] 2 78.5 29.6 - - -
Pinheiro et al. [31] 77.7 29.8 - - -

FCN-16s 85.2 51.7 39.5 76.1 94.3

FCN-8s SDS [17] Ground Truth Image

Figure 6. Fully convolutional segmentation nets produce state-
of-the-art performance on PASCAL. The left column shows the
output of our highest performing net, FCN-8s. The second shows
the segmentations produced by the previous state-of-the-art system
by Hariharan et al. [17]. Notice the fine structures recovered (first
row), ability to separate closely interacting objects (second row),
and robustness to occluders (third row). The fourth row shows a
failure case: the net sees lifejackets in a boat as people.

6. Conclusion

Fully convolutional networks are a rich class of mod-
els, of which modern classification convnets are a spe-
cial case. Recognizing this, extending these classification
nets to segmentation, and improving the architecture with
multi-resolution layer combinations dramatically improves
the state-of-the-art, while simultaneously simplifying and
speeding up learning and inference.

Acknowledgements This work was supported in part

If you don’t understand key workload characteristics, 
how can you design a “good” system?
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What we will be learning about

If you don’t understand key constraints of modern 
hardware, how can you design algorithms that are 

well suited to run on it efficiently?

Modern Hardware 
Organization

High-throughput hardware designs 
(parallel, heterogeneous, and specialized) 

fundamental constraints like area and power
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What we will be learning about

Good programming abstractions enable productive 
development of applications, while also providing system 

implementors flexibility to explore highly efficient 
implementations

Programming Model Design

Choice of programming abstractions, 
level of abstraction issues, 

domain-specific vs. general purpose, etc.

Halide
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This course is about architecting efficient, scalable systems…

It is about the process of understanding the fundamental structure of problems in the 
visual computing domain, and then leveraging that understanding to… 

To design more efficient and more robust algorithms 

To build the most efficient hardware to run these algorithms 

To design programming systems to make developing new applications simpler, more 
productive, and highly performant
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2025 course topics
The digital camera photo processing pipeline in modern smartphones 

What a modern smartphone camera does
Programming abstractions for scheduling image processing code onto parallel hardware

Use of differential rendering for 3D reconstruction/capture
The role of differentiable programming in systems like NeRF, Gaussian Splatting, etc..

Making generative AI (for images, videos, animation, and more) usable
The problem of controlling the output of these models

Developing AI Agents for 3D environments
Making LLM-based agents and computer game bots 
Training agents in simulation, and the high-performance simulation systems needed to do this 
How do we evaluate these agents?

And how we obtain good training data for them

The design of a modern differentiable programming language for the GPU

Generative AI for interactive worlds (“world models”)
Will future world simulators be more like game engines? Or more like learned models?

ALWAYS SUBJECT 

TO CHANGE!
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Logistics and Expectations
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Logistics
Course web site: 
- http://cs348k.stanford.edu 
- My goal is to post lecture slides the night before class 

All announcements will go out via Ed Discussion
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My expectations of you
50% participation (25% in class + 25% written responses) 
- There will be ~1 assigned technical paper reading per class 
- You will submit a response to each reading by 9am on class days via Gradescope 
- We will do an impromptu in class question during most class days as well 
- We will start most classes with a 30-45 minute discussion of the reading 

50% self-selected term project 
- I suggest you start thinking about projects now 
- Proposals will be due in week 4 (we can meet 1-on-1 now about ideas, even if they are covered 

in later lecture topics)  
- Teams of up to 3 

Implications: 
Attendance is required 
Auditing is not permitted
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Reading response template
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Activity: let’s design two systems
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System 1: OpenAI is getting into the smartphone camera business. 
You were just hired as the lead architect.

Image credit: Google
Magic Eraser Feature

Portrait Mode Feature

High Dynamic 
Range Scenes
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Systems architects begin with explicitly stating goals, 
non-goals, and assumptions

“Given these inputs, we wish to generate these outputs…” 
“We are working under the following constraints” 

- Example: the output images should have these properties 

- Example: the algorithm should have certain performance...  
- Should run in real time 
- Should be widely parallelizable, so it can run efficiently on a multi-core GPU 

- Example: the user experience must have these properties 
- Should not require user intervention to get “good” output
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Why is establishing goals and constraints so important?
It defines the requirements of a "good" solution 

It provides a framework for assessing/evaluating the quality of the designer’s decisions 

And for communicating with others: It provides context that leads to more generalizable 
knowledge. Since readers likely do not have the same goals and constraints as a paper's 
authors, understanding the author's goals and constraints helps readers understand 
which design decisions are applicable to their own problems
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Discussion
What are your image quality / feature list goals? 

What are your performance goals? Why? 

What are your user experience goals?
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System 2: Kayvon wants to have an office accessible to the world

Can we solve the case of a remote person interrupting 
me in my office for a quick conversation 
(in a socially acceptable way)?
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Systems architects begin with explicitly stating goals, 
non-goals, and assumptions

What are the goals of the system? 
What are non-goals? 
What are the key constraints?
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Tonight’s reading
“What Makes a Graphics System Beautiful,” (2019), a blog post by me about thinking 
about goals and constraints. 
- The ideas in this post are how I want to you think about the systems we discuss in this 

course 

“Burst Photography for High Dynamic Range and Low-light Imaging on Mobile Cameras” 
(2016) 
- How a key feature in the Google Pixel phone camera works 
- Tonight read the front part of the paper for goals/constraints/assumptions. 
- We’ll finish up the technical details of the paper after next lecture
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Welcome to CS348K!

See website for tonight’s reading


