
Visual Computing Systems 
Stanford CS348K, Spring 2025

Lecture 7:

Neurosymbolic Methods for 
Visual Content Generation

Pre-class meet n’ greet topics for your table:

What topic do you wish to do your project on?



Stanford CS348K, Spring 2025

Key theme in the class: 
picking the right representation for the job 

Two examples: 

Frankencamera: chooses a timeline representation for telling an abstract camera 
machine to acquire shots 

Halide: provides set of primitives for scheduling loop nests (for computations on dense 
arrays) 



Stanford CS348K, Spring 2025

What are signs that a system designer has wisely selected 
good representations for the task at hand?



Stanford CS348K, Spring 2025

Learned representations
Examples from last time: exploit structure of learned representations to enhance control 
over generate AI output

Example 1: ControlNet… add extra DNN layers “on the side” 
to capture intended control behavior

Example 2: prompt2prompt editing. Hold transformer’s attention 
layer constant to maintain image coherence on edits. 



Stanford CS348K, Spring 2025

Common case: implicitly “teach” a model your control intent via providing paired 
data examples. (Let model learn largely uninterpretable weights that do the job) 

Edge detection

Segmentation

Another example: 
Pose Estimation

Depth



Stanford CS348K, Spring 2025

Neurosymbolic methods: combining traditional symbolic 
representations with learned representations



Stanford CS348K, Spring 2025

An increasingly common paradigm for generative AI
Reducing generation tasks to the act of writing programs

High-level specification
“Chair with a flat back”

Domain-specific language providing 
useful primitives 

(often with precise semantics)

Program generation 
engine 

(e.g.: LLM, DNN)
Execute program

Generated output



One benefit: a program is a human interpretable representation
We read and edit programs all the time!



Stanford CS348K, Spring 2025

Editing motion graphics (vector graphics animations)
1. Video —> SVG keyframe animation (computer vision) 
2. LLM edits the SVH file (e.g., change yellow rectangle to texture map) 
3. Re-render animation



Stanford CS348K, Spring 2025

Another example
Python programs as “plans” to 
carry out tasks in 3D environments

LLM code 
generator

Notice how the program queries for state of environment and 
exhibits simple conditional execution.



Stanford CS348K, Spring 2025

Generating animations
High-level motion editing commands —> programs that perform keyframe edits —> use AI model (diffusion) to 
interpolate the keyframes



Stanford CS348K, Spring 2025

Another example
Programs as “plans” to answer questions

Note how the DSL contains primitives 
that themselves might be implemented 
as “Black-box” DNNs



Stanford CS348K, Spring 2025

What is the DSL for the following edit?
Given this photo, make the cat’s tail curve back into 
the frame. 

Let’s think about the pros and cons of this program-
driven generation/editing approach:

What are the benefits? 

What are limitations of this approach?



Stanford CS348K, Spring 2025

Challenges
Designing a DSL can be challenging 
- What primitives to include? How to implement these primitives? 
- Problems must down into clearly defined, self-contained steps 

How do we know when a learned program generator produces a valid program (a program 
that performs the task specified in the controls)? 
- Can we predict when a program generator will fail?



Stanford CS348K, Spring 2025

MoVER: tonights reading (SIGGRAPH 2025)

Follows an emerging pattern in AI-based program generation 
Given an editing instruction, generate: 
- A program that performs the edit 
- A set of predicates that should be true if the edit was successfully performed (verifiers) 
If any of the predicates fail, have the program generator try again (given information about its prior failures) 
Questions: 

What is the collection of verifiers? 
Can the verifiers be “powerful enough” to provide useful checking?



Stanford CS348K, Spring 2025

Project Discussions


