Pre-class meet n' greet topics for your table:
What topic do you wish to do your project on?

Lecture 7:

Neurosymbolic Methods for
Visual Content Generation

Visual Computing Systems
Stanford C5348K, Spring 2025

Key theme in the class:
picking the right representation for the job

Two examples:

m Frankencamera: chooses a timeline representation for telling an abstract camera
machine to acquire shots

m Halide: provides set of primitives for scheduling loop nests (for computations on dense
arrays)

Stanford C5348K, Spring 2025

What are signs that a system designer has wisely selected
good representations for the task at hand?

Learned representations

Examples from last time: exploit structure of learned representations to enhance control
over generate Al output

Example 1: ControlNet... add extra DNN layers “on the side” Example 2: prompt2prompt editing. Hold transformer’s attention
to capture intended control behavior | ‘ layer constant to maintain image coherence on edits.

Prompt ¢, Time ¢
i

J
Text Time Condition ¢y
Encoder | |Encoder l
|

zero convolution
Input z,

M

AWy

hl Il

SD Encoder Block A 8| ~ SD Encoder Block A §
64x64 64x64 (trainable copy)
I]
[SD Encoder Block B <3 SD Encoder Block B | 3
32x32 32x32 (trainable copy)

| l
(SD Encoder Block C | 3 SD Encoder Block C | 3
L 16x16 a8 16x16 (trainable copy)
I]
([SD Encoder
L Block D 8x8 a} %3
|
[SD Middle al-
L Block 8x8)
|
([SD Decoder 8|3
L Block D 8x8 ¢
|
(SD Decoder Block C | 3
L 16x16 [
|
[SD Decoder Block B] ‘3

32x32

SD Encoder Block D <4
8x8 (trainable copy)
l

SD Middle Block
L 8x8 (trainable copy)

zero convolution

zero convolution | x3

zero convolution

zero convolution

|
SD Decoder Block A .
a x zero convolution

64x64

¥
Output €y(z, ¢, ¢,)

(a) Stable Diffusion (b) ControlNet e e e Stanford C5348K, Spring 2025

Common case: implicitly “teach” a model your control intent via providing paired
data examples. (Let model learn largely uninterpretable weights that do the job

Edge detection

Segmentation

Another example:
Pose Estimation

Depth

Stanford (5348K, Spring 2025

Neurosymbolic methods: combining traditional symbolic
representations with learned representations

Stanford C5348K, Spring 2025

Reducing generation tasks to the act of writing programs

High-level specification

“Chair with a flat back” \ Program generation

engine

(e.g.: LLM, DNN)

— Execute program

Domain-specific language providing
useful primitives
(often with precise semantics)

def Chair():

bbox = Cuboid(1.2, 1.4, 1, T)

base = Base(.9, .5, .8, T)

seat = Seat(1.1, .1,.9, T)

back = Back(1.1, .9, .2, F)

arm = Cuboid(.1, .4, .7, F)
attach(base, bbox, .5, 0, .5, .5, 0, .5)
squeeze(back, bbox, base, top, .5, .1)
attach(seat, base, .5, 0, .5, 5, 1, .5)
attach(arm, back, .5, .5, 0, .1, .3, .5)
attach(arm, seat, .5, 0, .5, .1, .7, .5)
reflect(arm, X)

def Back(l, w, h, aligned):

bbox = Cuboid(l, w, h, aligned)

surface = Cuboid(1.16, .64, .13, T)

slat = Cuboid(.04, .76, .1, F)
attach(surface, bbox, .5, 1, .5, .5, 1,.7)
attach(slat, bbox, .5, 0, .5, .2, 0, .45)
attach(slat, surface, .5, .6, .8, .2, .3, .2)
reflect(slat, X)

—

An increasingly common paradigm for generative Al

Generated output

Stanford C5348K, Spring 2025

One benefit: a program is a human interpretable representation

We read and edit programs all the time!

def Chair():
bbox = Cuboid(.82, 1.6, .85, T)
base = Base(.75, .66, .66, T)
seat = Seat(.8, .13, .85, T)
back = Back(.8, .9, .1, T)

attach(base, bbox, .5, 0, .5, .5, 0, .5)
attach(back, bbox, .5, 1, .5, .5, 1, .05)
attach(seat, base, .5, .0, .5, .5, 1, .5)
attach(back, seat, .5, .0, .5, .5, .75, .05)

def Back(l, w, h, aligned):
bbox = Cuboid(l, w, h, aligned)
surface = Cuboid(.8, .4, .1, T)
slat = Cuboid(.05, .5, .05, T)
attach(surface, bbox, .5, 1, .5, .5, 1, .5)
squeeze(slat, bbox, surface, bot, .1, .5)
translate(slat, X, 3, 0.8)

def Chair():

bbox = Cuboid(L T)
base = Base(e 1)

seat = Seat(

back = Back(iiSNE. T)

attach(base, bbox, .5, 0, .5, .5, 0, .5)
attach(back, bbox, .5, 1, .5, .5, 1, .05)
attach(seat, base, .5, .0, .5, .5, 1, .5)
attach(Back, seat, .5, .0, .5, .5, .75, .05)

def Back(l, w, h, aligned):
bbox = Cuboid(l, w, h, aligned)
surface = Cuboid (SIS, T)

slat = Cuboid(|ISINEN .05, T)
attach(surface, bbox, .5, 1, .5, .5, 1, .5)

squeeze(slat, bbox, surface, bot, .1, .5)
translate(slat, X, §, 0.8)

execute

execute

iting motion graphics (vector graphics animations)

. Video —> SVG keyframe animation (computer vision)
LLM edits the SVH file (e.g., change yellow rectangle to texture map)
. Re-render animation

<svg w=200, h=200, dur=“5s”>
<g 1d=%“0">
,

1
2.
3

o
2
-ﬁé
8 N <scale val=%1.0 1.0; 1.05 1.83 .2 />,
© s <translate val=“0.1 0.5; 0.15 0.5...” />,
S - <rotate val=%1.0; 1.05; ...” />,
"5 w <Z‘ i Hdex Va].=“0; 0; . 0,, />,
Q >
£ g </g>
- <g 1d=%17">,,.</g>
o ot @
E </svg> Y
NewYearsProgTransformer (P, args, [frmA, frmB]): Program
// Set background color. f
setAppearance("bg", args.background) transtformer

// OBJECT SELECTOR: Query for the red semicircle.

selObjs = objSelector (P, propQuery, "color", "red", [frmA, frmB])

// OBJECT TRANSFORMER: Change the appearance to the year.
changeAppearanceObjTransformer (selObjs, args.year, [frmA, frmB])

// Repeat obj selection and obj transformation for banner and animal.
selObjs = objSelector (P, propQuery, "color", "yellow", [frmA, frmB])
changeAppearanceObjTransformer (selObjs, args.banner, [frmA, frmB])
selObjs = objSelector (P, propQuery, "color", "white", [frmA, frmB])
changeAppearanceObjTransformer (selObjs, args.zodiac, [frmA, frmB])

Y
E
A
b
o
F
T
H
E

=00 >0

// OBJECT SELECTOR: Query for the gray curve.
selObjs = objSelector (P, propQuery, "color", "gray", [frmA, frmB])
changeAppearanceObjTransformer (selObjs, args.characters, [frmA, frmB])
// OBJECT TRANSFORMER: Apply an oscillating scale.
function pulse(t, [sx, sy]):

return [sx + 0.5 * np.sin(t / 10), sy + 0.5 * np.sin(t / 10)]
motionTexObjTransformer (selObjs, pulse, args.pulseArgs, [frmA,frmB])

// OBJECT SELECTOR: Query for the blue circle.

selObjs = objSelector (P, propQuery, "color", "blue", [frmA, frmB])
// OBJECT TRANSFORMER: Remove the object.

removeObj (selObjs, [frmA, frmB])

Stanford C5348K, Spring 2025

Another example

Python programs as “plans”
carry out tasks in 3D environments

Notice how the program queries for state of environment and

PROMPT for Planning

Import action primitives

from actions import walk <obj>,
grab <obj>, switchon <obj>,
open <obj>, standup, find
<obj>, putin <obj> <obj>,

objects=[clothesshirt’ sink,
pie, apple, fridge, garbagecan,
tv, dishwashingliquid, bed,
bookshelf, salmon, stove, plate,
coffeepot, kitchentable,
wineglass, paper, microwave,
toothbrush, toothpaste,
bathroomcabinet, kitchen, lime,
painkillers, barsoap, ...]

def throw_away limel():
0: find lime
find('lime')

5: close garbagecan

assert('close' to 'garbagecan')
else: find('garbagecan')
assert('garbagecan' is 'opened')
else: open('garbagecan')
close('garbagecan')

6: Done

Next task prompt
def microwave_salmon():

exhibits simple conditional execution.

Generated Plan

def microwave salmon|():
(# 0: wa@k to kitchen
., wa'lk "kitchen™) ActionAPI
. flnd mlcrowave

obj
2 ' g?(l'

* open mlcrowave ™
assert(close' to mlcrowave ﬁct'romfs
OPP

else: find mlcrowave
assert('microwave’ 'closed’
else: close mlcrowave
open('microwave')

|
|]
|
.
\J
.
\J
\d
.

Sommary

Amunﬂomm

5: put salmon in microwave
assert('salmon' in 'hands')

else: find('salmon')
LLM code else: grab('salmon')
assert("close”™ TO "'microwave’)

generator else: find('microwave'
assert('microwave’ 1s 'opened’
_’ else: open('microwave')

'microwave’)

putin(‘'salmon’,

close('microwave’)

switchon('microwave')

8: walt for salmon to be done
cooking 1-2 minutes

9: turn off microwave

switchoff('microwave')

open('microwave’)

grab('salmon')

12: put salmon on plate

assert('salmon' in 'hands')

aSS°rt ‘close’ to 'plate’')
else: find('plate')

putin('salmon', 'plate')

close('microwave')
14: Done

Stanford (5348K, Spring 2025

Generating animations

High-level motion editing commands —> programs that perform keyframe edits —> use Al model (diffusion) to

interpolate the keyframes

S S, W Sy

E=*Start the motion by driving your left knee up”

LLM-Based MEO Generator Q

load motion(motion 0)

rotate_(left hip, flex, time=at frame(0), action=true)
rotate (left_knee, flex, time=at frame (0), action=true)

save motion(motion_1)

N

Source Motion with Modified Keyframe

I D

Final Edited Motion

ekt)

L

JUOUIOULJOY QAIIRID)]

API for MEO Construction

from timing import when joint, at frame,
from motion io import load motion, save motion

from actions import translate joint, rotate joint,

Available Parameters

relative moments=[“highest”, “lowest”,6 ...]
translate directions=[“"forward”, “backward”, “up”

joints_that rotate=[“right knee”, "“left knee”,..]

rotation directions=["abduct”, “adduct”, “extend”,

In-context Learning Example(s)

as you jump

def right knee_ to chest():
load the motion that needs to be edited
load motion("motion 07)

bend the right knee
rotate joint(“right knee”, "“flex”,
time=when joint (“waist”, “highest”))
flex the ;ight hip to bring the knee higher
rotate joint(“right knee”, "“flex”,
time=when joint(“waist”, “highest”))

¥ save the edited motion
\‘>save motion(“"motion 1”)

the person is jumping. Bring the right knee to chest

Editing Instruction E

Can you get that kick higher out?

A person is doing a side kick with the right leg.

LLM completes code here

Stanford C5348K, Spring 2025

Another example

Programs as “plans” to answer questions

Q: Is the carriage to the right of a horse? Large Language Model

answer

8 R A |
X2, V2
AT X1 > X2

Note how the DSL contains primitives

default answer

“nO”

horse _exists = query(“Is there a horse?”)
if horse_exists == “yes”:

get pos(“carriage”)
get pos(“horse”)

answer

Object

Localizer

/

that themselves might be implemented
as “Black-box” DNNs

“yesn

Simple VQA
Method

Stanford (5348K, Spring 2025

What is the DSL for the following edit?

m Given this photo, make the cat’s tail curve back into
the frame.

m Let’s think about the pros and cons of this program-
driven generation/editing approach:

What are the benefits?

What are limitations of this approach?

|
Stanford C5348K, Spring 2025

Challenges

m Designing a DSL can be challenging

- What primitives to include? How to implement these primitives?
- Problems must down into clearly defined, self-contained steps

m How do we know when a learned program generator produces a valid program (a program
that performs the task specified in the controls)?

- (Can we predict when a program generator will fail?

Stanford C5348K, Spring 2025

Text prompt
<SVg> ... </svg>
Move the orange circle above the rectangular shape.
In the meantime, rotate the letter H clockwise by 90 degrees.
MoVer program
01 = 10.clr(o,"orange")Ashp(o,"circle")
02 = 10.shp(o,"rectangle")
03 = 10.id(o,"H")
mi = wn.type(m,"trn")Aagt(m,01)Apost(m,top(o1,02))
mz = wn.type(m,"rot")Aagt(m,o03)Adir(m,"cw")Amag(m,908)
while(mq,m2)
MoVer verification report
mp = lm.j;pu(m,"trn”)A&jﬁ(m,01)Aﬁ:Sf(m,fwﬁ(01,02))
iu0(01,02)
post(m,top(o1,02))
m2 = wm.type(m,"rot")Aagt(m,o03)Adir(m,"cw")Amag(m,98)
while(mq,m2)

MoVER: toniahts readina (SIGGRAPH 2025)

Generated motion graphics animation

frame 1-60: mq translation by the circle

frame 001 frame 020 frame 040

= £ =

frame 61-120: m2 rotation by “H"
frame 061 frame 080 frame 100

Ti i W

I
(=S .

Follows an emerging pattern in Al-based program generation

Given an editing instruction, generate:
- A program that performs the edit

- Aset of predicates that should be true if the edit was successfully performed (verifiers)

If any of the predicates fail, have the program generator try again (given information about its prior failures)

Questions:
m Whatis the collection of verifiers?

m (anthe verifiers be “powerful enough” to provide useful checking?

frame 060

B

frame 120

H

-

a
=

Stanford C5348K, Spring 2025

Project Discussions

Stanford C5348K, Spring 2025

