
Visual Computing Systems
Stanford CS348K, Spring 2025

Lecture 18:

Differentiable programming in Slang +
Presentation Talk Tips

Stanford CS348K, Spring 2025

Two reasons to discuss Slang
1. Interesting programming system of potentially high practical utility

2. Great example to discuss policy and mechanism in systems design

Stanford CS348K, Spring 2025

Policy vs. mechanism in programming systems
1. Mechanism(s): tools for performing simple, primitive operations

2. Policy: how the mechanisms are used to perform a higher-level task

Let’s consider some examples from class so far:

Halide
- Mechanisms for defining allocation of buffers and iteration order of computation loops
- Halide tries hard to not be opinionated about how developer should use those mechanisms (but some policy w.r.t. always

implementing “sliding window optimizations” when they are possible.

Frankencamera:
- Mechanisms for controlling/configuring the sensor and other camera devices and for specifying the time when the operations

should happen
- One major policy design in the system: “best effort” adherence to user’s commands

Consider these systems with some popular web frameworks you might be familiar with (Django, Flask, Express.js), etc…

Stanford CS348K, Spring 2025

Why is it important to be intentional about separating
policy from mechanism?

Generality of system: well-designed primitives could be used and composed in many ways

Different application areas/tasks might demand different policies, and the choice of the right policy might be
critical to success, with only the developer of the application able to know what the best policy is
- Error handling policy: Applications might differ in whether they want a best-effort system or not

(examples: Frankencamera, TCP vs. IP, etc.)
- Scheduling policy: different image processing pipelines might demand very different scheduling

strategies (fuse everything, vs burn memory but save recompute)
- Policy of what algorithms to use: some programs might be amenable to forward model diff, others reverse

mode

Systems that stick to providing powerful mechanisms (and stay clear of dictating policy), and allow policy
decisions to be implemented by layers above them, tend to be long-lived systems

Stanford CS348K, Spring 2025

Slang
Programming language and compiler mechanisms to enable differentiable programming in a wide range
of use cases…
- But is carefully designed to avoid policy decisions as much as possible

Key mechanism: ability to perform auto-differentiation of a “basic block” of code (but this is not unique
to Slang, there are many differentiable programming systems)

But Slang is unique in that it: anticipates a diverse set of application programs
- Code that is most efficiently implements using forward mode autodiff or reverse-mode autodiff
- Code that mixes differentiable and non-differentiable logic
- Code containing functions that in isolation are not differentiable but programmer has additional

knowledge about how they want the derivative computed (overrides)

Stanford CS348K, Spring 2025

A bit of a reminder: chain rule

f(x, y, z) = (x+ y)z = az a = x+ yWhere:

df

da
= z

df

dx
=

df

da

da

dx
= z

da

dx
= 1

So, by the derivative chain rule:
x

y

z

+

*

3

4

5

7 (a)
5

(df/da)

5
(df/dx)

5
(df/dy)

7
(df/dz)

35 (f)

da

dy
= 1

1
(df/df)

Red = output of node
Blue = df/dnode

Stanford CS348K, Spring 2025

Back propagation as a reverse-mode autodiff technique

x

y
+ 10

10
10

df

dx
=

df

dg

dg

dx

x

y
max 10

0

10
15

12
1, if x > y
0, otherwise

f(x, y) = max(x, y)

<latexit sha1_base64="PbS2IHkluWtbtclR1EQ5fxucobI=">AAACA3icbVDLSsNAFJ3UV62vqDvdDBahgpREKroRim5cVrAPaEOZTCft0JkkzEykIRTc+CtuXCji1p9w5984SbPQ1gMXDufcy733uCGjUlnWt1FYWl5ZXSuulzY2t7Z3zN29lgwigUkTBywQHRdJwqhPmooqRjqhIIi7jLTd8U3qtx+IkDTw71UcEoejoU89ipHSUt888CqT0/gEXsEeR2okeMLRZJppfbNsVa0McJHYOSmDHI2++dUbBDjixFeYISm7thUqJ0FCUczItNSLJAkRHqMh6WrqI06kk2Q/TOGxVgbQC4QuX8FM/T2RIC5lzF3dmR4q571U/M/rRsq7dBLqh5EiPp4t8iIGVQDTQOCACoIVizVBWFB9K8QjJBBWOraSDsGef3mRtM6qdq16flcr16/zOIrgEByBCrDBBaiDW9AATYDBI3gGr+DNeDJejHfjY9ZaMPKZffAHxucPKjeWmQ==</latexit>

df

dx
=

<latexit sha1_base64="5MHcf1EcZAokDqQW+273wn4Q3Aw=">AAAB+XicbVBNS8NAEJ3Ur1q/oh69LBbBU0mkoheh6MVjBfsBbSibzaZdutmE3U2xhPwTLx4U8eo/8ea/cdvmoK0PBh7vzTAzz084U9pxvq3S2vrG5lZ5u7Kzu7d/YB8etVWcSkJbJOax7PpYUc4EbWmmOe0mkuLI57Tjj+9mfmdCpWKxeNTThHoRHgoWMoK1kQa23Q8lJlkQ5lnwlKMbNLCrTs2ZA60StyBVKNAc2F/9ICZpRIUmHCvVc51EexmWmhFO80o/VTTBZIyHtGeowBFVXja/PEdnRglQGEtTQqO5+nsiw5FS08g3nRHWI7XszcT/vF6qw2svYyJJNRVksShMOdIxmsWAAiYp0XxqCCaSmVsRGWEThTZhVUwI7vLLq6R9UXPrtcuHerVxW8RRhhM4hXNw4QoacA9NaAGBCTzDK7xZmfVivVsfi9aSVcwcwx9Ynz8veZNe</latexit>

x

y 10
10*15

10*12
15

12 * f(x, y) = xy

<latexit sha1_base64="Fef1jMnHxq3e1wp1XDn3Ccbg7pI=">AAAB8nicbVBNS8NAEN34WetX1aOXxSJUkJJIRS9C0YvHCvYD0lA22027dLMJuxNpCP0ZXjwo4tVf481/47bNQVsfDDzem2Fmnh8LrsG2v62V1bX1jc3CVnF7Z3dvv3Rw2NJRoihr0khEquMTzQSXrAkcBOvEipHQF6ztj+6mfvuJKc0j+QhpzLyQDCQPOCVgJDeojM/TM3yDx2mvVLar9gx4mTg5KaMcjV7pq9uPaBIyCVQQrV3HjsHLiAJOBZsUu4lmMaEjMmCuoZKETHvZ7OQJPjVKHweRMiUBz9TfExkJtU5D33SGBIZ60ZuK/3luAsG1l3EZJ8AknS8KEoEhwtP/cZ8rRkGkhhCquLkV0yFRhIJJqWhCcBZfXiati6pTq14+1Mr12zyOAjpGJ6iCHHSF6ugeNVATURShZ/SK3iywXqx362PeumLlM0foD6zPH6R/kDI=</latexit>

df

dx
= y,

df

dy
= x

<latexit sha1_base64="8uRcqBeaM5/M3b+mrlqZppD8Zbw=">AAACDnicbZDLSsNAFIYn9VbrLerSzWApuJCSSEU3QtGNywr2Am0ok8mkHTqZhJmJNIQ8gRtfxY0LRdy6dufbOGmz0NYfBn6+cw5nzu9GjEplWd9GaWV1bX2jvFnZ2t7Z3TP3DzoyjAUmbRyyUPRcJAmjnLQVVYz0IkFQ4DLSdSc3eb37QISkIb9XSUScAI049SlGSqOhWRv4AuHU87PUm2bwCibwFP5iSc6mQ7Nq1a2Z4LKxC1MFhVpD82vghTgOCFeYISn7thUpJ0VCUcxIVhnEkkQIT9CI9LXlKCDSSWfnZLCmiQf9UOjHFZzR3xMpCqRMAld3BkiN5WIth//V+rHyL52U8ihWhOP5Ij9mUIUwzwZ6VBCsWKINwoLqv0I8RjoLpROs6BDsxZOXTeesbjfq53eNavO6iKMMjsAxOAE2uABNcAtaoA0weATP4BW8GU/Gi/FufMxbS0Yxcwj+yPj8AUAAm5k=</latexit>

Red = output of node
Blue = df/dnode Recall:

dL/df
dL/dy

dL/df

dL/df

dL/dy

dL/dy

f(x, y) = x+ y

<latexit sha1_base64="eFE6ayXnLsUrOKAXig9WZrDPAyg=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBahopREKnoRil48VrAf0Iay2W7apZtN2N1IQ+jf8OJBEa/+GW/+G7dtDtr6YODx3gwz87yIM6Vt+9vKrayurW/kNwtb2zu7e8X9g6YKY0log4Q8lG0PK8qZoA3NNKftSFIceJy2vNHd1G89UalYKB51ElE3wAPBfEawNlLXL4/Pk1N0g8ZnSa9Ysiv2DGiZOBkpQYZ6r/jV7YckDqjQhGOlOo4daTfFUjPC6aTQjRWNMBnhAe0YKnBAlZvObp6gE6P0kR9KU0Kjmfp7IsWBUkngmc4A66Fa9Kbif14n1v61mzIRxZoKMl/kxxzpEE0DQH0mKdE8MQQTycytiAyxxESbmAomBGfx5WXSvKg41crlQ7VUu83iyMMRHEMZHLiCGtxDHRpAIIJneIU3K7ZerHfrY96as7KZQ/gD6/MHDaaQZw==</latexit>

df

dx
= 1,

df

dy
= 1

<latexit sha1_base64="blXocCC2/ayHFObVe4SXNaDs2QA=">AAACD3icbZC7SgNBFIbPxluMt1VLm8GgWEjYlYg2QtDGMoK5QBLC7OxsMmT2wsysuCz7Bja+io2FIra2dr6Nk2SLmPjDwM93zuHM+Z2IM6ks68coLC2vrK4V10sbm1vbO+buXlOGsSC0QUIeiraDJeUsoA3FFKftSFDsO5y2nNHNuN56oEKyMLhXSUR7Ph4EzGMEK4365nHXE5ikrpel7mOGrpCNTtEMS6asb5atijURWjR2bsqQq943v7tuSGKfBopwLGXHtiLVS7FQjHCalbqxpBEmIzygHW0D7FPZSyf3ZOhIExd5odAvUGhCZydS7EuZ+I7u9LEayvnaGP5X68TKu+ylLIhiRQMyXeTFHKkQjcNBLhOUKJ5og4lg+q+IDLEOQ+kISzoEe/7kRdM8q9jVyvldtVy7zuMowgEcwgnYcAE1uIU6NIDAE7zAG7wbz8ar8WF8TlsLRj6zD39kfP0CxEWbNA==</latexit>

Stanford CS348K, Spring 2025

Back-propagation through a more complex function

f(x0, x1, x2, x3) = max

0,
X

i

xiwi + b

!Consider this function:x0

*

max

w0

x1

*w1

x2

*w2

x3

*w3

+

+

+

b

+

0

10

y

y

y

y

y

y

y

y

y

yx3

let y =
10, if upper input to max is > 0
0, otherwise

yx2

yx1

yx0

Observe: output of prior node must be retained by the algorithm in order to compute gradients
(with respect to weights) for this function during backprop.

yw0

yw1

yw2

yw3

dL/df

Stanford CS348K, Spring 2025

Reverse-mode auto-diff in Slang

Call to generated bwd_diff function will compute gradients of foo’s output
with respect to a and b, and write them to dp_a.d and dp_b.d

Value of parameter ‘a’

Value of parameter ‘b’

Explicitly tell compiler differentiation
support is desired

DL/df

Stanford CS348K, Spring 2025

Custom derivative function overrides
When derivative is difficult/expensive/impossible to derive mechanically, programmer can just specify the function to
compute the derivatives directly.

For a sophisticated example use case:
see “Differentiable Vector Graphics Rasterization for Editing and Learning” Li et al. 2020

Stanford CS348K, Spring 2025

Using interfaces to mix differentiable/non-differentiable code
Differentiable interfaces

Compiler infers the type of the Differential
(which in this case is also a pair of floats)

And now its valid for the programmer to create
instances of either MyType, or MyType.Differential

Compiler infers the type of the Differential
(Now just a single float)

Stanford CS348K, Spring 2025

Using interfaces to mix differentiable/non-differentiable code
Programmer can tell compiler which function parameters to differentiate over

Stanford CS348K, Spring 2025

Summary
Slang is designed to be extremely UN-OPINIONATED about how the programmer goes
about authoring differentiable code

It’s a set of programming language constructs and a compiler implementation that
handles the “busy work” of generating gradient code, and type checking code to ensure
the programmer is not making statically-checkable mistakes
- With reasonable “defaults” but almost everything is overridable

Stanford CS348K, Spring 2025

Project presentations

Stanford CS348K, Spring 2025

Presentation slots are being set up on Tues and Wed
Tuesday:
- 10:00-noon
- 1:30-2:50

Wednesday:
- 3:00-4:00

We hope these slots work for most teams, if you have a conflict, let’s work it out case-by-case
Location TBD
Everyone is invited to come watch during any of these times

Stanford CS348K, Spring 2025

Project handins
Final writeup is due Tuesday 5pm (no exceptions)
- Guidelines/instructions online

Oral presentation:
- 8-minute presentation per team. We will cut you off to keep time! :(
- We expect all members of the team to have a speaking role

Why presentations and not posters?
- Kayvon believes communicating a technical idea clearly in a short amount of time is a far

more important life skill than standing in from of a poster
- Unfortunately, most engineers do this pretty poorly… let’s work on it!

Stanford CS348K, Spring 2024

Communicating like an architect
(Aka. project presentation tips)

Stanford CS348K, Spring 2025

A few course themes
Thinking like a systems architect

- What are inputs/outputs, constraints, and goals?

- What are the “services” the system should perform (what is hard for a user to do in a world without the system)

- Once you can establish answers to these questions, you can consider your solution options

▪ Knowledge of applications and systems is necessary to choose efficient solutions
- Algorithms folks use their hammer to reduce cost of algorithms (smaller DNN models, new optimization

hyperparameters, use different data structures, etc.)
- HW designers use their hammer (custom accelerators, new interconnects) to execute a given workload faster
- SW systems folks use their hammer (parallel/distributed computing, workload-specific scheduling, high level

programming abstractions, etc.)

▪ The best solutions architects pick the right mixture of hammers for the job

Stanford CS348K, Spring 2025

A few course themes
Knowledge of applications and systems is necessary to do meaningful evaluation

- Is this the right workload to evaluate?

- Pitfall: measuring speedup on a part of the workload that is not the most significant

- Does dataset I’m using have the right data distribution?

- Am I measuring cost in FLOPs, but increasing data movement?

- Am I optimizing an algorithm that is not the right choice of algorithm for this problem?

Stanford CS348K, Spring 2025

Why get good at communication?
Systems architects need to be some of the best communicators in an organization
Must be able to:
- Communicate with users to understand workloads and constraints
- Communicate with the individual contributors/engineers to:

- Understand emerging problems/constraints
- Understand how to evolve/extending existing designs to enable new functionality

- Must constantly be communicating to various parties why:
- Their desired features are not being added
- They must do the same work with 50% of the resources

- Communicate to everyone a strategic vision for a system
- Communicate to executives/management/funders how goals are being met.

Stanford CS348K, Spring 2025

My motivation
I have found I give nearly the same feedback over and over to students making talks
- It is not profound feedback, it is just application of a simple set of techniques and principles that are

consistently useful when making talks

I am hoping these slides serve as a useful checklist you can refer to vet your own project
presentation talks before giving them next Tuesday
- Don’t worry: I still make these mistakes all the time when creating first drafts of talks

Stanford CS348K, Spring 2025

Who painted this painting?

Salvador Dali (age 22)

Stanford CS348K, Spring 2025

My point: learn the basic principles before you
consciously choose to break them

Stanford CS348K, Spring 2025

Tip 1

Put yourself in your audience’s shoes

This is a major challenge for most technical speakers. (including professors)

(Tip: recite a sentence out loud to yourself. * Do you really expect someone who has not
been working with you everyday on the project to understand what you just said?)

* I’m not kidding. Say it out loud. I find hearing myself say something out loud makes it easier to parse it from an audience’s perspective.

Stanford CS348K, Spring 2025

Consider your audience
Everyone in the audience knows about course readings/topics
- Terminology/concepts we all know about need not defined (just say “remember we talked about X”)

Most of the audience knows little-to-nothing about the specific application domain or
problem you are trying to solve
- Application-specific terminology should be defined or avoided
- What they can get their head around is inputs/outputs and goals/constraints

Everyone wants to know the “most interesting” thing that you found out or accomplished
(your job is to define most interesting for them)

Stanford CS348K, Spring 2024

A good principle for any talk (or paper):
“Every sentence matters”

What are you trying to say?
What technical story are you trying to tell?

What is point you are trying to make?

Is what you just said making that point? (If not, remove it)

If you can’t justify how it will help the listener understand the point, take it out.
If it’s not likely to be clear, take it out.

Tip 2
You might be trying to define a hypothesis.

Or define goals
Or establish inputs/outputs

Or show data that suggests you
were successful.

Stanford CS348K, Spring 2025

Pick a focus
In this class, different projects should stress different results

Some projects may wish to show a flashy demo and describe how it works (proof by “it works”)

Other projects may wish to show a sequence of graphs (path of progressive optimization) and describe the
optimization that took system from performance A to B to C

Other projects may wish to clearly contrast parallel CPU vs. parallel GPU performance for a workload

Your job is not to explain what you did, but to explain what you think we should know.

And really the most important thing we want to know is (1) what was your goal? and
(2) what’s the evidence you have that you were successful?

Stanford CS348K, Spring 2025

Ignoring every sentence matters
Never ever, ever, ever do this!

Stanford CS348K, Spring 2025

Bad example 2
Who is the audience for this? (how does this benefit them?)

▪ Experts?
- They likely know these papers exist. These slides don’t

tell them what about these papers is most relevant to
this talk

▪ Non-experts?
- They won’t learn the related work from these two slides

This type of related work section says little more than “others
have worked in this area before”.
- I suspect your audience assumes this is the case.
- Every sentence matters: if it doesn’t provide value, take it

out (or replace it with comments that do provide value)

Stanford CS348K, Spring 2024

The audience prefers not to think (much)

Tip 3

Stanford CS348K, Spring 2025

The audience has a finite supply of mental effort

The audience does not want to burn mental effort about things you know and can just
tell them.
- They want to be led by hand through the major steps of your story

- They do not want to interpret any of your figures or graphs, they want to be directly told how to interpret them
(e.g., what to look for in a graph).

- They want to be told about your key assumptions

The audience does want to spend their energy thinking about:
- Potential problems with what you did (did you consider all edge cases? Is your evaluation methodology sound? Is

this a good platform for this workload?)

- Implications of your approach to other things

- Connections to their own project or interests

Stanford CS348K, Spring 2024

Set up the problem.
Establish inputs, outputs, and constraints

(goals and assumptions)

Tip 4

Stanford CS348K, Spring 2025

Basics of problem setup
What is the computation performed (or system built)?
- What are the inputs? What are the outputs?

Why does this problem stand to benefit from optimization?
- “Real-time performance could be achieved”

- “Researchers could run many more trials, changing how science is done”

- “It is 90% of the execution time in this particular system”

Why is it hard? (What made your project interesting? What should we reward you for?)
- What turned out to be the hardest part of the problem?

- Optimization projects: e.g., overcoming SIMD divergence, increasing arithmetic intensity

- Applications projects: coming up with an algorithm to estimate depth, dealing with motion blur

- Abstraction/API projects: deciding between stateless or stateful interfaces

Stanford CS348K, Spring 2025

Image credit: Henrik Wann Jensen

Input: description of a scene:
3D surface geometry (e.g., triangle mesh)

surface materials, lights, camera, etc.

Output: image of the scene

Simple definition of rendering task: computing how each triangle in 3D
mesh contributes to appearance of each pixel in the image?

Example: 3D rendering problem

Stanford CS348K, Spring 2025

Why is knowing the goals and constraints important?

Your contribution is typically a system or algorithm that
meets the stated goals under the stated constraints.

Understanding whether a solution is “good” requires
having this problem context.

Stanford CS348K, Spring 2024

How to describe a system

Tip 5

Stanford CS348K, Spring 2025

How to describe a system
Start with the nouns (the key boxes in a diagram)
- Major components (processors, memories, interconnects, etc.)
- Major entities (particles, neighbor lists, pixels, pixel tiles, features, etc.)
- What is state in the system?

Then describe the verbs
- Operations that can be performed on the state (update particle positions, compute gradient of pixels,

traverse graph, etc.)
- Operations produce, consume, or transform entities

Stanford CS348K, Spring 2025

Tip: how to explain “a system”
Step 1: describe the things (key entities) that are manipulated
- The nouns

Stanford CS348K, Spring 2025

Example: real-time graphics primitives (entities)

Vertices
(points in space)

Primitives
(e.g., triangles, points, lines)

1

2

3

4

Represent surface as a 3D triangle mesh

Stanford CS348K, Spring 2025

Real-time graphics primitives (entities)

Vertices
(points in space)

Primitives
(e.g., triangles, points, lines)

Pixels (in an image)

1

2

3

4

Fragments

Stanford CS348K, Spring 2025

How to explain “a system”
Step 1: describe the things (key entities) that are manipulated
- The nouns

Step 2: describe the operations the system performs on these entities
- The verbs

Stanford CS348K, Spring 2025

Real-time graphics pipeline
Abstracts process of rendering a picture as a sequence of
operations on vertices, primitives, fragments, and pixels.

Vertex Processing

Vertex Generation

3D vertex stream

Projected vertex
stream

Primitive Generation

Fragment Generation
(“Rasterization”)

Fragment stream

Fragment Processing

Colored fragment
stream

Pixel Operations

Output image
buffer

(pixels)

Input vertex
buffer

Primitive stream
(triangles with
projected vertices)

Stanford CS348K, Spring 2024

Surprises* are almost always bad:
Say where you are going and why you must go there before you say

what you did.

* I am referring to surprises in talk narrative and/or exposition. A surprising result is great.

Tip 6

Stanford CS348K, Spring 2025

Give the why before the what
Why provides the listener context for...
- Compartmentalizing: assessing how hard they should pay attention (is this a critical idea, or just an implementation

detail?). Especially useful if they are getting lost.

- Understanding how parts of the talk relate (“Why is the speaker now introducing a new optimization framework?”)

In the algorithm description:
- “We need to first establish some terminology”

- “Even given X, the problem we still haven’t solved is...”

- “Now that we have defined a cost metric we need a method to minimize it...”

▪ In the results/evaluation:
- Speaker: “Key questions to ask about our approach are...”
- Audience: “Thanks! I agree, those are good questions. Let’s see what

the results say!”

Stanford CS348K, Spring 2025

Big surprises in a narrative are a bad sign
Ideally, you want the audience to always be able to anticipate* what you are about to say
- This means: your story is so clear it’s obvious!
- It also means the talk is really easy to present without notes or text on slides (it just flows)

If you are practicing your talk, and you keep forgetting what’s coming on the next slide
(that is, you can’t anticipate it)...
- This means: you probably need to restructure your talk because a clear narrative is not there.
- It’s not even obvious to you! Ouch!

* Credit to Abhinav Gupta for suggesting the term anticipation, and for the example on this slide

Stanford CS348K, Spring 2024

Show, don’t tell
It’s much easier to communicate with

figures/images than text

Tip 7

(And it saves the speaker a lot of work explaining… you can just describe the picture)

Stanford CS348K, Spring 2025

Example:
In a recent project, we asked the question… given enough video of tennis matches of a
professional athlete, could we come up with an algorithm for turning all this input video
into a controllable video game character?

Compare the description above to the following sequence…

Stanford CS348K, Spring 2025

Here’s an example of that source video

The best way to describe the input data is just show it! ("This is what the input looks like!”)

Stanford CS348K, Spring 2025

And there’s a lot of it out there!

Stanford CS348K, Spring 2025

And here’s an example of controllable output

The best way to describe the output we seek is just show the result of the system!
(“We click to specify a target ball location, and the player hits the incoming ball back to the red dot”)

Stanford CS348K, Spring 2024

Another example:

Stanford CS348K, Spring 2024

The problem (lighting differences)

Stanford CS348K, Spring 2024

After the fix

Stanford CS348K, Spring 2024

Another example: we recently created a renderer that achieved high frame rates by
rendering many views of the scene at the same time

Stanford CS348K, Spring 2024

Always, always, always
explain any figure or graph

(remember, the audience does not want to think about things you can tell them)

Tip 8

Stanford CS348K, Spring 2025

Explain every figure
Explain every visual element in the figure (never make the audience decode a figure)
Refer to highlight colors explicitly (explain why the visual element is highlighted)

Example voice over: “Here I’m showing you a pixel grid, a projected triangle, and the location of four sample points at each pixel.
Sample points falling within the triangle are colored red.

Stanford CS348K, Spring 2025

Explain every figure
Lead the listener through the key points of the figure
Useful phrase: “As you can see...”

- It’s like verbal eye contact. It keeps the listener engaged and makes the listener happy... “Oh yeah, I can see that! I am following this talk!”

Example voice over: “Now I’m showing you two adjacent triangles, and I’m coloring pixels according to the number of shading computations that occur at each
pixel as a result of rendering these two triangles. As you can see from the light blue region, pixels near the boundary of the two triangles get shaded twice.

Stanford CS348K, Spring 2025

Explain every results graph
May start with a general intro of what the graph will address (so audience “anticipates” the result)
Then describe the axes (and your axes better have labels!)
Then describe the one point that you wish to make with this results slide (more on this later!)

Example voice over: “Our first questions were about performance: how much did the algorithm reduce the number of the shading computations? And we found out that the answer is a lot. This figure
plots the number of shading computations per pixel when rendering different tessellations of the big guy scene. X-axis gives triangle size. If you look at the left side of the graph, which corresponds to
a high-resolution micropolygon mesh, you can see that merging, shown by yellow line, shades over eight times less than the convention pipeline.

Stanford CS348K, Spring 2025

Explain every results graph
May start with a general intro of what the graph will address.
Then describe the axes (your axes better have labels!)
Then describe the one point that you wish to make with this results slide (more on this later!)

Example voice over: “Our first question was about performance: how fast is the auto scheduler compared to experts? And we found out that it’s quite good. This figure plots the performance of the
autoscheduler compared to that of expert code. So expert code is 1. Faster code is to the right. As you can see, the auto scheduler is within 10% of the performance of the experts in many cases, and always
within a factor of 2.

Stanford CS348K, Spring 2024

In the results section:
One point per slide!
One point per slide!
One point per slide!

(and the point is the title of the slide!!!)

Tip 9

Stanford CS348K, Spring 2025

Make the point of the graph the slide’s title:
- It provides audience context for interpreting the graph (“Let me see if I can verify that point in the graph

to check my understanding”)
- Another example of the “audience prefers not to think” principle

Stanford CS348K, Spring 2025

Another example:

Stanford CS348K, Spring 2025

More examples

Stanford CS348K, Spring 2025

Bad examples of results slides
Notice how you (as an audience member) are working hard
to interpret the trends in these graphs

- You are asking: what do these results say?
- What am I supposed to be concluding?

The audience just wants to be told what to look for!
- They are reading the graphs to verify the main point,

not determine the main point.

Stanford CS348K, Spring 2025

Titles matter
If you read the titles of your talk all the way through, it should be a

great summary of the talk.

(basically, this is “one-point-per-slide” for the whole talk)

Tip 10

Stanford CS348K, Spring 2025

Examples of descriptive slide titles

The reason for meaningful slide titles is convenience and
clarity for the audience

“Why is the speaker telling me this again?”

(Recall “why before what”)

Stanford CS348K, Spring 2025

Read your slide titles in thumbnail view
Do they make all the points of the story you are trying to tell?

Stanford CS348K, Spring 2024

Practice the presentation

Tip 11

Stanford CS348K, Spring 2025

Practice the presentation
Given the time constraints, you’ll need to be smooth to say everything you want to say

To be smooth you’ll have to practice

Rehearse your presentation several times the night before (in front of a partner or friend)
- It’s only a short presentation, so a couple of practice runs are possible in a small amount of time

